
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

The R-Tcl/Tk interface

Peter Dalgaard∗

Abstract

The tcltk package allows the use of the Tk graphical user interface ele-
ments from within R by embedding Tk commands into the R language. The
design considerations are discussed, and also the shortcomings of the current
implementation.

1 Introduction

It has been desirable for a long time to add graphical user interface (GUI) elements
to R. This would be useful both to allow R programmers to write GUI-driven
modules for specific purposes, and in the longer run to build a general GUI for
entry-level R users.

It would be advantageous to build such features on a preexisting toolkit and
several possibilities exist. In choosing between them, I put high priority on the
possibility for rapid prototyping and the potential for multiplatform portability.

It was clear to me from the start that I would want a language embedding of
the toolkit. It is not sufficient to build a predefined shell around R, it should be
possible to write R1 functions that modify the GUI, and perhaps even the entire
GUI could be written in R. Preferably, it should be very easily to program, whereas
efficiency in terms of speed may be less important.

Many cross-platform toolkits are in the form of C++ libraries or Java classes,
but their object-oriented style seemed difficult to combine with the imperative pro-
gramming style of R, although I have to concede that this could be attributed to
shortcomings of my own.
∗Department of Biostatistics, University of Copenhagen
1Much of the code could also work with other languages of the S family, but there is some

R-specific use of environments

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

One toolkit which has been adopted by several other packages is Tcl/Tk. In all
cases, it has led to considerable productivity, although perhaps not always complete
satisfaction. Tk is designed to work with Tcl, a simplistic shell-like language and
the target of much of the criticism. However, it has been successfully embedded
in other languages, including Perl, Python (tkinter), and Scheme (STk, and very
recently STklos).

The overall style of Tcl/Tk seemed to lend itself very easily to an R embedding
and after a while it became quite irresistible to try and implement it, leading to the
current tcltk package. As it turned out, a basic implementation could in fact be
done very simply. The whole interface is only about 250 lines of C and 400 lines of
R and about two thirds of the latter is repetitive function definitions.

2 Tcl/Tk

The following is a simple example of how Tcl/Tk works. Using the windowing shell
(wish) you can create a simple button as follows (% is the wish prompt):

$ wish
% button .a
.a
% pack .a
% .a configure -text hello

The windowing shell creates a toplevel widget, called “.” upon startup. This is
used as a frame into which other widgets will be placed.

The Tcl language is very similar to a command shell. The basic form is that
of a command followed by arguments and options. In the example, the first com-
mand creates a button widget “.a” within “.”, but does not display it. The second
command call upon a geometry manager (of which several are available) to position
the widget within the toplevel widget. The third command is a widget command
with the subcommand “configure” used to change the configuration of the widget
– adding a label to the button in this case. This could also have been given as an
option to the button command.

The most striking feature of Tcl/Tk code is its brevity. You do not need to spec-
ify every parameter which controls a widgets appearance; sensible defaults exist and
the geometry managers save a lot of work by making explicit sizing of widgets almost
unnecessary. Notice that the basic paradigm is one of scripting rather than class
definition and instantiation as with traditional object-oriented languages. However,
some notions from object-oriented programming do exist, for instance the fact that a
widget might define its own methods is reflected in the notion of widget commands.

Proceedings of DSC 2001 3

3 Embedding Tcl/Tk in R

3.1 The glue layer

It is not practically possible to bypass Tcl entirely and make R talk directly to the
Tk widgets. It is necessary to go through Tcl, but it is possible to reduce Tcl to a
thin glue layer, which users in practice won’t need to know the details of.

It is very easy to set up communications between a C application and Tcl.
Basically, once one has the Tcl event loop running, one can initialize one or several
Tcl interpreters from the C code and start feeding them Tcl commands to evaluate.
It is also possible to define new Tcl commands that when evaluated by the Tcl
interpreter call C functions defined by the user.

The tcltk library sets up the event loop and initializes a Tcl interpreter with
a couple of extra commands to handle callbacks to R. Then, as the most primitive
communication method, a .Tcl function is defined to do little more than take a
text string from R and pass it to the Tcl interpreter for execution.

3.2 Widget creation

Many aspects of Tcl commands map easily into R function calls, but the notion
of a widget command causes trouble. In a widget command, the command name
embodies the position of a widget in the widget hierarchy. With deeply nested
widgets that can get quite unwieldy. An important difference between the two
languages is that Tcl uses variable substitution like a shell script does. This helps
making the widget command structure workable in larger programs, since it possible
to store a prefix of the widget name in a variable, say win and have code like

text $win.txt
button $win.dismiss -text dismiss
pack $win.text $win.dismis

It is not attractive to mirror that mode of operation in R. For one thing, R does
not easily lend itself to variable substitutions like the above, but the whole idea
of having information embodied in a function name is alien to R – assigning a
function to another name or passing it as a function argument does not normally
change what the function does.

The same issue must have faced the designers of the tkinter interface to the
Python programming language and they have solved it as follows:

root = Tk()
button = Button(root, text=’hello’)
button.pack()

Notice that apart from the assignment operator, the first two lines of Python might
just as well have been R. In the third line the object-oriented nature of Python
shows through, though.

Proceedings of DSC 2001 4

In the above code, the Button command creates an object representing the
button, based on a similar object representing its parent. The pathname of the
resulting button window is not visible to the user, but stored somewhere internally.

In the tcltk package essentially the same idea is used, so that the following
code in R is equivalent to the Python example above

root <- tktoplevel()
button <- tkbutton(root, text="hello")
tkpack(button)

(R does not have a namespace mechanism like Python does, so to avoid name
conflicts all the public functions in the tcltk package carry a tk prefix.)

In the fundamentally object-oriented Python, the widget commands become
methods for the widget objects. In R it is more natural to have functions acting on
widgets, so that you might change the label of the button with

tkconfigure(button, text="goodbye")

There are a few cases where this leads to ambiguities, for instance does bind exist
both as a regular command and as a subcommand for canvas widgets, to resolve
this, the latter is implemented as tkitembind.

An object of class tkwin is implemented simply as a list with two components:
ID holds the name of the window in Tcl and env is an R environment which holds
information about subwindows, the parent window, and any callback functions as-
sociated with the window. The latter may appear slightly peculiar, but it ensures
that if multiple copies of a tkwin object exist – this will happen when it is passed as
a function argument for instance – all the copies will refer to the same environment,
and the creation of (say) subwindows of one copy will be automatically reflected in
the other copies as well. The need for recording this information in the first place
is discussed in Section 4

3.3 Callbacks

There are two basic styles of callbacks in operation in Tcl/Tk. One results from
scrolling commands and the other from event bindings. To link a listbox and a
scrollbar in Tcl/Tk, one would typically use code like the following

.lb configure -yscrollcommand {.sc set}

.sc configure -command {.lb yview}

The values of the -yscrollcommand and-command options are prefixes of widget
commands, i.e. further arguments will be tacked onto them when they are invoked.
In the case of the set command for a scrollbar, the extra arguments will simply be
two numbers giving the fraction of the trough where the two ends of the scrollbar
slider are placed, but yview can be followed by three different styles of argument:
moveto x, scroll n units, or scroll n pages.

The other style of callback is used when binding specific events as in (imple-
menting simple wheel mouse bindings)

Proceedings of DSC 2001 5

bind .lb <Button-4> {.lb yview scroll -1 units }
bind .lb <Button-5> {.lb yview scroll +1 units }

Here you give the entire script for Tcl to execute. However, you can also pass
parameters into the script using %-substitution, as in

bind .canv <B2-Motion> {.canv scan dragto %x %y}

When the script is invoked, %x %y will be replaced by the mouse coordinates relative
to the top left corner of .canv.

For the language embedding it is desirable, albeit slightly inefficient, to have
callbacks that are R functions. The main problem with that is to communicate
to the Tcl side that it should execute a given R function. Such a function might
be unnamed and even when it is names, there are scoping problems that make it
difficult to call the function from Tcl via an R expression. Instead, a small function
(.Tcl.callback) exists which generates a script which invokes a dedicated R_call
command taking the hex-encoded address of the function as the first argument.
Simultaneously, the function is analyzed and if it has formal arguments apart from
...; such arguments are converted to %-substitutions. For instance

> .Tcl.callback(function(x,y)cat(x,y,"\n"))
[1] "{ R_call 0x8369fdc %x %y }"

Obviously, only single-letter argument names make sense here. The R_call
command calls the function specified by its first argument, passing any subsequent
arguments on to the R functions.

With these definitions, it becomes possible to set up a scrollbar-controlled text
widget with

txt <- tktext(tt)
scr <- tkscrollbar(tt, command=function(...) tkyview(txt, ...))
tkconfigure(txt, yscrollcommand=function(...) tkset(scr, ...))

and one might also set up a binding which prints the mouse position when the left
button is pressed with

blank<-tktoplevel()
tkbind(blank,"<Button-1>", function(x,y) cat(x,y,"\n"))

3.4 Option conversion

As seen from the examples already given, one can make a straightforward connec-
tion between Tcl commands and R function calls by letting argument names in R
correspond to options in Tcl. The actual values can mostly be passed as text strings
after conversion with as.character although some care has to be taken to escape
characters that are special to Tcl (what Tcl programmers refer to as quoting hell),
and also of course callback functions (see the preceding section) and tkwin objects
need special treatment, the latter being converted to the value of their ID field.
Some Tcl arguments are not given in option form but as keywords or subcommands
without the leading ‘-’ as end and insert in

Proceedings of DSC 2001 6

.listbox insert end item1 item2 ...

Such items can be given simply as unnamed arguments. NULL is converted to an
empty string, so in the few cases where you need to pass an argumentless option you
can pass name=NULL. Vector arguments are automatically “flattened” by converting
each element and pasting elements together separated by spaces. This allows you
to do things like

tkinsert(listbox, "end", ls("package:base"))

All of this is handled by the function .Tcl.args, and there’s a generic tkcmd
function which is simply defined as

function (...)
.Tcl(.Tcl.args(...))

Almost all functions in the tcltk package are created as calls to tkcmd. The main
exceptions are the commands that actually create widgets, since they need to create
and return an object of class tkwin, and the code that handles the interface to Tcl
variables.

3.5 Control variables

Several Tk widgets can be controlled by Tcl variables. For instance, a checkbutton
can be set up and then turned of and off again with

checkbutton .check -variable foo
pack .check
set foo 1
set foo 0

Conversely, clicking the button with the mouse changes the value of foo.
This is something that it is not easy to map into R. The nicest thing to have

would be if the link could be made to a specific R variable, but even though it is
possible to link Tcl variables to particular memory locations (using the Tcl_LinkVar
C function), R’s variables do not occupy a permanent address. Instead we set
up a pseudo list object, tclvar and overload the $ and $<- operators for the
corresponding class so that they call the Tcl set command. Thus the above example
becomes

check <- tkcheckbutton(tt, variable="foo")
tkpack(check)
tclvar$foo <- 1
tclvar$foo <- 0

4 Garbage collection issues

When an object is no longer used by R, it can be removed by the garbage collector.
However, when for instance a callback is passed to a widget, R will not automatically

Proceedings of DSC 2001 7

have a way of knowing that the function is still in use. This is handled by having a
.Alias of each callback function stored in the window object to which it belongs,
under a unique name. (The way this is achieved is quite underhanded since the
relevant window could either be the result of a widget creation command or the
argument of another command like tkbind or tkconfigure.)

However, saving a function with its window object is not too useful if the window
object itself gets garbage collected. Hence each window object is stored in the
environment of the parent window and the window itself keeps a variable containing
the parent window. When a window is destroyed with tkdestroy, its entry in the
environment of its parent is removed and it should thus be removable unless there
is another link to it somewhere.

This system is far from perfect, but it does ensure that memory is not reclaimed
prematurely, and with some care in programming, it should also allow memory to
be reclaimed eventually.

5 Missing bits and problems

The tcltk package is still in a somewhat experimental state. There are several
things that do not quite work as one might desire, although users have been quite
productive with the current setup.

Somewhat to my surprise, performance in terms of speed seems to have been a
minor issue. For instance, the inefficiency of having extra parsing layers between a
text widget and its scrollbar is hardly noticeable. However, it is possible to stress
the system beyond its capability – for example starting the tkpager on a large file
can take a long time. There are also some cases where the Windows version runs
very slowly, but these are likely due to shortcomings of the event loop handling.

In the following subsections, I will sketch some of the problems that will have
to be addressed in the near future.

5.1 Return values

Currently, essentially nothing is done about return values from Tcl commands.
They are simply returned in string form, even when the value being asked for is
known to be numeric. This puts the burden of conversion on the programmer. For
instance, it does not work to use

if (tkwinfo("exists", tt)) {...

because the string return value cannot be interpreted as a logical value. It can be
handled reasonably cleanly by using

if (tkwinfo("exists", tt) == 1) {...

but the necessity for this sort of coding would be better avoided.
However, whereas it is simple to convert nearly anything to string form, as

done by .Tcl.args, conversion in the opposite direction is harder. In fact, it is
impossible without knowledge of what type the value is supposed to be of; a value

Proceedings of DSC 2001 8

of “1.0” might after all be a string and distinct from “1.00”. It would be possible
to write code to deduce the return value from the call that was made, but it is
quite a daunting task. A better idea is probably to use “Tcl objects” as obtained
from Tcl_GetObjResult. The common non-string types (boolean, integer, double)
should be deducible from a Tcl_Obj.

5.2 Globality of control variables

As discussed, the tclvar$ method of accessing control variables is less than ideal.
Binding directly to R variables is not possible without changes to R itself, though.
However, there is another problem associated with control variables, namely the
fact that such variables are global in Tcl. This means that if one runs two instances
of (say) the tkttest demo, buttons checked in one of them also get set in the other.
In Tcl itself, one can make such variables unique by attaching a prefix to the name,
which is possible but unattractive in R. Perhaps some way of encoding the local
scope is what is needed here.

5.3 Embedding graphics

Currently the tcltk package has no way to get R graphics into a Tk widget. One
can use the Tk canvas widget, or generate the usual graphics windows, but not
for instance add a Tk menubar to the R graphics. There are several approaches
to obtaining such functionality and Luke Tierney has done some preliminary work,
including a method where an off-screen bitmap is generated and placed in a wid-
get. Alternative methods include window reparenting techniques (which are non-
portable) and writing a dedicated device driver for the Tk canvas (which needs some
trickery to allow rotated text).

5.4 Event loop handling

The current method for running the Tcl event loop pseudo-concurrently with R
and its graphics devices are quite crude. I strongly suspect that a better under-
standing is needed of the synchronization issues involved and that it would be well
worth studying the “notifier” structures that Tcl sets up when running pure Tcl/Tk
applications.

5.5 Documentation

The documentation for most of the commands in the tcltk is virtually absent.
However, since the rules for converting R commands to Tcl are quite transparent,
one can mostly get by with using the documentation for Tcl/Tk.

6 Perspectives

The main purpose of developing the tcltk package was to enhance R with GUI
elements. The focus of development is currently on getting the details of the inter-

Proceedings of DSC 2001 9

face right, but it might be a good idea to take a little time to look at what might
be achieved.

The most obvious perspective is to develop a menu and forms based interface
to common statistical procedures. Such interfaces exist for many other statistical
systems and even though they invariably fall short in terms of flexibility compared
to language-based approaches, they do make life considerably easier for entry-level
users.

For expert users, menus tend to be an obstacle rather than a help. However,
GUI elements could still be useful for them. In my experience, it is often simple
things that are most valuable, e.g. obtaining a list of the variables in a data frame
while setting up a model formula. If it can be obtained by the click of a mouse, so
much the better.

In teaching with R, it can be difficult to achieve a smooth transition from com-
mand line usage to function writing. A simple method for writing, editing and
executing short scripts would be useful, and this kind of functionality can be ob-
tained quite neatly using text widgets.

I have mentioned the problems associated with getting R graphics into a Tk
widget. However, one might also note that there are things that can be done with
the Tk canvas that are not easily obtainable with R, such as moving or deleting
graphics objects and groups thereof. The possibility of using at least some of these
features as inspiration for developing a completely new graphics model in intriguing.

As a general comment, I have found Tcl/Tk quite pleasurable to work with,
in particular because its basic spirit is quite similar to R (and S). It does have its
shortcomings, but none that appears insurmountable, and it is still under active
development and supported by quite a large body of users and developers.

7 Web resources

http://www.tclfaq.wservice.com/tcl-faq/
http://kaolin.unice.fr/STk/STk.html
http://www.perltk.org/contrib/ptkFAQ.html
http://www.pythonware.com/library/tkinter/introduction/

http://www.tclfaq.wservice.com/tcl-faq/
http://kaolin.unice.fr/STk/STk.html
http://www.perltk.org/contrib/ptkFAQ.html
http://www.pythonware.com/library/tkinter/introduction/

	Introduction
	Tcl/Tk
	Embedding Tcl/Tk in R
	The glue layer
	Widget creation
	Callbacks
	Option conversion
	Control variables

	Garbage collection issues
	Missing bits and problems
	Return values
	Globality of control variables
	Embedding graphics
	Event loop handling
	Documentation

	Perspectives
	Web resources

