New URL: http://www.R-project.org/conferences/DSC-2001/

DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing
March 15-17, Vienna, Austria
http:/ /www.ci.tuwien.ac.at/Conferences/DSC-2001
K. Hornik € F. Leisch (eds.) ISSN 1609-395X

GGobi meets R: an extensible
environment for interactive dynamic data
visualization

Duncan Temple Lang * Deborah F. Swayne |

Abstract
GGobi is a direct descendant of XGobi, designed so that it can be embed-
ded in other software and controlled using an API (application programming
interface). This design has been developed and tested in partnership with R.
When GGobi is used with R, the result is a full marriage between GGobi’s
direct manipulation graphical environment and R’s familiar extensible envi-
ronment for statistical data analysis.

1 Introduction

This paper describes a partnership between two very different kinds of tools. Each
tool can be described as “interactive statistical software,” but “interactive” turns
out to have a different meaning in each case.

Software with a direct manipulation graphical user interface allows its users to
interact with displays of the data with a powerful sense of immediacy, querying and
manipulating views using the mouse. Tools in this category, though, are usually
not easy to alter or extend, even when the source code is made available. The
intrepid user who wants to make changes has to be a competent programmer in the
appropriate low-level language, and to be willing to explore the inner workings of
code that was probably not written with other programmers in mind.

Tools with a command-line interface were dubbed “interactive” many years ago
to distinguish them from programs that ran in “batch” mode, requiring users to walk

*Lucent Bell Laboratories
TAT&T Labs — Research

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

down the hall to some computer center or mail drop to retrieve their output. While
aficionados of the direct manipulation interface sometimes think that the command-
line interface has outlived its usefulness, the presence of a scripting language offers
an open and flexible environment for modifying and extending existing functions,
and for creating new ones. Direct manipulation tools may never be able to offer
similar capabilities. On the other hand, the command-line tools have been slow to
add interactive graphics (in the “direct manipulation” sense).

It does not seem reasonable given today’s tools to expect the designers of graph-
ics software to add scripting languages or full analytical functionality. It is more
probable that designers of statistical languages and computing environments will
enrich their direct manipulation graphics, but that’s still a tall order. The approach
described here is an alternative: it’s a way to let two very different tools act as one.

Depending on your point of view, you might say that a statistical environment
with a scripting language, R, has acquired a new interactive graphics device, or
you might say that a direct manipulation program for exploratory data visualiza-
tion, ggobi, has acquired a command-line interface, an extension language, and a
statistical environment.

2 GGobi

The ggobi software is a statistical data visualization system with interactive and
dynamic methods for viewing data and manipulating plots. It’s a direct descendant
of xgobi ([2, 3]), and they share many features, such as 1-D and 2-D views, 2-D
grand tours, view scaling, brushing, and identification.

GGobi represents a big step in the evolution of XGobi, with multiple plotting
windows, more flexible color management, XML file handling, and better portability
to Windows. Its graphical user interface is more powerful and has a cleaner look
and feel, because it is written in gtk+ (www.gtk.org), an evolving toolkit that’s
widely used by Linux programmers. XGobi was written using a toolkit that stopped
changing in the early 1990’s.

The new feature of ggobi that is likely to have the greatest impact, though, is
the one described in this paper, and it is not visible in the graphical user interface:
ggobi can be compiled into a library, embedded in other software and controlled
using an APT (application programming interface). This design has been developed
and tested in partnership with R, but it also works with other scripting languages
such as Perl and Python.

The designers of xgobi had always intended that it be used in conjunction with
some analytical software. There exists an S (i.e. R or S-Plus) function, distributed
with the xgobi software, that allows an S user to launch an xgobi process given S
objects as arguments. That function is embarrassingly simple: the S objects are
written out as ASCII files, and a system call executes xgobi with those files as
arguments. An xgobi process launched in this way has very limited ability to create
S objects directly: a vector of point colors, for example, or a rotation matrix. The
S process has no ability to communicate further with xgobi.

The xgobi authors occasionally explored other approaches that would extend

Proceedings of DSC' 2001 3

this unsatisfactory relationship. As early as 1991, we used interprocess communi-
cation to maintain a live connection between xgobi and S. One of the applications
would draw a clustering tree in S, allow the user to click on it to cut the tree and
immediately set the point colors in xgobi to show the result [1]. It relied on a sec-
ond program, also written in C, to gather input from the user and to manage the
interprocess communication. It was necessary to assemble each command in the
S language, ship it to S, read back the result and respond accordingly. To make
this foolproof, it would have been necessary for xgobi to be fully able to parse S
commands and handle errors. Because this was such a daunting task, work on this
model was discontinued after the first prototype.

The relationship described here doesn’t need to use interprocess communication,
because there’s only one process. There’s no need to write a GUI to assemble each
command in the S language, because the user will enter it in the customary way.
Parsing of input and output between the two systems is also unnecessary as values
are passed directly between them.

3 The ggobi API

The ggobi API allows the basic facilities of the stand-alone application to be in-
corporated into other applications, and to be made available in other programming
languages such as R, Perl and Python. The routines in the API provide access to
the entire ggobi computational model. It allows us to create new ggobi instances
and manipulate both the data and the contents of the displays. The routines al-
low us to both query and set the state of multiple ggobi instances within the same
process and also provide custom event handlers for certain high-level interactions.

The routines in the API allow us to create new ggobi instances at any time,
specifying data either directly from a data frame or matrix, or from a file or URL.
We can access the data from such an instance and replace individual cells. We can
also add or remove variables from a dataset, edit the variable names, and so on.

We can retrieve and set the visual characteristics of points in the display — the
color, glyph type and size of each point — and choose whether a point is displayed
or not. We can query the current status of the active brushing region, including
its position, color and even the points it encloses. While brushing and point iden-
tification are usually done interactively, ggobi’s brushing region can be controlled
programmatically. This can be appealing when the number of points becomes large,
because the brush response begins to lag behind the user’s hand. It’s also convenient
for providing directed animations or shows and also allows one to provide scripts
which create a particular view that one wants a user to see.

As mentioned earlier, a ggobi process can have several plot displays open at the
same time, and there are several types of displays, such as scatterplots, scatterplot
matrices, and parallel coordinates plots. The API provides ways to manipulate the
set of displays. For example, we can determine what displays are open, delete a
particular display, opening a new one, and control which one is active.

One feature that is available through the API but not in the GUI is the ability
to create mixed or composite displays. In other words, we can create a new display

Proceedings of DSC 2001 4

tars1 tarse head

=

Figure 1: This figure shows a custom layout of ggobi plots created using plotLay-
out() in R.

that may contain any number of any kind of plots, and control how those plots
are layed out within the window. In R, the function plotLayout() allows one to
specify a collection of plot descriptions along with the cells in a grid that each
should occupy to create a new display. This provides a way to arrange the plots in
different configurations that best display the features of interest. Figure 1 shows an
example.

Using the API, it’s possible to launch and manage ggobi multiple instances
within the same process, allowing custom linking algorithms to be implemented.

3.1 Embedding for tighter coupling

Most of the facilities in the ggobi API allow the user to both set and retrieve
values. This style of embedding allows the two systems to directly share data,
but essentially maintains a separation between them. A richer form of embedding

Proceedings of DSC' 2001 5

allows the two systems to interact in a more dynamic and symbiotic manner. Two
examples illustrate this. First, ggobi can use functionality in the internal R API.
For example, the random sampling of records provided by ggobi can make use of
the random number generation facilities in the R math library. More interestingly,
we can allow user-level S functions to be specified at any time within the lifetime of
a ggobi session to implement particular tasks. For example, the user can specify a
smoothing function that takes two variables (x and y) and a bandwidth and returns
the smoothed predicted values of y for those x values. This allows a user to specify
a smoother as an S function and integrate it into ggobi as a first class facility that
is called each time the user changes the value on a graphical slider.

A second instance of the dynamic aspect of the embedding is that users can
specify functions for handling a growing number of ggobi events. Let’s consider
ggobi’s identify mode for interactively labelling points. As the user moves the
pointer close to a point on the plot, the label for that case is displayed. The
identification of a point corresponds to a high-level ggobi event and users can specify
an S function which is to be called when such an event occurs. In this case, the
function is given the index of the observation and can use this, for example, to
highlight the corresponding row in a data editor or to display some characteristic
of the observation in an R plot.

Another form of event handling allows one to associate an R function with one
of the the number keys (i.e. 0, 1, ..., 9). When that key is pressed while viewing a
ggobi plot, the function is called. This can be used for tasks like computing summary
statistics or updating a plot based on the current state of the ggobi display.

This type of event-driven, dynamic feedback to the high-level programming lan-
guage (e.g. R) makes it significantly easier to develop interactive graphics.

As a final note on embedding ggobi in other applications, we mention that one
can use ggobi’s own event loop or integrate the GUT events into the host application’s
own event loop.

As should be clear by now, integrating the ggobi API with a programming lan-
guage such as R allows ggobi to become increasingly complex while its graphical
interface remains simple. Some extensions do not lend themselves to GUI imple-
mentation: they may involve many steps, or they may only be interesting to a
small number of users. This more complicated or rarely-used functionality can be
added to ggobi’s API and made available through functions in the different scripting
languages, and each interface can continue be used for what it is best suited.

4 Example

The data used in the example is from an old AT&T marketing study in which nearly
2000 households responded to questions about their telecommunications needs, such
as whether they needed certain classes of business tools. The data also includes a
few demographic variables and the duration of the household’s total incoming and
outgoing calls. The goal was to use these variables for segmenting households into
homogeneous groups.

Proceedings of DSC' 2001 6

= ggoti B
File Display YiewMode Tools ©Options DisplayTree Help
rKYPlot — ‘ [l .

vl linmins = marketing: ™" scatterplot display ™" = E]
R FFile Options Link
| Mo fized axes « [Itotrev HAloutmins
|_| bustools1| -
(Ef— .
[| bustools2| - .
4_
[1dmghin]
| | dmg5 E .
] dmg?] .
%] . il
a]
[- B H
. H
1 7] .I

- lestat 0 | Ill |
¥]
¥ . s ses % ses
> . PRI IMCEID
> g <= ggob-i (”mktg“) t & S&3 & 8848 EN S8 -8 L]
> mktg <- getData.ggoebi() =
i 2_‘ linmins
> 0 r —2 - 1 i

Figure 2: This figure shows two ggobi windows (the control panel at the top and
a scatterplot at the right) and a window in which R is being run. R was used to
launch ggobi, and then to grab the data from ggobi into R.

We'll analyze the data using a combination of ggobi and R. We begin by starting
R, loading the ggobi library, and starting ggobi using the data from a file, mktg:

> library(Rggobi)
> ggobi ("mktg")

Figure 2 shows the result.

We can use ggobi to explore the data, to verify that the data looks reasonable,
and to see that most of the variables are discrete. Some exploratory use of brushing
shows us quickly that no natural clustering of the data will emerge this way, so we
determine to use R to partition the data. We do this by first getting the data from
ggobi into R and then standardizing the data, applying k-means clustering for four
groups, and deriving a vector of cluster identifiers.

> mktg <- getData.ggobi()

> p <- dim(mktg) [2]

> mktg.scale <- apply(mktg, 2, scale)

> rn <- matrix(rnorm(p*4), ncol=p)

> mktg.kmeans <- kmeans(x = mktg.scale, centers = rn)

Proceedings of DSC' 2001 7

> mktg.clusters <- mktg.kmeans$cluster

Before we look at the results in ggobi, we derive the principal components of
the standardized data, and add the first two principal components to the variables
currently in use. We use the ggobi variable selection interface to select the plot of
PC2 versus PCI1.

> mktg.prcomp <- prcomp(mktg.scale)$x
> addVariable.ggobi(mktg.prcomp[,1], "PC1")
> addVariable.ggobi(mktg.prcomp[,2], "PC2")

Now we're ready to check the results of the partitioning. We set the colors in
ggobi using the clustering vector. Since those aren’t easy to distinguish in gray-
scale, we also change the glyph type of two of the groups. Figure 3 shows the
result.

> setColors.ggobi (mktg.kmeans$cluster)
> setGlyphs.ggobi ((1:1926) [mktg.kmeans$cluster==1], type="oc")
> setGlyphs.ggobi ((1:1926) [mktg.kmeans$cluster==4], type="plus")

4.1 Responding to ggobi key events

This partitioning obviously doesn’t result in groups that are well separated in the
data, so we might like to investigate the characteristics of each group. For the
purpose of illustrating how this might be done, we write an R function called clus-
terstats that will display the mean and standard deviation of the first two variables
in a table.

clusterstats <- function (key, plot=NULL, ggobi=NULL, ev=NULL) {
mktg <- getData.ggobi()
colorids <- getColors.ggobi()
groups <- sort(unique(colorids))
ngroups <- length(groups)

mout <- matrix (0, ngroups, 4,
dimnames=1list(paste("Color", 1:ngroups),
c("mean(incoming)", "sdev(incoming)",
"mean (outgoing)", "sdev(outgoing)")))

for (i in 1:length(groups)) {
for (k in 1:2) {
p <- (k-1)%*2
vec <- (mktgl[,k]) [colorids==groups[i]]
mout [i,p+1] <- mean(vec)
mout [i,p+2] <- sqrt(var(vec))

Proceedings of DSC 2001 8

= ggobi ==
File Display YiewMode Tools ©Options DisplayTree Help
rKYPlot PR i] .
| linmins = marketing: ™" scatterplot display ™" = E]
it | i
Dcysle [oo FFile Options Link
| No fized axes ‘ [Itotrev EAPCl
|_| bustools1| 7
I —]
(| bustoolsz|
| Change direction | I dmghin e
|1 dmg5 3 .
1 dmag? ;
(v PC1 E nUCE.g o
] v PC2 g
! iE
= lestat | -
s setColors.ggobi (cluster| o
» setGlyphs.ggobi ((0:1925] -
1) FE
NULL E
> setGlvphs.ggobi ((0:1925| 2
e=1) =
NULL | <z |
1 |:| _\Q|I\I|I|I_|2||I|I\Illnllwlllwlllzl\lll\lll‘

Figure 3: This figure shows the same configuration of windows. The ggobi scatter-
plot window now shows a plot of the first two principal components, and it has been
brushed (using 3 different glyphs) to show the four segments found by the k-means
algorithm.

}
X

print (round(mout, digits=3))
return

}

Now we attach that routine to the 1 key on the keyboard, so that clusterstats()
will be executed each time we click on that key, printing out the data for the current
clustering of the data.

> h <- NumberedKeyHandler.ggobi()
> registerNumberedKeyHandler.ggobi (h)
> h$addHandlers("1"=clusterstats)

This gives us an easy way to compare different ways of partitioning the data. We
might try clustering the data into 3 or 5 groups instead of 4, or doing some manual
brushing to adjust cluster membership, and use the output of clusterstats() as a
diagnostic tool to help decide which segmentation is the easiest to interpret.

Proceedings of DSC' 2001 9

4.2 Animation

In order to seek an interpretation of the clusters in terms of the original variables,
we might next want to look at a variety of plots. There is a great deal of overlap
between these clusters in the space of the untransformed data, so it will be hard to
evaluate them. In order to see the clusters more clearly, we can use R to animate
the display, looking at one cluster at a time. We first define a function that will set
the “hidden” attribute of each case: true if it’s in cluster j, and false otherwise. If
its argument is -1, all cases are shown.

showCluster <- function (j) {

colorids <- getColors.ggobi()
groups <- sort(unique(colorids))
tmp <- logical(length(colorids))
if (G 1= -1) {

tmp[colorids != groups[jl] <- T
}
setHiddenCases.ggobi (tmp)

We create a plot of the original variables. This can be a 1D plot, a scatterplot,
or even an active tour, and we can create it using R or the graphical interface. Next
we can loop (in R) through the clusters, showing them one at a time.

> for (i in 1:4) {
> showCluster(i)

> system("sleep 1")
>}

> showCluster (-1)

5 Conclusions

This smooth integration of R and ggobi is an example of a modern approach to
software inter-operability in statistical computing. No single piece of software has
to do everything, but any piece of software can be designed to work well with others.
GGobi’s design was greatly changed so that it could be compiled into a library and
controlled via an API; R was changed so that it could accommodate ggobi’s event
loop along with its own.

This combination may hold special interest for the teachers of statistical com-
puting courses. If R or S is already on the syllabus, this environment should make
it easier to introduce interactive graphics, and it should also be a good platform for
student projects.

References

[1] Deborah F. Swayne, Andreas Buja, and Nancy Hubbell. XGobi meets S: Inte-
grating software for data analysis. In Computing Science and Statistics: Pro-

Proceedings of DSC 2001 10

ceedings of the 28rd Symposium on the Interface, pages 430—434, Fairfax Station,
VA, 1991. Interface Foundation of North America, Inc.

Deborah F. Swayne, Dianne Cook, and Andreas Buja. XGobi: Interactive dy-
namic graphics in the X Window System with a link to S. In American Statistical
Association 1991 Proceedings of the Section on Statistical Graphics, pages 1-8.
American Statistical Association, 1992.

Deborah F. Swayne, Dianne Cook, and Andreas Buja. XGobi: Interactive dy-
namic data visualization in the X Window System. Journal of Computational
and Graphical Statistics, 7(1):113-130, 1998.

	Introduction
	GGobi
	The ggobi API
	Embedding for tighter coupling

	Example
	Responding to ggobi key events
	Animation

	Conclusions

