
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Applications of R Clients and Servers

B. D. Ripley and R. M. Ripley

Abstract

Using R as a component in a distributed system is a fast way to obtain the best
featuresof several tools. This is illustrated by

(a) using a Visual Basic client with R and database servers under Windows to enter
andanalyse medieval chant,

(b) using R as client to a DBMS holding large-scale insurance data, or embedding R
within such a DBMS, and

(c) using R as client of an Oracle database holding gene expression data.

1 Medieval Chant

Musicologists undertaking detailed analyses of manuscripts of Western Christian liturgical
chant dating back to the ninth century CE would welcome computer assistance.

The early manuscripts employ several different notations, usingneumesrather than
notes. There are about twenty-five neumes, plus markings. Figure1 shows two verses of a
chant,and something of the typical manuscript quality.

There a few thousand known chants with further variations between manuscripts. Ide-
ally one would use optical character recognition to read them in, but exploring the feasibil-
ity of that is a project for a Master’s student this summer. At present chants are entered by
a point-and-click data entry system written in Visual Basic.

There were some critical design issues:

• The system has to be usable on fairly minimal Windows PCs by users whose experi-
encestretches to Word and Internet Explorer.

• There is a need to build a database of chants, and eventually to store information on
thechants with them.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

Figure 1: Two verses of a chant, after high-resolution scanning and some enhancement by
image processing. The original had been annotated.

• The chants need to be displayed in a notation that is familiar to the musicologists.
Figure2 shows the current solution, which involved designing a TrueType font. This
implies that neumes can be referenced by a font encoding as 7-bit characters.

• The matching algorithms to be used are fairly complicated and subject to tweaking,
and will result in a similarity matrixS. Often the parameters need to be adjusted to
give similarities that correlate with interesting features defined by the musicologists.

• GivenS, we wanted to use fairly standard multivariate techniques to compare chants
(or verses or phrases of chants).

Our solution has been to use a Visual Basic front-end driving a database interface and
also a connection to an R server via DCOM.1

1.1 Sequence Matching

The techniques used are a modification of those from computational biology [4]. We use
a dynamic programming algorithm that is essentially recursive. The textbook implemen-
tation is not well matched to the S language, shown here for an earlier version of the
algorithm:

local <- function(seq1, seq2, sx=1, ss)
{

1Distributed Component Object Model

Proceedings of DSC 2001 3

C
ha

nt
 fu

lln
am

e:
 A

ud
i f

ili
a

V
 1

 1

A
u-�l

-d
i �L

fi-�

-li
-�c

-a�

et�
�
�
�

vi
-�

�

-d
e�

	q

	
�

�
�

�

[e
t�

In
-�l

-c
li-�

-n
a�

au
-�

-r
em�

�

tu
-�

-a
m

�

�
�

 1
7

[q
uo

-

�

-n
i-�

-a
m�ls

co
n-�

-c
u-�

-p
i-�

-u
nt�

�
�

�

re
x�

�
�

[s
pe

-

�L
-c

i-�Ls
-e

m�
	

�

tu
-�

-a
m�

�

V
 2

 3
0

V
ul

-

�

-t
um�

tu
-�

�

-u
m�

�
�
�
�

�

de
-�

-p
re

-

�

-c
a-�

-b
un

-

�l
-t

ur�

om
-

�
�
�
�
�
�li

-n
es�

�

�
�

[d
i-�

-u
t-�

-t
es�

pl
e-�

 4
5

-b
is�

�

�
�

[fi
-�

-li
-�

-a
e�

re
-�

�
�

�

-g
um�

�
�

[In�L
ho

-�Ls
-n

o-�L
-r

e�
	

tu
-�

-o�
�

V
 3

 5
7

A
d-	st

re
tc

he
d -d
u-�

-c
en

-

	L

�

�

-t
ur�

re
-�

-g
i�

�
�e*

�
�

�

[v
ir-�

-g
i-�

-n
es�

po
st�

e-�
�
�
�
�
�

�

-a
m�

�

�
�

[p
ro

-

�s

 7
0

-x
i-�

-m
e

�

e-�
�
�

�l
-iu

s�
�

�

[o
f-�L

-f
er�Li

-e
n-�L

-t
ur�

	

ti-�

-b
i�

�
V

 4

 8
0

A
d-�c

-d
u-�

-c
en

-

	ll
t3

s3
 (

re
fe

rs
 to

 n
ex

t)

-t
ur�

in�c

la
e-�

-t
i-�L

-t
i-�
 i

�
�

�

-a�

[e
t�

ex
-�

-u
l-�l

-t
a-�

-t
i-�

-o
-�

�
�
�
�
�

-n
e�

�

�
�

[a
d-�l

 9
7

-d
u-�

-c
en

-

�

�
�

�l
-t

ur�
�

�
	

�
�

[In�
�

�
�

te
m

-

-p
lu

m
�

re
-�

�
�

�
	
�*

-g
is�

�
�
�

�
�

�
�
�

�l3

�
�

F
ig

ur
e

2:
T

he
ch

an
tf

or
w

hi
ch

ve
rs

es
2

an
d

3
ar

e
sh

ow
n

in
fig

ur
e

1,
as

en
te

re
d.

Proceedings of DSC 2001 4

n <- length(seq1); m <- length(seq2)
S <- matrix(0, n+1, m+1)
for (i in 1:n) for (j in 1:m) {

if (seq1[i] == seq2[j]) sxy <- ss[seq1[i]]
else sxy <- -2
poss <- c(S[i, j+1] - sx, S[i, j] + sxy, S[i+1, j] - sx)
allposs <- seq(along = poss)[poss == max(poss)]
S[i+1, j+1] <- max(0, poss)

}
list(S=S, seq1 = seq1, seq2 = seq2)

}

Comparing two chants with 381 and 197 neumes took an hour and 45Mb of memory in
S-PLUS 2000 (and had not completed in 12 hours on a machine with ‘only’ 64Mb), and
4 minutes in R. A C version took less than a second. (Our all-time record speed-up, [3,
pp. 176–7].)

This calculationcanbe vectorized as a diagonal scan, but this was still too slow at 12
seconds in R.

Currently the matching is done in Visual Basic code: if necessary a DLL of compiled
C code can be linked to Visual Basic, but compiled Basic code is far faster than R.

1.2 Results

Similarity matrix for chants:
Deus deus meus Domine exaudi Audi filia Domine audivi a

Deus deus meus 00.0 26.0 28.0 29.0
Domine exaudi 00.0 00.0 25.0 41.5
Audi filia 00.0 00.0 00.0 21.0
Domine audivi audit

00.0 00.0 00.0 00.0

Deus deus meus compared with Domine exaudi : (similarity 26.00)

 182 e-
 373

� c

 110 et
 272

� c

-ri-

�

a-

�
-pi-

� cl

-rutt

� c1 �
-at

�

cor

� s

e-

��

me-

� t

�

�
-um

�

-um

� c

�

�

� �

� �

��

�
qui-

�
sal-

�

-a
�

-vum

�

o-
�

fa-

	

-ci-

�
-at

�
e-

��

-bli-

��

�

�

�

� q

-tus

� L

�

-um

�

sum

� c

�

�

��

��

 336 -cit

 664
� ql

 98 con-
 236

� ql

do-

� �

-fri-

� �

�

�

�

�

�

� c

-mi-

�

-xa
�

-nus

� c

sunt

� c

�

� l

� �

� �

�

�

�

�

� cl

� cl

� cl

� cl

�

�

 280 -um

 556
�

 34 me
 90

�

� �

� �

��

��
u-

�

In-
�

-ni-

�

-qua-
�

-ver-

�
l

-cum-
�

l

-sum

�

-que
�

se-

�

di-

�
-men

�

-e
�

ia-

��

tri-

��

�

�

� q

� q �

�

�

Figure 3: Similarity matrix between four chants, and alignment of phrases between the first
pair of chants.

Some example results are shown in figures3 and4. At present only a handful of chants
have been entered, and the analysis is by clustering phrases (see figure4) and verses. The

Proceedings of DSC 2001 5

4/
4

4/
1

3/
1

2/
1

1/
4

2/
4

3/
4

4/
3

1/
3

2/
3

3/
3

1/
1

3/
2

4/
2

1/
2

2/
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Dendrogram of phrases within the four verses of the chant shown in figure2,
with groups highlighted.

musicologists also want to be able to search for (near-)matches to ‘interesting’ groups of
neumes.

When more data becomes available, we will use the full panoply of multivariate visu-
alization methods, for example multidimensional scaling.

1.3 Architecture

The entered chants are kept in a database, primarily accessed from Visual Basic, but which
could also be accessed from R via theRODBC package. Microsoft has done a good job
with ‘joined up thinking’ over databases. Using ADO2, a database can be anything from a
text file to a remote Oracle database, building on ODBC3 and OLE DB4. In this application
early development used text files, and now a Jet database (Jet is the re-distributable backend
of Access).

R is invoked via Thomas Baier’s DCOM interface5. The main usage is to send matrices
(e.g. the similarity matrix) to R and retrieve results as needed, as Visual Basic arrays.
All the analysis code can be loaded via.Rprofile or in a saved.RData: this is easier
than using the DCOM interface to load a package, for example. We found it very useful
to have a command to save the current R workspace, a ‘snapshot’ which can be reloaded
into a normal R session to investigate further. Also, sending Visual Basic objects to R to
inspect and hence help with debugging was very useful, as R has much better facilities for
exploring matrices than Basic provides.

2ActiveX Data Objects
3Open DataBase Connectivity
4A set of database interfaces with COM components
5http://cran.r-project.org/contrib/extra/dcom/

http://cran.r-project.org/contrib/extra/dcom/

Proceedings of DSC 2001 6

2 R as a Database Client

The other pair of applications we will describe involve interactions with large databases,
and come from projects in BDR’s research group.

2.1 Insurance Rating

Fei Chen’s doctorate is sponsored by English Matthews Brockman, a firm of insurance
consultants, whose main business is setting premiums, e.g. for car insurance.

Large databases are available to some insurers, around a million car owners for the
UK and around 30 million for the US. They have around 30 items of information on each.
These are close to feasible limits (including how long people will spend filling in forms).

There are two main things to predict, the rate of claims (a Poisson regression?) and
given there is a claim, the distribution of its value (gamma regression?). Although the
database is large, actual information is sparse within it (few people claim per year, infor-
mation rapidly becomes outdated).

Fitting models to datasets of this size will tax S implementations even on a machine
with 1Gb RAM. One can often go a long way by sampling, but here the sparseness does
not help. These are not really many near-duplicates, as many large databases have. That’s
one big issue indata mining: we only need large datasets if the structure is subtle. One
wants ‘local’ models (in the sense used in local polynomial fitting in smoothing, [1, 2]).

This is work in progress, but we are contemplating fairly close links between an R client
and a DBMS. The sort of ideas that one could use include:

• Use the DBMS for weighted sub-sampling.

• Ask the DBMS for an appropriate local subset of experiences. ‘Locality’ probably
needs to be defined within the DBMS.

• Do much of the summarization in the DBMS. During the iterated weighted least
squares fit of a generalized linear model, one could send the weights and get the
DBMS to compute the sufficient statistics. (One might want an intermediary to ease
the communication.)

• Invert the process, and use R-based functions to extend the functionality of the
DBMS.

2.2 Gene Expression Arrays

As there are now thought to be ‘only’ around 30,000 genes in the human genome, a com-
plete description of anyone’s personal genome is thought to be feasible within a couple of
years. At present gene expression chips6 can look at up to 12,000 genes.

Data is available at various levels from the chip, from the raw fluorescence image
(50Mb) through features (20Mb) and summaries at various levels (e.g. at gene level, 2Mb).
A designed experiment will have a few tens of chips, and research projects can consist of
many experiments.

6Affymetrix is the manufacturer of those whose data we will be using.

Proceedings of DSC 2001 7

Data on that scale needs to be handled in databases. There are also large amounts of
ancillary information needed to structure the data (10Mb per chip design). The pharma-
ceutical companies tend to use Oracle, and so we intend to too. (Oracle tables may be the
interchange format.)

We are currently negotiating access to such data for Wiesner Vos’s project. Given
Wiesner’s interests, the analysis will be in S on Windows or Linux, and delivery needs to
be on Windows. Once we have the legalities out of the way, the issues will be to extract
subsets efficiently to an R / S-PLUS 6.0 or 2000 client.

3 Conclusions

Data entry and extraction is an increasingly important part of statistical applications. We
have had an interest in databases for a long time (RMR is a former mainframe programmer),
but several projects seem urgently to need such tools. Computers get bigger and faster, but
at least for now so do applications, at an even faster rate. As we have hinted, in many
domains it may not be long before all feasible information is available, at some cost.

S implementations have long been regarded as very weak for large-scale problems: this
is a criticism that has been levelled at S-PLUS for a decade, even though S version 4 has
been claimed to help address this. Often the criticism is unfair: regressions on 10,000
subjects or analysing a clinical trial of 17,000 [3, §7.2] do not normally make much sense.
Large datasets are rarely homogeneous, and if they are, a small subset suffices.

Borrowing strength (a Tukey-ism) seemstheway forward. We have moved elements of
the chant system between Basic, C and R, and between text files and relational/hierarchical
databases as was most convenient during the course of the project.

Setting up these connections has been fun and frustrating, in equal measure. It is all too
easy for statistical thinking to get swamped by programming tasks.

Acknowledgements

RMR’s work on chant is in collaboration with Dr Emma Hornby and Prof. John Caldwell
pf the Oxchant group7 and was partially supported by the Music Faculty of the University
of Oxford.

References

[1] Clive Loader.Local Regression and Likelihood. Springer, New York, 1999.

[2] Jeffery S. Simonoff.Smoothing Methods in Statistics. Springer, New York, 1996.

[3] W. N. Venables and B. D. Ripley.S Programming. Springer, New York, 2000.

[4] Michael S. Waterman.Introduction to Computational Biology. Maps, Sequences and
Genomes. Chapman & Hall / CRC Press, Boca Raton, 1995.

7http://www.music.ox.ac.uk/oxchant/

http://www.music.ox.ac.uk/oxchant/

	Medieval Chant
	Sequence Matching
	Results
	Architecture

	R as a Database Client
	Insurance Rating
	Gene Expression Arrays

	Conclusions

