
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Compiling R: A Preliminary Report

Luke Tierney∗

Abstract

This paper outlines an initial implementation of a byte code compiler for
R. The compilation process is illustrated on a simple example. Semantic issues
raised by the compilation process are discussed and sketches of the current
virtual machine implementation and compiler design are given.

1 Introduction

This paper outlines an initial implementation of a byte code compiler for R. This
implementation is intended as a proof of concept and a starting point for working
out issues rather than as a final design.

The primary motivation for compilation is to improve speed of computation.
But there are additional benefits. The R language semantics are currently defined
primarily by the implementation. Writing a compiler forces the careful examination
of these semantics and can help identify unusual or perhaps unintended features.
Features that are difficult to compile often lead to programs that are difficult for
human readers to understand. A compiler can also help to identify possible pro-
gramming errors. An additional potential benefit is that compilation may make
it easier to support some of the features currently under consideration for R, such
as an improved exception handling mechanism or some form of light-weight thread
support.
∗School of Statistics, University of Minnesota. Research supported in part by grant DMS-

9971814 from the National Science Foundation.

New URL: http://www.R-project.org/conferences/DSC-2001/ 

http://www.R-project.org/conferences/DSC-2001/


Proceedings of DSC 2001 2

2 A Simple Example

The compiler generates byte codes for a simple stack-based virtual machine. As an
example, here is a simplified version of the normal density function dnorm:

f<-function(x, mu=0,sigma=1)
(1/sqrt(2 * pi)) * exp(-0.5 * ((x - mu)/sigma)^2) / sigma

This function does not support the log argument of dnorm and also does not check
that the arguments are real. This function can be compiled with

fc<-cmpfun(f)

An assembly version of the resulting byte code is shown in Table 1.

LDCONST 0.398942280401433 push constant 1/
√

2π on stack
LDCONST -0.5 push constant −0.5 on the stack
GETVAR x get value of x and push on stack
GETVAR mu get value of mu and push on stack
SUB pop top two values, subtract, and push result
GETVAR sigma get value of sigma and push on stack
DIV pop top two values, divide, and push result
LDCONST 2 push constant 2 on stack
EXPT pop top two values x, y, compute and push xy

MUL pop top two values, multiply, and push result
EXP pop top value x, compute and push ex

MUL pop top two values, multiply, and push result
GETVAR sigma get value of sigma and push on stack
DIV pop top two values, divide, and push result
RETURN pop top value and return as function result

Table 1: Byte code for simplified normal density function.

The compiler examines the code and recognizes that it uses one global variable,
pi, the global functions sqrt and exp, along with the arithmetic operators -, *, /,
and ^. Since the function f is defined at top level, the variable pi is assumed to refer
to the global constant for π in the base package. This means that the expression
for 1/

√
2π is a constant expression and can be computed at compile time. Another

constant expression that is evaluated at compile time is −0.5, which R parses as
the unary minus function applied to +0.5. Similarly, the global functions used by f
are assumed to refer to the arithmetic functions defined in the base package. These
have special opcodes in the byte code virtual machine that allow them to be called
more efficiently than generic functions.

Some simple timings can be obtained using

system.time(for (i in 1:100000) fc(x))

with analogous expressions for f and dnorm. Results are given in Table 2. In this
case most of the improvement of fc over f comes from constant folding.



Proceedings of DSC 2001 3

Function x = 1 x = seq(0,3,len=5)
f 7.74 8.86
fc 3.49 4.42
dnorm 2.35 3.75

Table 2: Timings in seconds for normal density computation.

3 The Virtual Machine

Using a virtual machine with a byte code machine language has a long history going
back at least to the UCSD Pascal system. It forms the basis of the Python [20] and
Perl [26] runtimes and is also used in many Scheme implementations. The Java [13]
and .Net [15] platforms are also designed around such machines.

The virtual machine targeted by the R compiler is a stack-based machine with a
simple set of instructions. The external representation of byte code objects produced
by the compiler, the representation that is used when a byte code object is stored
in a workspace, consists of a vector of integers representing the instructions and
a vector of generic R objects representing the constant pool. The runtime system
contains defined numerical values for different opcodes such as the ones shown in
Table 1. With defines like

#define RETURN 0
#define LDCONST 9
#define GETVAR 13
#define ADD 37

a function body of the form x+3 would have its code object constructed by a call of
the form

mkCode(code = as.integer(c(13, 0, # GETVAR x (x is const[0])
9, 1, # LDCONST 3 (3 is const[1])
37, # ADD
0)), # RETURN

const = list(quote(x), 3))

These code objects can be executed by a byte code interpreter. A simplified
version of such an interpreter is shown in Figure 1. This interpreter has a certain
amount of overhead in its switch loop. One way to avoid this is to use threaded
code, where the internal representation of the instructions contains addresses to
jump to rather than integers to be used in a switch. Threaded code interpreters
cannot be implemented in portable C, but the GNU C compiler has extensions
designed for this purpose. In particular, it is possible to store the address of a label
in a variable, and goto can be given a variable containing such an address as its
jump target. With careful use of macros one can write a single interpreter that
will use threaded code when compiled with GNU C and a portable switch-based
implementation when compiled with other C compilers. The macros used are based
on those described by Piumarta and Riccardi [19].



Proceedings of DSC 2001 4

SEXP bceval(SEXP code, SEXP env)
{

int *pc = instructions(code);
SEXP *consts = constantPool(code);

loop:
switch(*pc++) {
case RETURN: return(popStack());
case LDCONST: pushStack(const[*pc++]); goto loop;
case GETVAR: pushStack(findVar(const[*pc++], env)); goto loop;
case ADD: { SEXP y = popStack(), x = popStack();

pushStack(do_Add(x, y)); goto loop; }
...
}

}

Figure 1: A simple byte code interpreter.

4 Compiler Operation

Currently the compiler is written almost entirely in R. Only the function for creating
an internal code object is written in C. The compiler walks the source tree and
recursively emits code into a code buffer which is then collected to form the final
code object. The operation of the compiler is driven by a table keyed on the names
of global functions. When compiling a global function call, this table is checked. If
the table contains an entry for the function, then that entry is called to generate
code for the call. Otherwise, code for a generic call is generated. This approach
makes it simple to gradually add optimizations for special handling of different
functions.

The code generators for a class of basic arithmetic functions attempt to constant
fold their arguments. If all arguments are scalar constants, then the function is
called by the compiler and the resulting value is entered in the constant pool.

Almost all internal functions of class SPECIAL and many of class BUILTIN have
corresponding opcodes in the virtual machine. The code generators for these func-
tions just emit the appropriate opcode sequences.

Many R functions have R definitions that are simple wrappers around .Internal
calls. An example is dnorm, which is defined as

dnorm <- function (x, mean = 0, sd = 1, log = FALSE)
.Internal(dnorm(x, mean, sd, log))

For most of these functions the overhead of a generic call to these closures can be
avoided by inlining. Thus a call of the form

dnorm(y, 2, 3)



Proceedings of DSC 2001 5

is replaced by the call

.Internal(y, mean = 2, sd = 3, log = FALSE)

and then compiled. Once again, special opcodes are available for many .Internal
functions. Unfortunately the choice of which internal functions to inline cannot
be automated since inlining changes the depth of the call stack and a few internal
functions rely on knowing the structure of the call stack.

There are a few other minor optimizations in the compiler, but the single recur-
sive pass used in compilation limits the amount of optimization that can be done.
The reason for using a single pass is to allow the compiler to be quite fast. This
would be essential if we were to replace the interpreter entirely; in this case eval
would first compile its argument expression into a function of no arguments and
then call the function. This approach is used by Python and many other systems
with simple byte code compilers. It may be essential if we decide to implement
light-weight threads as discussed in Section 8.

5 Compiler Warnings

Compilation provides an opportunity to examine code for possible errors. Given the
way lazy evaluation is used in R, it is difficult to determine with certainty whether
an expression is intended to be evaluated or not. In most cases it would therefore
not be appropriate to signal errors, but warning messages may be quite useful.
The warning messages currently produced are based in part on some discussion of
common programming errors on the R mailing lists in Fall 2000.

As an illustration, here is an example of a function that may contain some errors:

g<-function(x, exp = TRUE) {
if (exp)

exp(x+3) + ext(z-3)
else

log(x, bace=2)
}

Compiling the function produces

> cmpfun(g)
Note: global variables used: z
Note: possible error in log(x, bace = 2):

unused argument(s) (bace ...)
Note: local functions used: exp
Note: undefined functions used: ext

The use of global variables, in particular undefined ones, usually indicates a
mis-spelled identifier, so this produces a warning.

In current R programming practice, local variables rarely hold functions, so
again a warning is given; in this case the logical argument exp is probably uninten-
tionally shadowing the base function by the same name. The compiled code will still



Proceedings of DSC 2001 6

execute correctly by selecting the first function value named exp in the environment
chain, but it will be less efficient since it cannot determine at compile time that the
function used will always be the exp function in the base package. This particular
kind of warning should be more refined and distinguish between cases where there
are explicit local function definitions and when arguments or non-function local
variables are used as functions and their names shadow defined global functions.

Uses of global functions with known definitions are checked against their argu-
ment lists and inconsistencies result in a warning. In this case it would appear that
the base argument to the log function has been mis-spelled.

A warning is also given if a global function that is called does not have a defini-
tion. This can lead to many spurious warnings if a package is compiled unless the
package is loaded before compilation.

Compiler warnings can be very useful in debugging, but care is needed to achieve
the right level of warnings for different situations. Some mechanism for customizing
and tuning the warnings that are produced would clearly be useful.

6 Timings and Performance

Current performance of the compiler and runtime system represents a lower bound
on what can be achieved. Nevertheless, in a few cases results are already quite
promising. For example, for some of the examples in the bootstrap package com-
piling the functions in the base and bootstrap packages cuts execution time in half.

As another example, recently the interpreted function lapply was replaced by a
partially internal C version to improve performance. Byte compiling the interpreted
version is able to recover about half of the improvement gained by creating a C
version. There is some hope that with further improvements in the compiler and
runtime system the byte compiled version will be close enough in performance to the
C version to make a C implementation in this and similar situations unnecessary.

There is, however, still considerable room for improvement. Some time ago
Radford Neal posted several small benchmarks to one of the statistics usenet news
groups. One of these is shown here:

test5 <- function (n) {
k <- 0
for (j in 1:n) {

v <- c(1,2,j,j,3)
if (v[2]==2) k <- k+1

}
}

As with all benchmarks these need to be taken with a grain of salt; this particu-
lar one may be useful for assessing performance for certain applications where C
or FORTRAN style looping is used heavily. Table 3 shows run times for these
benchmarks when interpreted and compiled. Also shown are analogous results for
XLISP-STAT [25] on the same machine. For both test3 and test5 compilation
provides a substantial improvement, but in both cases the XLISP-STAT compiler



Proceedings of DSC 2001 7

R R XLISP-STAT XLISP-STAT
n interp. compiled interp. compiled

test2: 10000 4.54 4.50 4.73 4.56
test3: 10000 8.34 3.11 2.20 0.43
test4: 1000 2.07 1.60 2.07 1.92
test5: 100000 4.24 2.13 2.19 0.66

Table 3: Execution times in seconds for Radford Neal’s benchmarks.

and runtime are able to do considerably better. Exploring the reasons for this gap
should help in improving the R compiler and runtime performance.

One area where the current implementation is definitely lacking is in looking up
variable values. Currently this involves a linear search through environments. With
appropriate semantic conventions it should be possible to determine the positions
of variables in the environment at compile time. This would allow variable values
to be found with one or two array references.

Another area for possible improvement is function call conventions. Compiled
code now uses the interpreter’s calling mechanism, which involves a large amount of
intermediate storage allocation. Improvements, in particular for simple calls with
no named arguments, should be possible.

7 Semantic Issues

Up to now the discussion has glossed over an important point: There are semantic
differences between compiled code and interpreted code. The main difference is due
to the fact that new variable bindings can be created using assign and removed
using rm, both in a function’s own frame and in frames of its callers. As a result, it
is impossible to determine with certainty whether a variable is global or local. For
example, in the top level definition

f <- function(x, z) { g(); if (z) x + 1 else log(x) }

it is likely that the variable z in the body is local and that the variable log is
global. However, the function g could reach into it’s callers environment, add a local
function called log and remove the local variable z. Then during the execution of
the if expression z would be global and log would be local.

In order to reliably identify global functions the compiler needs to be able to de-
termine which variables are local, or at least which ones might be local. Currently
the compiler assumes that no new variables will be created in local environment
frames by explicit calls to assign. To make this approach legitimate it might be
useful to develop a concept of sealed environments that can be applied to both inter-
preted and compiled code. A sealed environment would only be allowed to contain
bindings for an explicitly specified set of variables. It need not contain bindings for
all of these variables—some can be marked as undefined. Sealed environments could
use a vector representation that would allow fast access to their variable values.



Proceedings of DSC 2001 8

Sealing the environment of a function would involve a code analysis that iden-
tifies as potential local variables all argument names and all names that appear on
the left hand side of assignment expressions in the function body. An interpreted
function could then in principle be marked as having a sealed environment, and the
compilation process described here would then produce a compiled function with
identical semantics to a sealed interpreted one.

Once we have identified a function variable log, say, as a global variable, we still
cannot safely conclude that it refers to the log function in the base package. The
base package is always at the end of the search list. It is in principle possible for
a package foo loaded with the library command to define its own log function.
Interpreted code that calls log will then call the function log in foo instead of
the one in the base package. Occasionally this can be useful, but in most cases,
especially if the code calling log is itself in a different package, this is not what is
wanted. To avoid this form of name clash among global variables it would be useful
to develop some form of name space management system for R. Most languages
now include some form of name space mechanism. Java, Perl and Tcl [27] have
fairly simple systems. The ML language family has a very rich mechanism [14].
The Scheme48 [21] and MzScheme [9, 10, 8] module systems (MzScheme calls them
units) are somewhere in between. These should provide a basis for designing a name
space mechanism for R.

Providing mechanisms for sealing environments and name space management
will make it easier to compile R code without affecting the semantics. But it will
also make it easier for human readers of R code to reason about what the code will
do. If a function is defined within a particular name space and declared to have
a sealed environment then the meanings of its variables are clearly determined.
Without sealing and name spaces readers can have a pretty good idea of that the
variables are intended to mean, but must always keep in the back of their minds
that strangely behaving callees and unusual loaded packages could change things
completely. This is a good example of a case where a feature that complicates
compilation also complicates human readability of code.

A few other issues are related to non-local exits and their interaction with lazy
evaluation. Currently compiled and interpreted code behave quite similarly in these
settings. But developing a compiler brings these setting into clear relief and raises
the question whether the current behavior is in fact what it should be. As one
example, consider the expression

for (i in 1:n) f(break)

Currently, for both interpreted and compiled code, if f is a closure and f evaluates
its argument, then the interpreter will signal an error (unless f is interpreted and
the argument evaluation happens to occur inside a loop). The compiler issues a
warning when it encounters this. Similar issues arise for explicit return calls that
occur in function arguments and for break calls in functions defined within a loop.

This may seem like an esoteric issue, but it does potentially have some serious
consequences. The switch function is implemented as an ordinary function. It
might at times be useful to use switch in a loop and have some of the switch
clauses call break to exit from the loop. Currently this will not work in interpreted



Proceedings of DSC 2001 9

or compiled R code. To address this there is a need to examine what the semantics
of a break call should be in this context. Common Lisp [24] and Dylan [23] both
have very elaborate non-local exit mechanisms that give meaningful semantics to
exiting from a loop from a procedure called within the loop. These can serve as a
model for R as well.

8 Future Directions

In principle the byte code produced by the compiler could be used as intermediate
code for generating C code. Whether the resulting C code would be efficient enough
to be worth the effort needs to be investigated. It would however be interesting to
compare this approach to the approach taken by Calder to compile a limited subset
of the S language to C [5].

Other approaches to machine code generation may be worth investigating. One
interesting approach presented by Piumarta and Riccardi [19] is to create code for
fused byte code instructions by copying bits of code from the byte code interpreter.
This approach is particularly well suited for distributed computing where the byte
code representation can be used as the portable, machine-independent represen-
tation used in code migration, and can then be transformed into more efficient,
machine dependent code once it reaches its execution platform [3].

The basic design of the virtual machine is a stack architecture. This seems to
make more sense for a single pass compiler for R than the register architecture
used in the XLISP-STAT compiler. It should also simplify compiling to the Java or
.NET virtual machines. On the other hand, the stack architecture does complicate
generating C code and also may be less suited for certain optimizations.

Name space management is an important issue both for more reliable devel-
opment of packages and for clarifying compilation semantics. Clarification of the
issues in this area is a major near-term objective.

Adding a declaration mechanism of some form may allow the compiler to gener-
ate more efficient code. Specifying that certain variables are scalars may allow some
expressions to be simplified. It may also help identifying certain looping idioms,
such as

for (i in 1:n) ...

where generating the sequence 1:n can be avoided. Being able to declare a function
as strict, i.e. as forcing the evaluation of all its arguments, may allow a more efficient
function calling mechanism to be used.

As the compiler is developed further some consideration needs to be given to
the appropriate set of techniques to use. The compiler methodology used so far is
quite simple and very much in the spirit of the simple Scheme compiler presented
in Norvig [16, Chapter 23]. The more sophisticated XLISP-STAT compiler is based
on techniques for compiling strict, mostly-functional languages as described for
example by Appel [1]. It is not clear whether this is the right direction to go
for R as well. Since R uses lazy evaluation for function arguments, methods for
compiling non-strict languages like Haskell may be useful [2, 12, 18]. On the other



Proceedings of DSC 2001 10

hand, R is mostly strict since local assignments to variables and data structures
and creation of data structures all force evaluation. R is also in many ways a very
dynamic language, and it is likely to get a more object-oriented flavor in the near
future, so techniques developed for Self and other object-oriented languages may
be appropriate as well [11, 7]. One unusual feature about all statistical languages
is that they deal heavily with vector data. Once again, specialized compilation
techniques and perhaps language extensions from languages like NESL [4] may be
useful.

An issue currently under discussion is whether support for some form of multi-
threading can be added to R. One direction taken by many high level languages
is so implement very light-weight user-level threads [17, 22]. This requires being
able to save and restore the current computational state of a thread of execution.
If all R code is compiled, then the state is captured by the current stack, which in
R could easily be implemented as a linked list of frames, the currently executing
code object, and the index of the current instruction. This makes capturing and
switching the state of execution considerably easier than it is for an interpreter that
recursively calls a C evaluation function.

This paper and this research project have concentrated on the R language. Some
of the implementation issues are specific to R, but others carry over more generally
to the S language [6] and might be used in developing a compiler for the S-plus
implementation.

One longer term objective to explore is whether it is possible to design a runtime
system that can execute both R and XLISP-STAT code, and whether it is possible
to design a runtime system abstraction that can be implemented either in C or on
the Java or .NET platforms.

9 Implementation and Availability

The changes in R source code needed to support the byte code compiler are fairly
minimal (at least compared to the recent memory management changes) but since
they are very likely to change substantially they have not yet been merged into the
R CVS tree. Snapshots will be made available periodically until the design is stable
enough to be added to the CVS tree.

References

[1] Andrew W. Appel. Compiling With Continuations. Cambridge University
Press, 1992.

[2] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge Uni-
versity Press, 1998.

[3] Carine Baillarguet and Ian Piumarta. An highly-configurable, modular sys-
tem for mobility, interoperability, specialization, and reuse. http://www-sor.

http://www-sor.inria.fr/publi/HCMSMISR_ecoop99.html


Proceedings of DSC 2001 11

inria.fr/publi/HCMSMISR_ecoop99.html, 1999. 2nd ECOOP Workshop on
Object-Orientation and Operating Systems (ECOOP-OOOSWS’99).

[4] Guy E. Blelloch. NESL: A nested data-parallel language (3.1). Technical
Report CMU-CS-95-170, Carnegie Mellon University, September 1995.

[5] Matt Calder. Scompile. http://people.ne.mediaone.net/mncalder/
scompile/scompile.html.

[6] John M. Chambers. Programming With Data: A Guide to the S Language.
Springer Verlag, 1998.

[7] Jeffrey Dean, Greg DeFouw David Grove, Vassily Litvinov, and Craig Cham-
bers. Vortex: An optimizing compiler for object-oriented languages. In Pro-
ceedings of the Eleventh Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 83–100, October 1996.

[8] Robert Bruce Findler and Matthew Flatt. Modular object-oriented program-
ming with units and mixins. In Proceedings of the Third ACM SIGPLAN In-
ternational Conference on Functional programming, pages 94–104, September
1998.

[9] M. Flatt and M. Felleisen. Cool modules for HOT languages. In Proceedings of
the 1998 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 236–248, June 1998.

[10] Matthew Flatt. PLT MzScheme: Language manual. http://www.cs.rice.
edu/CS/PLT/packages/doc/mzscheme/index.htm, August 2000.

[11] Urs Hölzle and David Ungar. A third-generation Self implementation: Recon-
ciling responsiveness with performance. In Proceedings of the ACM OOPSLA
‘94 Conference, Portland, OR, October 1994. ACM.

[12] Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The Spineless Tagless G-machine. Journal of Functional Programming,
2(2):127–202, 1992.

[13] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, 2nd edition, 2000.

[14] Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3), 2000.

[15] Microsoft. MSDN online .NET developer center. http://msdn.microsoft.
com/net/.

[16] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies
in Common Lisp. Morgan Kaufmann, 1992.

http://www-sor.inria.fr/publi/HCMSMISR_ecoop99.html
http://www-sor.inria.fr/publi/HCMSMISR_ecoop99.html
http://people.ne.mediaone.net/mncalder/scompile/scompile.html
http://people.ne.mediaone.net/mncalder/scompile/scompile.html
http://www.cs.rice.edu/CS/PLT/packages/doc/mzscheme/index.htm
http://www.cs.rice.edu/CS/PLT/packages/doc/mzscheme/index.htm
http://msdn.microsoft.com/net/
http://msdn.microsoft.com/net/


Proceedings of DSC 2001 12

[17] S. L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd
ACM Symposium on Principles of Programming Languages, pages 295–308, St
Petersburg Beach, Florida, January 1996. ACM.

[18] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil
Wadler. The Glasgow Haskell compiler: a technical overview. In Proceed-
ings of the UK Joint Framework for Information Technology (JFIT) Thechical
Conference, Keele, UK, 1993.

[19] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective
inlining. In Proceedings of the 1998 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 152–161, June 1998.

[20] The Python language. www.python.org.

[21] Jonathan Rees. Another module system for Scheme. http://www.eecs.
tulane.edu/www/Jennings/apla/module.ps, 1994.

[22] John H. Reppy. Concurrent Programming in ML. Cambridge Univ Press, 1999.

[23] Andrew Shalit, David Moon, and Orca Starbuck. The Dylan Reference Manual:
The Definitive Guide to the New Object-Oriented Dynamic Language. Addison-
Wesley, 1996.

[24] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, 2nd edition,
1990.

[25] Luke Tierney. Lisp Stat: An Object Oriented Environment for Statistical Com-
puting and Dynamic Graphics. Wiley, 1990.

[26] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly,
3rd edition, 2000.

[27] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, 3rd
edition, 2000.

www.python.org
http://www.eecs.tulane.edu/www/Jennings/apla/module.ps
http://www.eecs.tulane.edu/www/Jennings/apla/module.ps

	Introduction
	A Simple Example
	The Virtual Machine
	Compiler Operation
	Compiler Warnings
	Timings and Performance
	Semantic Issues
	Future Directions
	Implementation and Availability

