
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

JavaStat: A Distributed Statistical

Computing Environment

Hengyi Xue∗ E. James Harner†

Abstract

JavaStat is a distributed application written in Java for do statistical anal-
yses. It is designed to run on multiple computers connected by the Internet.
The data model and the associated statistical logic of JavaStat reside on the
server while plots and reports and their controllers are located on the clients.
The client communicates with the server using Java RMI (Remote Method
Invocation). JavaStat can be used as a standalone application to perform
traditional data analyses or it can be used for collaborative research among a
group of users. For instructional purposes, it is also possible to use Java ap-
plets as the user interface. Statistical models or plots are initiated by the user
from a dataset (viewed as a table or a variable list), which is obtained from
the server. JavaStat allows the user to do standard analyses and advanced
plotting, but it was not designed for complex modeling tasks. Instead, R will
be used as a backend computing engine and an Omegahat-type interface will
be developed between R and JavaStat. JavaStat is a component of a more
comprehensive system being developed called JEMS (Java Environment for
Mathematics and Statistics).

1 Introduction

JavaStat is a distributed Java application for statistical computing. It is designed
to run on multiple computers connected via the Internet. The data model and the
associated statistical logic of JavaStat reside on the server whereas plots and plot
controllers are located on the clients. JavaStat can be used as a standalone tool to
∗hxue@stat.wvu.edu, Department of Statistics, West Virginia University
†jharner@stat.wvu.edu, Department of Statistics, West Virginia University

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

do traditional data analyses or it can be used for collaborative research among a
group of users.

The software has a client-server structure. It is organized around the concept
of a session. A session stores information about a client, including its name and
the data it uses. The data of a session is stored in a DataSet object. A DataSet is
a collection of variables with state information. The server module of the software
runs on a server machine and its function is to manage sessions for the clients and
perform computing tasks. The clients construct reports and graphical views of the
datasets. They are lightweight in the sense that they rely on the server module for
complex computing algorithms and operations.

There are two types of clients. One is implemented as a Java application. This
client gives the user flexibility as to which dataset to choose and which graphical
views of the data to construct. It also allows the user to modify the data and
permanently save the changes. This type of client is usually used by a more advanced
user—like an instructor or researcher. Another type of client is implemented as a
Java applet. This client is usually a single view of the dataset such as histogram
or spreadsheet. Applet clients dont give their users a choice as to which dataset to
analyze or the module to display the data. The parameters are pre-determined for
the applet in its initialization and cannot be changed dynamically. The advantage
of this type of client is that its code can be downloaded dynamically and it can be
embedded easily within static Web content.

2 The Server Module

The server module manages sessions, performs complex computing tasks on behalf
of the clients, and coordinates interaction among collaborative objects.

SessionManager

StatEngine

TaskManager

JavaStat Server

Proceedings of DSC 2001 3

It has three major components:

• SessionManager: This component manages sessions. There is one dataset
associated with each session object. The dataset is read and parsed from an
XML file saved on the server. Session objects are organized into SessionGroups
based on the associated datasets. Sessions that use the same original dataset
belong in the same group. In normal running mode, there is one session
for each client. On the other Hand, in collaborative running mode, multiple
clients can share a session.

Data1.xml

��
� DataSet 1A Session 1A

HHH DataSet 1B Session 1B

SessionGroup 1

Data2.xml

DataSet 2A Session 2A

SessionGroup 2

SessionManager

A
A
A
A
A
A

�
�
�
�
�
�

• StatEngine: The StatEngine component implements mathematical and sta-
tistical procedures used in JavaStat. All computationally intensive operations
are passed by the client to StatEngine, which completes the task and returns
it to the client. StatEngine users MathUtils, for doing mathematical compu-
tations, and Distribution, for manipulating probability distributions.

• TaskManager: This component coordinates interaction among collaborative
objects to achieve a high level of collaboration among a group of clients. A
collaborative object is an object whose methods can be invoked remotely by
an object of the same class on another Java Virtual Machine (JVM). The basic
idea is that when a method is invoked on a collaborative object, it broadcasts
the method invocation to objects of the same class on other JVMs so that
they behave as a whole. Because client-to-client communication in Java is
forbidden for security reasons, the TaskManager acts as the middle man for
the broadcasting. It receives the request from one client and sends it to the
rest.

Proceedings of DSC 2001 4

TaskManager

�
�
�
�
�
�
�
�/ -
S
S
S
S
S
S
S
Sw

JVM1

InstanceA:myclass

someMethod()

Initiator

JVM2

InstanceB:myclass

execute()
someMethod()

JVM3

InstanceC:myclass

execute()
someMethod()

3 The Client Module

The principal responsibility of the client is to access and display data views. The
classes in the client are organized into ‘modules’ according to their functionality.
For example, a histogram view of a dataset derives from the HistogramModule. The
modules can be used in either a client Java application or an applet.

The client communicates with the server using Sun’s Java RMI (Remote Method
Invocation) protocol. This protocol allows complex objects to be passed between
different JVMs. The binding of the client with the server is a three staged process:

1. The client looks up registered remote objects through a facility called the RMI
Registry. The registered remote objects serve as entry points for the server.

2. Through the remote objects found in stage 1, the client can obtain references
to other remote objects.

3. Once the client has a reference to a remote object, it can call its method
directly as if the object is local. The object’s physical location is transparent
to the client.

Proceedings of DSC 2001 5

The communication process is illustrated in the following diagram:

Server
SessionManager

StatEngine

TaskManager

RMI Registry Client�

Lookup

?

RemoteObject SessionManager Client

?

Method A()

RemoteObject Client�����������9

A client acts as a remote observer for a DataSet and a DataSet can have many
remote observers. A privileged client can make changes to the DataSet. Any change
will cause all remote observers to be updated.

DataSet �
��
�
��*

�
�
�
�
�
��

HHH
HHHj

@
@
@
@
@
@R

Change

Client A

Client B

Client C

Client DQ
Q
Q
Q
Q
Q
QQk

Update

As mentioned before, the JavaStat client can run in standalone or collaborative
mode. In independent mode, each client will have its own Session. The changes
a client makes to its Session DataSet will not affect the datasets of other clients
even if they are sharing the same XML data file. In collaborative mode, clients in
the same SessionGroup have the option of sharing a single Session. The Session is

Proceedings of DSC 2001 6

owned by a particular client. The owner of the Session can make changes to the
DataSet and all the other clients will reflect the change dynamically. Other clients
can not modify the data unless the owner grant them privileges.

Independent Mode
SessionGroup 1

Session C

Session B

Session A

Client C

Client B

Client A

Collaborative Mode
SessionGroup 2

Session A

Client C

Client B

Client A
@
@
@
@

A
A
A
A
A
A
AA

To begin a collaborative session, the session initiator (e.g., the instructor) will
run JavaStat in collaborative mode. Other users can then login using either Java
applet or application clients.

3.1 The User Interface for Data Modeling

After a client acquires a dataset from the server, it can display it in either of two
views—as a table or variable list. The table view gives a user a data table that the
user can use for viewing, changing or inserting data. The variable-list view is used
for data modeling. In this mode, the user can see which variables are categorical
and which are numerical. The user can also assign roles to the variables to do data
analysis. Each variable can have one of three roles: x, y or z, corresponding to
whether it is an explanatory variable, outcome variable or conditioning variable.

An icon with dotted lines indicates the variable is categorical, whereas an icon
with solid lines indicates the variable is numerical. The three axis of an icon cor-
responds to the three roles. For example, if a variable has the ‘y’ role, then the y
axis is painted red. The user can assign roles by clicking on one of the axis or by
assigning the role in a dialog.

After the roles are assigned, the user can perform data analyses. This is done
through the Plot menu. Based on the roles of the variables, the Plot menu will
have different menu choices for the user to choose. If the data set has y and x
variables, the menu will have choices that say y | z plot and y ∼ x | z plot. Each of
these menu choices will do different default data analyses based on the characteristic
of the variables.

Proceedings of DSC 2001 7

3.2 Data Level Collaboration and User Interface Level Col-
laboration

The collaboration implemented in JavaStat can be classified into two categories:
data level collaboration and user interface level collaboration.

Data level collaboration means any changes to the data set by one client are
visible to all the other clients. This is achieved by implementing the DataSet ob-
ject as a remote object. It always resides on the server. Changes by a client are
actually made to the object on the server. The other clients are notified using an
RMI callback mechanism. This is in fact the model-view-controller design pattern
implemented in a distributed environment with the DataSet being the model and
all the clients being the view.

User interface level collaboration means that changes made by one client, not
affecting the dataset, are nonetheless visible to the other clients. For example,
if a user changes the number of bins in a histogram, which will not affect the
dataset, then the other collaborative users will see the corresponding changes in their
histograms as well. We achieved this by implementing some of the UI components
as collaborative objects. We define collaborative objects as distributed objects that
react to a single method invocation as a whole. Consider the histogram example:
1) a user uses a UI gadget to increase the number of bins in the histogram; 2) the
event handler will respond to the user interaction and invoke a method on a UI
component to update the histogram; 3) the method executes but also broadcasts a
message to the same UI components on all other sharing JVMs to execute the same
method. When UI collaborative objects are instantiated, each of the instances will
export its stub to the server. The server will keep a registry of these stubs. When
one of the collaborative objects method is invoked, it sends a message to the server
to tell all the other instances to execute the same method. The server interprets
the message and invokes the method on all the stubs, which are delegated to all the
distributed instances through the Java RMI protocol.

3.3 The JavaStat Evaluator

Both the table and variable list views of a dataset have a ‘Data’ menu with an
‘Evaluator’ menu item. The Evaluator is used for creating new variables (columns
in the table view). Generally, this is done by constructing a variable expression
(saved as a MathML expression). If a value of an underlying variable is changed,
the variable expression is automatically updated. The changes are propagated to
all clients.

Variables can also be generated from analyses, including those from remote R
analyses. The Evaluator can be used to initiate these remote R function calls.

4 R as a Computing Engine

The StatEngine component in the server module has limited modeling capabilities.
Specifically, JavaStat can generate plots and reports from models of the form y | z

Proceedings of DSC 2001 8

or y ∼ x | z, where x, y, and z are categorical or numerical and z is an optional
conditioning variable. For example, if both x and y are categorical, then a mosaic
plot is created by default and a contingency report is generated. Alternative plots
and reports are often available, e.g., those associated with correspondence analyses
in the case of categorical variables.

The use of R within JavaStat in not intended to replicate the full functionality
of R. Rather, R will be used to enhance JavaStat—initially by using the advanced
modeling functions of R. The R Interface to Java (http://www.omegahoat.org) by
Duncan Temple Lang makes this possible. The interest here is to allow R functions
to be used to implement Java interfaces. With this interface, we can access R
modeling functions from JavaStat.

When we make R function calls from within Java, we need to consider how to
call R functions and how to pass arguments from Java to R and get returned results
back into Java. The approach here is to do as much work as possible in JavaStat
and to do as little as possible in R. This will facilitate the portability of JavaStat.

4.1 Calling R functions

There are two ways to make R function calls from Java. One is to pass an R
expression as a string to the R evaluator. The limitation of this method is that it
is difficult to pass JavaStat variables as arguments to these calls.

The second way of calling R, which is used by JavaStat, is to call R functions
in a Java-like mechanism. We can identify the function by name and pass objects
to it using ordered arguments or named arguments in the form
REvaluator.call(functionName, argArray, namedArgTable),
where REvaluator is implemented in org.omegahat.R.Java.

Standard conversion mechanisms are used when the inter-system interface is
used to convert the Java arguments to R objects.

4.2 Returning R objects to Java

The result of invoking an R function is an R object—typically a list. When this
is passed back to the Java method that called it, standard mechanisms for con-
verting R objects to Java objects are applied. If no converter is found (either
user-level or built-in), a proxy for the R object is returned to Java in the form of
an RForeignClass object.

5 Future Work

JavaStat is undergoing extensive development and a production versions is expected
in August of 2001. JavaStat is designed for doing statistical analyses. A compan-
ion component for manipulating mathematical expressions, called JavaMath, is also
being developed. JavaStat and Javamath both have the same underlying structure
based on a collaborative session. Therefore, the SessionManager and TaskManager

Proceedings of DSC 2001 9

of JavaStat are being moved to a higher level in a system called JEMS (Java Envi-
ronment for Mathematics and Statistics). Currently, JavaMath is in its initial stage
of development and is principally used for manipulating mathematical expressions
dynamically as represented in a graph.

	Introduction
	The Server Module
	The Client Module
	The User Interface for Data Modeling
	Data Level Collaboration and User Interface Level Collaboration
	The JavaStat Evaluator

	R as a Computing Engine
	Calling R functions
	Returning R objects to Java

	Future Work

