
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
K. Hornik & F. Leisch (eds.) ISSN 1609-395X

R/S Interfaces to Databases

Torsten Hothorn∗, Friedrich-Alexander-UniversitätErlangen,
Torsten.Hothorn@rzmail.uni-erlangen.de

David A. James, Bell Labs, Lucent Technologies,dj@bell-labs.com
Brian D. Ripley, University of Oxford,ripley@stats.ox.ac.uk

Abstract

Connectivity is an increasingly important part of statistical computing, and inter-
faces to databases are becoming important both in large-scale data mining applications
and from the use of smaller personal databases.

In this paper we present current work and future plans on interfacing the S language
(R and S-PLUS) to databases, in particular to relational database management systems
(DBMS).

1 Introduction

In this paper we present current work and future plans on interfacing the S language (R and
S-PLUS) to databases, particularly to relational database management systems (DBMS).
We discuss the interface to databases from the following perspectives:

• DBMS in the context of distributed computing, not simply as data repositories, but
bonafide systems with a language plus concurrency, persistence, events and security
models — in addition to distributed and parallel computations.

• Interfaces to databases as yet-another application of inter-system communications.
As such, we will be able to take advantage of this client-server technology, but we
will also have to address the problems that it raises, such as finalization of remote
objects, concurrency, function call-backs to S, event handling, asynchronous com-
munications, the possible need for either multiple evaluators and/or S threads, etc.

∗Supportby Deutsche Forschungsgemeinschaft SFB 539 is gratefully acknowledged.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

These issues surface not only in the context of database interfaces, but also in the
development of graphical user interfaces [4], communication with Microsoft Excel
[10], and in general inter-system communications [8].

• We approach interfaces to databases in the context of data analysis, and not so much
as the development of online processing or database development. We emphasize
the connectivity to databases as a necessity to carry unfettered data analysis [12]. We
emphasize the need to create a common interface so that further more advanced tools
may be built on top of this common API.

In Section2, Brian Ripley provides a bird-eye’s view of current solutions in R and
S-Plus, their implementations, and their shortcomings. Some communication has been
published regarding this topic: the R Data Import/Export manual [14] discussed recent
implementations and article [13] focuses on usage issues, illustrated by theRODBC package.

In Section3, Torsten Hothorn presents a vision of the future from a user’s point of
view — what is needed and possible how it would benefit users. In Section4 David James
presents a vision of the future from a provider’s perspective.

2 Current Solutions

‘Databases’ are more properly known as DBMSs (DataBase Management Systems). There
are several types including

• Text andcsv files.

• Spreadsheets (programs and formats), likeExcel.

• Flat file databases likeDBase.

• Hierarchical databases (such as HDF5,http://hdf.ncsa.uiuc.edu).

• ‘Lean’ relational databases likeAccessandMySQL, MiniSQL(also known asmSQL).

• Heavyweight relational databases likeOracle, DB/2, Informix, Sybase, SQL Server,
PostgreSQL.

Sometimes the user has a choice of DBMS, but often has to use an existing database and
hence DBMS. Most of the relational DBMSs are client–server systems, and many allow
communication over TCP/IP.

Most DBMSs come with amonitor, a text-based client, and some have GUI clients
(notably Access, which looks very like a set of spreadsheets). Almost all have a C or C++
API. And they are almost all different.

The actual commands are normally sent in a dialect of SQL (Structured Query Lan-
guage). This has ISO standards, rarely complied with. (Having multiple standards with
multiple levels encourages non-compliance!)

http://hdf.ncsa.uiuc.edu

Proceedings of DSC 2001 3

R interfaces

There are three DBMS-specific interface packages on CRAN,

RPgSQL for PostgreSQL by Tim Keitt
RMySQL for MySQL by David James & Saikat DebRoy
RmSQL for MiniSQL by Torsten Hothorn

using the C interfaces. All three run successfully on Linux, and we have runRMySQL on
Windows, with some difficulty.

These andRODBC are described in theR Data Import/Exportmanual [14].

S-PLUS interfaces

S-PLUS 5.1/6.0 on Unix (and not Linux) have connections to import data fromInformix,
OracleandSybasedatabases.

RMySQL has a siblingSMySQL and a cousinSOracle1 connecting to Oracle databases.

Cross-DBMS solutions

There are a number of cross-database interfaces. ODBC (Open DataBase Connectivity) is
an X/Open and ISO standard for a common interface to relational databases. It is common
in the Windows world, and has been much enhanced by Microsoft [9] and used as the
basis of later developments (ADO, . . .). On Windows, spreadsheets and even text files are
covered. One of the Unix ODBC driver managers (unixODBC, http://www.unixodbc.
org) has a text-file driver. ODBC drivers are available for all the common DBMSs (not
all freely, and more widely on Windows than on Linux). CRAN has a packageRODBC (by
Michael Lapsley) which interfaces to ODBC driver managers on Windows and Linux/Unix.

Two other cross-database solutions worth noting are JDBC2 (Java), [7, 11]) and Perl
DBI3 [5]. Either could be used via the Omegahat R/S interfaces to those languages, and
Saikat DebRoy has been working on an RS-JDBC package.

2.1 Retrieving Data

Perhaps this is the most common task of all. Atable in a relational DBMS is a similar
concept to a data frame in S, so a natural idea is to (in principle, perhaps) create a table
containing the required data, and map it to a data frame.

RmSQL does this row by row. The others have interfaces like

> db.connect(dbname="testdb") # RPgSQL
> df <- db.read.table("USArrests")

> channel <- odbcConnect("testdb"") # RODBC
> sqlFetch(channel, "USArrests", rownames = TRUE)

1both available athttp://www.omegahat.org/download/contrib/RS-DBI.
2http://java.sun.com/products/jdbc/.
3http://dbi.symbolstone.org/

http://www.unixodbc.org
http://www.unixodbc.org
http://www.omegahat.org/download/contrib/RS-DBI
http://java.sun.com/products/jdbc/
http://dbi.symbolstone.org/

Proceedings of DSC 2001 4

> con <- dbConnect(MySQL(), dbname = "test") # RMySQL
> getTable(con, "arrests") # leaves row names as a column

hiding the SQL which they generate from the user. Unfortunately, snags arise quite soon.

1. Case. Few DBMSs are case-sensitive. S is. This applies not just to table names,
but also to column names. Which case is used is DBMS- and even OS-specific (e.g.
MySQLis case-sensitive on Linux and case-insensitive on Windows).

2. Row-ordering. Relational DBMSs have in principle unordered tables. You do need
to retrieve an ID field (primary key) to act as the row names.

3. The mapping ofdata typesto R data types is problematic (see later).

4. Representation ofmissing values. These are commonly represented as the SQL
valueNULL, but watch out for the differences between that and"", and how they get
transferred.

5. Size. Retrieving the whole table at once might be too much for R to hold. You might
need to retrieve a block of rows or columns at the time, and for that you will probably
need to use SQL.

2.2 Uploading Data

For some purposes, uploading data to a database is an important task. Convenience func-
tions are available in most of the R interfaces:

> data(USArrests)
> usarrests <- USArrests
> db.connect(dbname="testdb") # RPgSQL
> db.write.table(usarrests, write.row.names = TRUE)

> channel <- odbcConnect("testdb"") # RODBC
> sqlSave(channel, USArrests, rownames="state")

> con <- dbConnect(MySQL(), dbname = "test") # RMySQL
> assignTable(con, "arrests", USArrests, overwrite=TRUE)

We have to ensure that the row names get saved, if (as here) they are the ID field.
The alternative is to write a file and load that via SQL, either from the interface or the

monitor program. That is complex and proves to be error-prone.

Data Types

Mapping S data types to the DBMS’s data types is tricky, and onlyRPgSQL seems to make
a good job of it. One issue is what to do if a table of the same name exists. Currently
RODBC updates a table if it looks suitable, otherwise destroys it and writes a table entirely
as character fields.

Proceedings of DSC 2001 5

Mapping in the other direction (from the DBMS to S) is perhaps easier, as data frames
are created anew. The details of the existing interfaces are largely undocumented:RODBC
for example reads the result set as a character matrix and converts it, as aread.table–
alike.

One big issue for a cross-DBMS solution is finding out the data types that the DBMS
supports, what they are called and what C/R type they correspond to. ODBC has commands
to do this, but unfortunately some drivers4 appear cavalier about this.

RMySQL has recently added a functionSQLDataType to find the DBMS data type that
can most closely represent an R/S object.

2.3 Sending SQL Commands

All of the interfaces allow SQL commands to be sent to the DBMS, for example

> db.connect(dbname="testdb") # RPgSQL
> db.execute("SELECT rpgsql_row_names, murder FROM usarrests",

"WHERE rape > 30 ORDER BY murder", clear=FALSE)
> db.fetch.result()

> channel <- odbcConnect("testdb"") # RODBC
> sqlQuery(channel, "select state, murder from USArrests

where rape > 30 order by murder")

> con <- dbConnect(MySQL(), dbname = "test") # RMySQL
> quickSQL(con,

"select * from arrests where Rape > 30 order by Murder")

There are many dialects of SQL (official and unofficial) and the names of the data types
differ widely too. ODBC makes some effort to smooth over the differences.

We have already seen thatRPgSQL andRODBC go some way to encapsulating common
operations in intuitive functions, as do the latest versions ofRMySQL. RPgSQL goes further.
It has convenience functionssql.select andsql.insert for the simpler cases of com-
mon operations. These are particularly useful on a system with transaction support (like
PostgreSQL). We would like to see a lot more high-level functionality, hiding issues like
case and data types from the users, transparently capturing row names and marking them
as a primary key, mapping column names to and from those supported by the DBMS

One tremendous simplification, at least superficially, isproxy objects. Tim Keitt has
implemented the very appealing notion ofproxydata frames inRPgSQL. These are R objects
of a class"db.proxy" that in most respects behaves like"data.frame", but are really
references to tables in the database. For example

> db.connect(dbname="testdb") # RPgSQL
> bind.db.proxy("USArrests")
USArrests is now a proxy, so all accesses are to the database
> USArrests[, "Rape"]

4notablyMyODBC

Proceedings of DSC 2001 6

Rape
1 21.2
2 44.5

...
> rm(USArrests) # remove proxy

Unfortunately, row names are not handled as transparently as bydb.read.table.
The class has methods for operators[, $, [[and functionsdim, names, row.names

anddimnames, as well asprint, summary and coercion functions to matrix, list and data
frame.

There are limits, though, so for exampleUSArrests[rows, "Rape"] will only work
if rows specifies an interval of numeric row indices (by any S indexing scheme). At present
these proxy data frames are read-only, so there are no replacement functions such as[<-.
Presumably one would need to implement batching to make such operations efficient in a
transactional DBMS.

2.4 Functions in Databases

All the DBMSs allow some possibility for using functions and operators in SQL state-
ments. There are lots of differences: for examplePostgreSQLandMySQLconvert data
types suitably, butAccessdoes not. The names of functions, their exact scope and whether
user-defined functions are allowed all differ widely.

Accessuses Visual Basic for Applications;MySQLandPostgreSQLallow user-defined
functions. For all three this opens the possibility of embedding R functionality in user-
defined functions, via DCOM forAccesson Windows and via a shared library on Linux/Unix
for MySQLandPostgreSQL. (Duncan Temple Lang has explored the latter approach, and
code is available athttp://www.omegahat.org.)

2.5 Current Status

For R users, the following summarizes the position in March 2001.

• Macintosh users have no choice!

• Windows users have the ‘Ford Model T’ choice. There is only one easy solution:
useRODBC. (RMySQL andMySQLcan be used with some work. In principleRPgSQL
could be used withPostgreSQL, but we have not succeeded in doing so.)

• If your data are on a commercial DBMS, you have (at most) one choice,RODBC.

• If you can choose your DBMS, and you are on Unix/Linux, you may consider
RPgSQL andPostgreSQLor RMySQL andMySQL.

3 Future Directions: The Users’ Perspective

In all fields of statistics modern data management is nowadays based on database manage-
ment systems, mostly relational ones. They help us keeping data organized, secure and

http://www.omegahat.org

Proceedings of DSC 2001 7

accessible, even in multi-user environments. Therefore, the statistician (and R user) is con-
fronted with these systems if (s)he needs to extract or insert data. We therefore want simple
methods to access data without the need of experienced programming. The main target is
independence from the database engine itself. Other languages provide well-defined pro-
gramming interfaces to relational DBMSs, for example JDBC, ODBC, Perl DBI and others.
In contrast, R is not only a programming language but a language for data analysis. So one
does not only need a programming interface but a user interface to DBMSs. We have to
find out how an interface should look like considering what applications or problems R
users are confronted with.

In the following, we introduce a simple example of application from medical statistics
and discuss the needs of users confronted with similar problems. Furthermore, we outline
applications as data mining and discuss possibilities for the design of a common and simple
but powerful R-DBMS user-interface.

3.1 Example: The Erlangen Glaucoma Database

Glaucoma is a irreversible neurodegenerative eye disease and one of the main reasons for
blindness. Starting in 1991, several projects at the Erlangen Eye Department formed a
collection of cases and normals, resulting in the Erlangen Glaucoma Database. For sake
of simplicity, we translate the German database definition to English. Each eye of a pa-
tient or control subject is identified by a patient number (patnr), the examination number
(examnr) and the eye-side (eyeside).

If a statistician wants to work with this database, the first problems occur far before
any system for statistical analysis is involved. Usually, the database was defined by other
people a long time ago and is maintained on systems not administrated by the statistician
himself. Therefore, details are needed about the database structure and it is crucial to know
at least a username and password as well as the host which the DBMS engine is running
on.

As a simple example, consider the following situation. One wants to compute the
median of the intraocular pressure (iop) of all patients or control subjects. Currently with
RMySQL, this can be done using following code:

library(RMySQL)
m <- MySQL()
con <- dbConnect(m, host = "artemis", user = "hothorn",

password="secret", dbname = "glaucoma")
iop <- quickSQL(con, stmt)
median(iop$iop, na.rm=T)

This simple example shows the complexity of one of the current interfaces. First, the user
needs to specify access information: the host it runs on, a username and password and the
name of the database. To form a correct SQL statement, at least the name of the relation
(examination) and the variable name (iop) is needed. Most important: without a basic
knowledge of SQL there is no chance of success.

One may think of a relation as of a (possibly huge and fast) data frame. But how serious
is this? Usually, databases consist of many relations linked together using keys (which in
our example arepatnr, examnr andeyeside). So a more realistic example would be:

Proceedings of DSC 2001 8

draw two histograms of the intraocular pressure, one for the normal subjects, one for the
glaucoma subjects. To solve this problem, a more detailed knowledge of SQL is needed.

stmt <- "SELECT examination.iop, diagnosis.diagn FROM
examination, diagnosis
WHERE examination.patnr = diagnosis.patnr AND
examination.examnr = diagnosis.examnr AND
examination.eyeside = diagnosis.eyeside AND
diagnosis.diagn = \"normal\" "

iopnormal <- quickSQL(con, stmt))

Here, the information about the diagnosis of a subject is stored in relationdiagnosis, field
diagn and bothiop anddiagn are returned after joining the two relationsdiagnosis and
examination.

Even more questions arise. Suppose that the statistician is allowed to update misspec-
ified values. Clearly, this could be done by formulating an update statement in SQL, but
what about different users interacting on the same data set? Once that some users simulta-
neously write data to the system, transactional support is needed.

3.2 Three Types of Users

This subsection tries to ‘classify’ users by their needs and knowledge about database sys-
tems and, more important, user interfaces. In our opinion, one can identify at least three
types of users with completely different needs and views to database systems.

3.2.1 The Sophisticated Users

The sophisticated users are the statisticians with detailed knowledge of relational databases.
Often they use or create relational databases with the engine they are comfortable with.
They are familiar with SQL and tend to be quite sophisticated to know how to avoid obvious
problems, such as trying to import a huge table all at once or type conversions, so they can
take care of themselves. Most of the times, they want direct access to the database engine
itself. The specific interfaces currently available, for exampleRMySQL or RPgSQL, fit their
needs. However, changing the database engine causes trouble, so a unified interface is
needed.

3.2.2 The Unsophisticated Users

SQL is not straightforward to use and most people do not want to create SQL statements.
There is a need of structures like data frames. The following code is varporware:

con <- dbConnect("MySQL", group = "glaucoma")
proxyGlaucoma <- proxyRDBMS(con)
df <- as.data.frame(examination)
median(df$iop)

Clearly, a user familiar with data.frames has no problems dealing withdf. A very similar
approach is the use ofbind.db.proxy in RPgSQL. From this point of view, a relation in a

Proceedings of DSC 2001 9

database is a huge and fast data frame. The advantage of this approach is that only the data
needed for the computations is transfered. On the other hand, real databases always are built
up from relations linked together using keys and that means that they are not just big data
frames. Powerful queries consist of joins. How can one offer this functionality using proxy
objects? Another problem is that on the one hand, users are often not allowed to create
their own relations in a client-server environment. On the other hand, an inexperienced user
may5 have problems setting up his own database engine. Therefore, a simple way of using
a database as an ‘extended memory’ through proxy objects may have some drawbacks.

We also have to focus on an application of an R-DBMS user-interface completely dif-
ferent from the one discussed until now: data mining.

3.2.3 The Data Miner

Having really big datasets at hand may bring even R into trouble. One can think of using
the DBMS as memory, for example for fitting linear models to large datasets. This issue is
discussed e.g. in [12] and [8].

3.3 Programming Interfaces

Well-established interfaces as JDBC, ODBC or Perl DBI are programming interfaces, but
not user interfaces. However, they are similar to the interfaces available for R in the fol-
lowing sense. They offer system-independent functionality for

• connecting to a database engine,

• user authentication,

• executing an SQL query,

• fetching the results (including type conversions),

• error handling.

As an example, the query selecting the intraocular pressure for all subjects would be for-
mulated in Perl DBI as:

use DBI;
$dbh = DBI->connect("DBI:mysql:database=glaucoma",

"hothorn", "secret",
{ RaiseError => 1, AutoCommit => 0 });

$sth = $dbh->prepare("SELECT iop FROM examination");
$sth->execute();
while (@row = $sth->fetchrow_array) { print "@row\n"; }
$dbh->disconnect;

This is very close to the current status of RMySQL. As outlined, the sophisticated user
is comfortable with a solution just providing access to SQL.

5although such users do seem to findAccess accessible.

Proceedings of DSC 2001 10

3.4 User Interfaces

The crucial question is: ‘Do we need SQL for the user interface?’. Some ideas for hiding
SQL are available, for example proxy objects (section 2.3) or attached databases (section
4.2.2). But are they powerful enough to deal with real serious applications users are cur-
rently confronted with? Once that a common programming interface, maybe based on the
R/S database interface, is available, extensions in this direction are possible.

3.5 Discussion

Apart from having different interfaces to different engines, sophisticated users do not have
problems using databases from within R with the packages currently available. Before
defining a common interface we should discuss the needs of unsophisticated users. Using
relational databases is not that easy. BothMySQL (see [1]) andmSQL are relatively simple
due to their limited functionality. Others like Oracle or Sybase need a detailed knowledge
of database systems. In a client-server environment, a user is usually neither allowed to
create databases himself nor to delete them. Furthermore, the power of relational databases
is based on relations. It is hard to formulate joins in other languages than SQL.

4 Future Directions: The Providers’ Perspective

In this section we motivate the idea of a common interface to databases; we look at some
of the most successful approaches to database connectivity that have been implemented
in other computing environments, such as Microsoft, C/C++, Java, Perl, and Python; and
finally we extract the necessary elements that we would need to implement a common
database interface.

4.1 A common API as a tool for package development

Package providers who want or need to connect to DBMS probably need a common API
more than end-users. Clearly the convenience of a common interface for accessing DBMS
is desirable, but it becomes a necessity for package developers that either want or need to
provide tools that should work seamlessly when the data resides on a DBMS.

4.2 Examples

We consider only two examples: one that deals with very large datasets, the other example
provides an S view of a DBMS.

4.2.1 Sampling as a means to deal with very large data sets

Suppose our data resides in a DBMS (say, Oracle) and we have reasons to believe that a
“sensible” sampling scheme could help us answer the questions that we are considering.
Then we could write a library to implement various sampling techniques (simple random
sampling, stratified, systematic, clustered) with various allocation methods (with/without
replacement, allocation proportional to size, etc.) for our DBMS.

Proceedings of DSC 2001 11

In order for such a library to be able to sample data not just from Oracle, but Post-
greSQL, Informix, or Microsoft SQL Server, we need to abstract out the details of interfac-
ing to the DBMS.

4.2.2 (Almost) transparent access to DBMS

Suppose we would like to allow users to attach the contents of their DBMS to their search
path and use S semantics to access remote tables. It would be very desirable to have these
libraries access data independently of the database engine, being it MySQL, Ingres, or
IBM’s DB/2.

Note on terminology: The S language defines adatabaseas a collection of objects,
each with an associated name; S unifies all operations that group objects by name under
the idea of databases. S also provides semantics for the access and assignment of data
to databases (basically the reading and writing of objects). Furthermore, S uses multiple
databases for storing and retrieving objects listed in a so-called “search path”, that may be
modified through calls toattach() anddetach().

This mechanism is extensible throughuser-defineddatabases6. (For more details see
[2], and [3].) To attach a user-defined database to the search path we need to

1. have the user-defined database class extenddatabase

2. write methods for the following generic functions:

• dbobjects()

• dbread()

• dbwrite()

• dbremove()

• dbexists() (optional)

Actions to be taken upon attaching and detaching may be coded in functions.on.attach()
anddbdetach().

Notice the simplicity in attaching any user-defined database: we only need to extend a
(virtual) class and supply methods for pre-defined generic functions. We will try to follow
this paradigm in the implementation of a common database interface.

"con" is a connection to some DBMS
> is(con, "dbConnection")
[1] T
> db <- attach(con, max.rows=10000, translate=T)
> search()
[1] ".Data" "vital_test" "splus" "stat"
[5] "data" "trellis" "main"

> ls(pos=2)[sample(1:26, size=5)]
[1] "TRANTABLE" "tmpApps"

6 This mechanism is currently not defined in R

Proceedings of DSC 2001 12

[3] "MYTRANVIEW" "TRANMAPTABLE"
[5] "AGGREGATE.APP.TRANTABLE"

> assign("fuel.frame", fuel.frame, where = 2)
> exists("fuel.frame", where = db)
[1] T
> remove("fuel.frame", where = 2)
[1] T

> names(CLIENTMAPTABLE)
[1] "CLIENTID" "CLIENTNAME"
[3] "LASTIPADDRESS" "LASTENTRYROUTER"
[5] "TIMEZONE" "OS"
[7] "CPU" "PHYSICALMEM"
[9] "PAGEFILESIZE" "TOTALDISKSPACE"
[11] "AVAILDISKSPACE" "LASTUPLOADTIME"
[13] "HOSTNAME" "SUBNETMASK"
[15] "AGENTTYPE" "AGENTLICENSES"
[17] "AGENTVERSION" "LASTGROUPID"

> table(CLIENTMAPTABLE$AGENTTYPE)
NMCORP NMCORPI NMPRO

28 14 22

> dim(TRANTABLE)
Problem in dbread(..:
table TRANTABLE with 118411 rows exceeds
the threshold limit of 10000 max.rows

Use traceback() to see the call stack

The following is worth noting:

• We get (almost) transparent access to DBMS

• Familiar S semantics (get, assign, etc.)

• This is DBMS independent, and

• Provides an extensible mechanism for user-defined database (e.g.,proxyDBMS) due
to a well-defined and simple interface.

The mechanism works well because it abstracts out the details and specifics of the various
DBMS — we only need to provide methods for the specified generic functions and extend
thedatabase class. However, there are somecaveats:

• The user-defined databases approach is mainly static. Objects (tables) that get re-
moved or created in the DBMS will not appear in the S attached database, unless we

Proceedings of DSC 2001 13

explicitly synchronize() it. It would be nice to have a mechanism7 by which S
would get notified of events such as table creation and deletion, among others.

• The S evaluator will look for objects —evenfunctions — in the user-defined database
(but see the argumentpurpose of attach()). That is, the S semantics allow us to
either use a user-defined database in the search path or not, but it does not provide
finer resolution; for instance, we can not specify that our user-defined database has
no language objects.

• The current S semantics could be extended to allow incremental reads and writes. It
would be very advantageous to be able to append to an existing object, and to read
portions of an object (say, specified through the existing subscripting mechanism)
without having to read or write the object in its entirety.

4.3 Approaches to DBMS Connectivity

The client-server architecture in DBMS has been around for more than 20 years. Other
languages and environment have faced and solved the very same problems we are facing in
the S language community.

At the core of the communications with DBMS there is a DBMS-dependent protocol
that is hidden to the applications by a set of library functions. Each DBMS provides its
own library for communication, and applications that need to interface with more than
one DBMS need to cope with this diversity. How to unify all these diverse interfaces
under a common tool-set is the challenge that applications developers have been facing
in environments such as C/C++, Java, Perl, and Python, SAS, SPSS, and the S language
community.

So it is worthwhile taking a look at how other languages have solved the problems we
currently face in connecting to DBMS from R and S.

• Native API’s (C/C++).

All DBMS provide some kind of native C or C++ interface. The interface consists
of a library of C/C++ functions that users may call from their applications. These
libraries, typically, interface to the database engine through highly specialized and
tuned protocols, therefore, they are highly non-portable but applications can achieved
unparalleled performance.

All approaches below are layers on top of these native API’s.

• Embedded SQL

Easy (easier?) to port. One writes applications in languages like, C/C++, Ada, Cobol,
Pascal, Fortran, including (embedding) regular SQL statements in the program. A
pre-processor or pre-compiler process these files and substitute the SQL instructions
with calls to the native API’s. Some of this approach advantages are its simplicity
(one does need to know SQL, but not the native API), and better portability (there

7The Omegahat environmenthttp://www.omegahat.org already provides this type of functionality.

http://www.omegahat.org

Proceedings of DSC 2001 14

are standards that describe how to embed SQL in various languages). The main dis-
advantage is that, because the code is pre-processed, some flexibility is lost, besides
the problems typically associated with pre-processing.

• ODBC

Defined mainly at the C/C++ level, it provides C/C++ applications an abstraction
layer so they can operate uniformly on data stored on DBMS and other database
types without having to know the details of the database server. It provides good
support under Windows, where the availability of good drivers is not too much of a
problem. As mentioned in section 2, there are Unix/Linux drivers too.

Unlike JDBC, Perl DBI, and Python DB-API, ODBC is not explicitly based on
object-oriented programming.

• JDBC (Java Database Connectivity).

Similar to ODBC, it provides an abstraction layer on top of native API’s for Java
applications. JDBC is well defined, with better driver availability on most Unix
platforms, and it is included in all JDK’s (Java Development Kits).

• Perl DBI (Database Independent) module

Similar in spirit to ODBC and JDBC, for providing a database independent interface
to databases, but for Perl applications. There are a variety of drivers, from ODBC to
based on native API.

• Python DB-API

Similar to Perl DBI and JDBC but tailor to python applications.

• Commercial connectivity tools (e.g.,www.merant.com)

• Three-tier (CORBA, RMI)

All these approaches (except the native API) to database connectivity follow more or
less the same implementation to provide a database-independent method based on object-
oriented programming techniques.

4.3.1 An Object-oriented Approach

All these approaches separate the connection to the DBMS into a “front-end” and a “back-
end”. Applications use only the exposed “front-end” or API. The specific DBMS facilities
(Oracle, PostgreSQL, etc.) are provided by device “drivers” that get invoked behind the
scenes. These are the common features:

• A driver manager

This loads and initializes the proper driver (database-specific code) and transparently
dispatches methods to the driver. (Note that in the case of S, this can be trivial to
implement, since the S evaluator dispatches methods automatically for us.)

• A set of classes and functions that define what operations are possible and how they
are defined, e.g.:

www.merant.com

Proceedings of DSC 2001 15

– connect/disconnect to the DBMS

– create and execute statements in the DBMS

– extract results/output from statements

– transaction management

– information (metadata) from database objects

– error/exception handling

(some things are left explicitly unspecified, e.g., authorization, and even the query
language!).

• Drivers

Drivers are collection of functions that implement the functionality defined above in
the context of specific DBMS.

• Data type mappings

Mappings between generic DBMS data types and the environment (C/C++, Java,
Perl, Python).

• Utilities

These deal with non-primitive types (dates, currency, . . .), styles of identifiers (up-
per/lower case), etc.

These API’s provide the “look-and-feel” of the corresponding environment (C++, Java,
Perl, Python, etc).

4.3.2 The Perl DBI Interface

The following figure depicts a view of the Perl DBI implementation. Applications that
need to access databases do so through what we callgenericfunctions in S. These are calls
into the DBI (database independent) functions. The Perl interpreter then automatically
delegates these actions to the DBD (database dependent) driver code. In this manner, the
application can transparently access any database for which a driver exists.

4.4 Elements for a Common R/S DBMS API

We now identify the major elements required for the implementation of a common interface
to databases from R and S. First, the class structure for the API, namely,

• Classes and their inheritance structure

• Set of generic functions

We then need to specify a set of reasonable data type mappings

• Basic data types are “easy”

• Dates/Times/Currency are not hard, but details need to be thought out

Proceedings of DSC 2001 16

Application

level

Database

Interface

level

Database

Driver

level

RDBMS

level

Perl script

$dbh = DBI->connect("DBI:Ora:...");

$dbh = DBI->connect("DBI:mysql:...");

 $dbh= DBI->connect("DBI:Pg:...");

Perl Interpreter
 DBI

mSQL/MySQL

driver driver

Other

DBDs

mSQL

sever

MySQL

server

Postgres

Postgres

server

Other

servers

Figure 1: Figure taken from [6].

• Binary data (images, sound, . . .)

• User-defined conversion functions

• Errors/warnings (truncation, loss of precision, . . .)

R/S objects that will mirror the database objects:

• data.frame s may be inadequate to represent database objects.

• raw type is not available in R, should it?

• how to handle images, sound, etc.

We also need to define the behavior of the interface to handle situations such as long-
running queries. Should we allow asynchronous communication? How should R/S be
notified when the long-running query has finished? How do we cancel asynchronously
invoked queries? How do we insure that the database is properly notified and its resources
freed in the event of an application crashing?

The issue of synchronous versus asynchronous communication is very important. Cur-
rently many DBMS provide asynchronous communications natively either viapolling or
call backfunctions:

Proceedings of DSC 2001 17

DBMS Asynchronous communication

Informix polling (call backs?)
Ingres call backs
MS SQL Server call backs
Sybase call backs
ODBC polling
Oracle (threads?)
PostgreSQL polling

(plus listener/notification)
MySQL threads

Do we need some kind of event notification/handling in R/S? Is the S version 4 mechanism
of connections and readers a feasible solution? Should it be implemented in R?

These questions, although critical for communicating with DBMSs, need to be ad-
dressed more generally in the context of inter-system communications, since they are per-
tinent to R/S communications with GUI’s, GIS (graphical information systems), other lan-
guages (e.g., Java, Perl, Python) spreadsheets (e.g., Microsoft Excel, Gnumeric), and so
on.

4.5 Summary

DBMS are much more than simple data repositories. Current R/S facilities already pro-
vide some connectivity, but in an uncoordinated fashion. R/S connectivity to DBMS is
yet-another application of inter-system communications, and as such, it provides similar
benefits and challenges:

• Distributed and parallel computing

• Foreign (remote) references

• Proxy objects

• Asynchronous communications

• Event handling

• Multiple evaluators/Threading?

• Exceptions

A number of issues that come up in the context of DBMS communications also come
up when communicating with GUI’s, GIS, other languages, etc. In addition to the above
benefits and challenges, we need to address the following issues:

• Should R support user-defined databases?

• Should the current semantics of user-defined databases in S be extended to include
asynchronous communications, incremental read/write, etc?

• Do we need araw type in R?

Proceedings of DSC 2001 18

References

[1] David Axmark, Michael Widenius, Jeremy Cole, and Paul DuBois.MySQL Reference
Manual. http://www.mysql.com/documentation/mysql, 2001.

[2] John M. Chambers. Data management in S. Technical report, Bell Labs, Lucent
Technologies,http://stat.bell-labs.com/stat/doc, 1991.

[3] John M. Chambers. Database classes. Technical report, Bell Labs, Lucent Technolo-
gies,http://stat.bell-labs.com/stat/Sbook, 1998.

[4] Peter Dalgaard. The R-Tcl/Tk interface. InProceedings of the Distributed Statis-
tical Computing 2001 Workshop, http://www.ci.tuwien.ac.at/Conferences/
DSC-2001, 2001. Vienna University of Technology.

[5] Alligator Descartes and Tim Bunce.Programming the Perl DBI. O’Reilly, 2000.

[6] Paul DuBois.MySQL. New Riders, 2000.

[7] Jon Ellis, Linda Ho, and Maydene Fisher.JDBC 3.0 Specification. Sun Microsystems,
Inc, http://java.sun.com/Download4, 2000.

[8] Duncan Temple Lang. Embedding S in other languages and environments. InPro-
ceedings of the Distributed Statistical Computing 2001 Workshop, http://www.ci.
tuwien.ac.at/Conferences/DSC-2001, 2001. Vienna University of Technology.

[9] Microsoft Inc, http://www.microsoft.com/data/odbc/. Microsoft ODBC,
2001.

[10] Erich Neuwirth and Thomas Baier. Embedding R in standard software, and the other
way around. InProceedings of the Distributed Statistical Computing 2001 Workshop,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001, 2001. Vienna Univer-
sity of Technology.

[11] George Reese.Database Programming with JDBC and Java. O’Reilly, second edi-
tion, 2000.

[12] B. D. Ripley and R. M. Ripley. Applications of R clients and servers. InProceedings
of the Distributed Statistical Computing 2001 Workshop, http://www.ci.tuwien.
ac.at/Conferences/DSC-2001, 2001. Vienna University of Technology.

[13] Brian D. Ripley. Using databases with R.R News, 1(1):18–20, January 2001.

[14] R Development Core Team.R Data Import/Export. http://www.r-project.org,
2001.

http://www.mysql.com/documentation/mysql
http://stat.bell-labs.com/stat/doc
http://stat.bell-labs.com/stat/Sbook
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://java.sun.com/Download4
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.microsoft.com/data/odbc/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.r-project.org

	Introduction
	Current Solutions
	Retrieving Data
	Uploading Data
	Sending SQL Commands
	Functions in Databases
	Current Status

	Future Directions: The Users' Perspective
	Example: The Erlangen Glaucoma Database
	Three Types of Users
	The Sophisticated Users
	The Unsophisticated Users
	The Data Miner

	Programming Interfaces
	User Interfaces
	Discussion

	Future Directions: The Providers' Perspective
	A common API as a tool for package development
	Examples
	Sampling as a means to deal with very large data sets
	(Almost) transparent access to DBMS

	Approaches to DBMS Connectivity
	An Object-oriented Approach
	The Perl DBI Interface

	Elements for a Common R/S DBMS API
	Summary

