* installing to library ‘/home/hornik/tmp/R.check/r-patched-gcc/Work/build/Packages’
* installing *source* package ‘PatientLevelPrediction’ ...
** this is package ‘PatientLevelPrediction’ version ‘6.5.1’
** package ‘PatientLevelPrediction’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** data
** demo
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package ‘PatientLevelPrediction’
finding HTML links ... done
MapIds html
PatientLevelPrediction html
averagePrecision html
brierScore html
calibrationInLarge html
calibrationLine html
computeAuc html
computeGridPerformance html
configurePython html
covariateSummary html
createCohortCovariateSettings html
createDatabaseDetails html
createDatabaseSchemaSettings html
createDefaultExecuteSettings html
createDefaultSplitSetting html
createExecuteSettings html
createExistingSplitSettings html
createFeatureEngineeringSettings html
createGlmModel html
createIterativeImputer html
createLearningCurve html
createLogSettings html
createModelDesign html
createNormalizer html
createPlpResultTables html
createPreprocessSettings html
createRandomForestFeatureSelection html
createRareFeatureRemover html
createRestrictPlpDataSettings html
createSampleSettings html
createSimpleImputer html
createSklearnModel html
createSplineSettings html
createStratifiedImputationSettings html
createStudyPopulation html
createStudyPopulationSettings html
createTempModelLoc html
createUnivariateFeatureSelection html
createValidationDesign html
createValidationSettings html
diagnoseMultiplePlp html
diagnosePlp html
evaluatePlp html
externalValidateDbPlp html
extractDatabaseToCsv html
fitPlp html
getCalibrationSummary html
getCohortCovariateData html
getDemographicSummary html
getEunomiaPlpData html
getPlpData html
getPredictionDistribution html
getPredictionDistribution_binary html
getThresholdSummary html
ici html
insertCsvToDatabase html
insertResultsToSqlite html
iterativeImpute html
listAppend html
listCartesian html
loadPlpAnalysesJson html
loadPlpData html
loadPlpModel html
loadPlpResult html
loadPlpShareable html
loadPrediction html
migrateDataModel html
minMaxNormalize html
modelBasedConcordance html
outcomeSurvivalPlot html
pfi html
plotDemographicSummary html
plotF1Measure html
plotGeneralizability html
plotLearningCurve html
plotNetBenefit html
plotPlp html
plotPrecisionRecall html
plotPredictedPDF html
plotPredictionDistribution html
plotPreferencePDF html
plotSmoothCalibration html
plotSparseCalibration html
plotSparseCalibration2 html
plotSparseRoc html
plotVariableScatterplot html
pmmFit html
predictCyclops html
predictGlm html
predictPlp html
preprocessData html
print.plpData html
print.summary.plpData html
recalibratePlp html
recalibratePlpRefit html
removeRareFeatures html
robustNormalize html
runMultiplePlp html
runPlp html
savePlpAnalysesJson html
savePlpData html
savePlpModel html
savePlpResult html
savePlpShareable html
savePrediction html
setAdaBoost html
setCoxModel html
setDecisionTree html
setGradientBoostingMachine html
setIterativeHardThresholding html
setLassoLogisticRegression html
setLightGBM html
setMLP html
setNaiveBayes html
setPythonEnvironment html
setRandomForest html
setSVM html
simpleImpute html
simulatePlpData html
simulationProfile html
sklearnFromJson html
sklearnToJson html
splitData html
summary.plpData html
toSparseM html
validateExternal html
validateMultiplePlp html
viewDatabaseResultPlp html
viewMultiplePlp html
viewPlp html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (PatientLevelPrediction)