• using R version 4.4.3 (2025-02-28 ucrt)
  • using platform: x86_64-w64-mingw32
  • R was compiled by     gcc.exe (GCC) 13.3.0     GNU Fortran (GCC) 13.3.0
  • running under: Windows Server 2022 x64 (build 20348)
  • using session charset: UTF-8
  • checking for file 'SuperLearner/DESCRIPTION' ... OK
  • checking extension type ... Package
  • this is package 'SuperLearner' version '2.0-29'
  • checking package namespace information ... OK
  • checking package dependencies ... OK
  • checking if this is a source package ... OK
  • checking if there is a namespace ... OK
  • checking for hidden files and directories ... OK
  • checking for portable file names ... OK
  • checking whether package 'SuperLearner' can be installed ... OK See the install log for details.
  • checking installed package size ... OK
  • checking package directory ... OK
  • checking 'build' directory ... OK
  • checking DESCRIPTION meta-information ... OK
  • checking top-level files ... OK
  • checking for left-over files ... OK
  • checking index information ... OK
  • checking package subdirectories ... OK
  • checking code files for non-ASCII characters ... OK
  • checking R files for syntax errors ... OK
  • checking whether the package can be loaded ... [1s] OK
  • checking whether the package can be loaded with stated dependencies ... [1s] OK
  • checking whether the package can be unloaded cleanly ... [1s] OK
  • checking whether the namespace can be loaded with stated dependencies ... [1s] OK
  • checking whether the namespace can be unloaded cleanly ... [1s] OK
  • checking loading without being on the library search path ... [1s] OK
  • checking whether startup messages can be suppressed ... [1s] OK
  • checking use of S3 registration ... OK
  • checking dependencies in R code ... OK
  • checking S3 generic/method consistency ... OK
  • checking replacement functions ... OK
  • checking foreign function calls ... OK
  • checking R code for possible problems ... [12s] OK
  • checking Rd files ... [2s] OK
  • checking Rd metadata ... OK
  • checking Rd cross-references ... OK
  • checking for missing documentation entries ... OK
  • checking for code/documentation mismatches ... OK
  • checking Rd \usage sections ... OK
  • checking Rd contents ... OK
  • checking for unstated dependencies in examples ... OK
  • checking installed files from 'inst/doc' ... OK
  • checking files in 'vignettes' ... OK
  • checking examples ... [21s] OK
  • checking for unstated dependencies in 'tests' ... OK
  • checking tests ... [101s] ERROR   Running 'testthat.R' [100s] Running the tests in 'tests/testthat.R' failed. Complete output:   > library(testthat)   > library(SuperLearner)   Loading required package: nnls   Loading required package: gam   Loading required package: splines   Loading required package: foreach   Loaded gam 1.22-6      Super Learner   Version: 2.0-29   Package created on 2024-02-06      >   > test_check("SuperLearner")   Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :     argument "y" is missing, with no default   Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :     argument "y" is missing, with no default   Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :     argument "y" is missing, with no default   Saving _problems/test-XGBoost-25.R   Warning: The response y is integer, bartMachine will run regression.   Warning: The response y is integer, bartMachine will run regression.   Warning: The response y is integer, bartMachine will run regression.   lasso-penalized linear regression with n=506, p=13   At minimum cross-validation error (lambda=0.0222):   -------------------------------------------------     Nonzero coefficients: 11     Cross-validation error (deviance): 23.29     R-squared: 0.72     Signal-to-noise ratio: 2.63     Scale estimate (sigma): 4.826   lasso-penalized logistic regression with n=506, p=13   At minimum cross-validation error (lambda=0.0026):   -------------------------------------------------     Nonzero coefficients: 12     Cross-validation error (deviance): 0.66     R-squared: 0.48     Signal-to-noise ratio: 0.94     Prediction error: 0.123   lasso-penalized linear regression with n=506, p=13   At minimum cross-validation error (lambda=0.0362):   -------------------------------------------------     Nonzero coefficients: 11     Cross-validation error (deviance): 23.30     R-squared: 0.72     Signal-to-noise ratio: 2.62     Scale estimate (sigma): 4.827   lasso-penalized logistic regression with n=506, p=13   At minimum cross-validation error (lambda=0.0016):   -------------------------------------------------     Nonzero coefficients: 13     Cross-validation error (deviance): 0.63     R-squared: 0.50     Signal-to-noise ratio: 0.99     Prediction error: 0.132      Call:   SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",       "SL.biglasso"), cvControl = list(V = 2))                             Risk Coef   SL.mean_All 84.62063 0.02136708   SL.biglasso_All 26.01864 0.97863292      Call:   SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",       "SL.biglasso"), cvControl = list(V = 2))                              Risk Coef   SL.mean_All 0.2346857 0   SL.biglasso_All 0.1039122 1   Y    0 1   53 47   $grid   NULL      $names   [1] "SL.randomForest_1"      $base_learner   [1] "SL.randomForest"      $params   $params$ntree   [1] 100         [1] "SL.randomForest_1" "X" "Y"   [4] "create_rf" "data"      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2))                                   Risk Coef   SL.randomForest_1_All 0.045984 1   $grid     mtry   1 1   2 4   3 20      $names   [1] "SL.randomForest_1" "SL.randomForest_2" "SL.randomForest_3"      $base_learner   [1] "SL.randomForest"      $params   list()         Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2))                                     Risk Coef   SL.randomForest_1_All 0.06729890 0.93195369   SL.randomForest_2_All 0.07219426 0.00000000   SL.randomForest_3_All 0.07243423 0.06804631   $grid     alpha   1 0.00   2 0.25   3 0.50   4 0.75   5 1.00      $names   [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"   [5] "SL.glmnet_1"      $base_learner   [1] "SL.glmnet"      $params   list()      [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"   [5] "SL.glmnet_1"      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = ls(learners),       cvControl = list(V = 2), env = learners)                                  Risk Coef   SL.glmnet_0_All 0.08849610 0   SL.glmnet_0.25_All 0.08116755 0   SL.glmnet_0.5_All 0.06977106 1   SL.glmnet_0.75_All 0.07686953 0   SL.glmnet_1_All 0.07730595 0      Call:   SuperLearner(Y = Y, X = X_clean, family = binomial(), SL.library = c("SL.mean",       svm$names), cvControl = list(V = 3))                                     Risk Coef   SL.mean_All 0.25711218 0.0000000   SL.svm_polynomial_All 0.08463484 0.1443046   SL.svm_radial_All 0.06530910 0.0000000   SL.svm_sigmoid_All 0.05716227 0.8556954      Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,       model = model)      Coefficients:   (Intercept) crim zn indus chas nox     3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01            rm age dis rad tax ptratio     3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01         black lstat     9.312e-03 -5.248e-01      Degrees of Freedom: 505 Total (i.e. Null); 492 Residual   Null Deviance: 42720   Residual Deviance: 11080 AIC: 3028      Call:   glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,       model = model)      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***   crim -1.080e-01 3.286e-02 -3.287 0.001087 **   zn 4.642e-02 1.373e-02 3.382 0.000778 ***   indus 2.056e-02 6.150e-02 0.334 0.738288   chas 2.687e+00 8.616e-01 3.118 0.001925 **   nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***   rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***   age 6.922e-04 1.321e-02 0.052 0.958229   dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***   rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***   tax -1.233e-02 3.760e-03 -3.280 0.001112 **   ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***   black 9.312e-03 2.686e-03 3.467 0.000573 ***   lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      (Dispersion parameter for gaussian family taken to be 22.51785)          Null deviance: 42716 on 505 degrees of freedom   Residual deviance: 11079 on 492 degrees of freedom   AIC: 3027.6      Number of Fisher Scoring iterations: 2         Call:   glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,       model = model)      Coefficients:                Estimate Std. Error z value Pr(>|z|)   (Intercept) 10.682635 3.921395 2.724 0.006446 **   crim -0.040649 0.049796 -0.816 0.414321   zn 0.012134 0.010678 1.136 0.255786   indus -0.040715 0.045615 -0.893 0.372078   chas 0.248209 0.653283 0.380 0.703989   nox -3.601085 2.924365 -1.231 0.218170   rm 1.155157 0.374843 3.082 0.002058 **   age -0.018660 0.009319 -2.002 0.045252 *   dis -0.518934 0.146286 -3.547 0.000389 ***   rad 0.255522 0.061391 4.162 3.15e-05 ***   tax -0.009500 0.003107 -3.057 0.002233 **   ptratio -0.409317 0.103191 -3.967 7.29e-05 ***   black -0.001451 0.002558 -0.567 0.570418   lstat -0.318436 0.054735 -5.818 5.96e-09 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      (Dispersion parameter for binomial family taken to be 1)          Null deviance: 669.76 on 505 degrees of freedom   Residual deviance: 296.39 on 492 degrees of freedom   AIC: 324.39      Number of Fisher Scoring iterations: 7       [1] "coefficients" "residuals" "fitted.values"    [4] "effects" "R" "rank"    [7] "qr" "family" "linear.predictors"   [10] "deviance" "aic" "null.deviance"   [13] "iter" "weights" "prior.weights"   [16] "df.residual" "df.null" "y"   [19] "converged" "boundary" "call"   [22] "formula" "terms" "data"   [25] "offset" "control" "method"   [28] "contrasts" "xlevels"      Call:   glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,       model = model)      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***   crim -1.080e-01 3.286e-02 -3.287 0.001087 **   zn 4.642e-02 1.373e-02 3.382 0.000778 ***   indus 2.056e-02 6.150e-02 0.334 0.738288   chas 2.687e+00 8.616e-01 3.118 0.001925 **   nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***   rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***   age 6.922e-04 1.321e-02 0.052 0.958229   dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***   rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***   tax -1.233e-02 3.760e-03 -3.280 0.001112 **   ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***   black 9.312e-03 2.686e-03 3.467 0.000573 ***   lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      (Dispersion parameter for gaussian family taken to be 22.51785)          Null deviance: 42716 on 505 degrees of freedom   Residual deviance: 11079 on 492 degrees of freedom   AIC: 3027.6      Number of Fisher Scoring iterations: 2         Call:   glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,       model = model)      Coefficients:                Estimate Std. Error z value Pr(>|z|)   (Intercept) 10.682635 3.921395 2.724 0.006446 **   crim -0.040649 0.049796 -0.816 0.414321   zn 0.012134 0.010678 1.136 0.255786   indus -0.040715 0.045615 -0.893 0.372078   chas 0.248209 0.653283 0.380 0.703989   nox -3.601085 2.924365 -1.231 0.218170   rm 1.155157 0.374843 3.082 0.002058 **   age -0.018660 0.009319 -2.002 0.045252 *   dis -0.518934 0.146286 -3.547 0.000389 ***   rad 0.255522 0.061391 4.162 3.15e-05 ***   tax -0.009500 0.003107 -3.057 0.002233 **   ptratio -0.409317 0.103191 -3.967 7.29e-05 ***   black -0.001451 0.002558 -0.567 0.570418   lstat -0.318436 0.054735 -5.818 5.96e-09 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      (Dispersion parameter for binomial family taken to be 1)          Null deviance: 669.76 on 505 degrees of freedom   Residual deviance: 296.39 on 492 degrees of freedom   AIC: 324.39      Number of Fisher Scoring iterations: 7         Call:   SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",       "SL.glm"))                         Risk Coef   SL.mean_All 84.74142 0.0134192   SL.glm_All 23.62549 0.9865808          V1    Min. :-3.921    1st Qu.:17.514    Median :22.124    Mean :22.533    3rd Qu.:27.345    Max. :44.376      Call:   SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",       "SL.glm"))                           Risk Coef   SL.mean_All 0.23580362 0.01315872   SL.glm_All 0.09519266 0.98684128          V1    Min. :0.004942    1st Qu.:0.035424    Median :0.196222    Mean :0.375494    3rd Qu.:0.781687    Max. :0.991313   Got an error, as expected.   <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>   Got an error, as expected.   <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>   Call:   lda(X, grouping = Y, prior = prior, method = method, tol = tol,       CV = CV, nu = nu)      Prior probabilities of groups:           0 1   0.6245059 0.3754941      Group means:          crim zn indus chas nox rm age dis   0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307   1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371           rad tax ptratio black lstat   0 11.588608 459.9209 19.19968 340.6392 16.042468   1 6.157895 322.2789 17.21789 383.3425 7.015947      Coefficients of linear discriminants:                     LD1   crim 0.0012515925   zn 0.0095179029   indus -0.0166376334   chas 0.1399207112   nox -2.9934367740   rm 0.5612713068   age -0.0128420045   dis -0.3095403096   rad 0.0695027989   tax -0.0027771271   ptratio -0.2059853828   black 0.0006058031   lstat -0.0816668897   Call:   lda(X, grouping = Y, prior = prior, method = method, tol = tol,       CV = CV, nu = nu)      Prior probabilities of groups:           0 1   0.6245059 0.3754941      Group means:          crim zn indus chas nox rm age dis   0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307   1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371           rad tax ptratio black lstat   0 11.588608 459.9209 19.19968 340.6392 16.042468   1 6.157895 322.2789 17.21789 383.3425 7.015947      Coefficients of linear discriminants:                     LD1   crim 0.0012515925   zn 0.0095179029   indus -0.0166376334   chas 0.1399207112   nox -2.9934367740   rm 0.5612713068   age -0.0128420045   dis -0.3095403096   rad 0.0695027989   tax -0.0027771271   ptratio -0.2059853828   black 0.0006058031   lstat -0.0816668897      Call:   stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)      Coefficients:   (Intercept) crim zn indus chas nox     3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01            rm age dis rad tax ptratio     3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01         black lstat     9.312e-03 -5.248e-01         Call:   stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)      Residuals:       Min 1Q Median 3Q Max   -15.595 -2.730 -0.518 1.777 26.199      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***   crim -1.080e-01 3.286e-02 -3.287 0.001087 **   zn 4.642e-02 1.373e-02 3.382 0.000778 ***   indus 2.056e-02 6.150e-02 0.334 0.738288   chas 2.687e+00 8.616e-01 3.118 0.001925 **   nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***   rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***   age 6.922e-04 1.321e-02 0.052 0.958229   dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***   rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***   tax -1.233e-02 3.760e-03 -3.280 0.001112 **   ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***   black 9.312e-03 2.686e-03 3.467 0.000573 ***   lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      Residual standard error: 4.745 on 492 degrees of freedom   Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338   F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16         Call:   stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)      Residuals:        Min 1Q Median 3Q Max   -0.80469 -0.23612 -0.03105 0.23080 1.05224      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***   crim 0.0003028 0.0023585 0.128 0.897888   zn 0.0023028 0.0009851 2.338 0.019808 *   indus -0.0040254 0.0044131 -0.912 0.362135   chas 0.0338534 0.0618295 0.548 0.584264   nox -0.7242540 0.2741160 -2.642 0.008501 **   rm 0.1357981 0.0299915 4.528 7.48e-06 ***   age -0.0031071 0.0009480 -3.278 0.001121 **   dis -0.0748924 0.0143135 -5.232 2.48e-07 ***   rad 0.0168160 0.0047612 3.532 0.000451 ***   tax -0.0006719 0.0002699 -2.490 0.013110 *   ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***   black 0.0001466 0.0001928 0.760 0.447370   lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      Residual standard error: 0.3405 on 492 degrees of freedom   Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065   F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16       [1] "coefficients" "residuals" "fitted.values" "effects"    [5] "weights" "rank" "assign" "qr"    [9] "df.residual" "xlevels" "call" "terms"      Call:   stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)      Residuals:       Min 1Q Median 3Q Max   -15.595 -2.730 -0.518 1.777 26.199      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***   crim -1.080e-01 3.286e-02 -3.287 0.001087 **   zn 4.642e-02 1.373e-02 3.382 0.000778 ***   indus 2.056e-02 6.150e-02 0.334 0.738288   chas 2.687e+00 8.616e-01 3.118 0.001925 **   nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***   rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***   age 6.922e-04 1.321e-02 0.052 0.958229   dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***   rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***   tax -1.233e-02 3.760e-03 -3.280 0.001112 **   ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***   black 9.312e-03 2.686e-03 3.467 0.000573 ***   lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      Residual standard error: 4.745 on 492 degrees of freedom   Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338   F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16         Call:   stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)      Residuals:        Min 1Q Median 3Q Max   -0.80469 -0.23612 -0.03105 0.23080 1.05224      Coefficients:                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***   crim 0.0003028 0.0023585 0.128 0.897888   zn 0.0023028 0.0009851 2.338 0.019808 *   indus -0.0040254 0.0044131 -0.912 0.362135   chas 0.0338534 0.0618295 0.548 0.584264   nox -0.7242540 0.2741160 -2.642 0.008501 **   rm 0.1357981 0.0299915 4.528 7.48e-06 ***   age -0.0031071 0.0009480 -3.278 0.001121 **   dis -0.0748924 0.0143135 -5.232 2.48e-07 ***   rad 0.0168160 0.0047612 3.532 0.000451 ***   tax -0.0006719 0.0002699 -2.490 0.013110 *   ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***   black 0.0001466 0.0001928 0.760 0.447370   lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***   ---   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      Residual standard error: 0.3405 on 492 degrees of freedom   Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065   F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16         Call:   SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",       "SL.lm"))                        Risk Coef   SL.mean_All 84.6696 0.02186479   SL.lm_All 24.3340 0.97813521          V1    Min. :-3.695    1st Qu.:17.557    Median :22.128    Mean :22.533    3rd Qu.:27.303    Max. :44.189      Call:   SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",       "SL.lm"))                          Risk Coef   SL.mean_All 0.2349366 0   SL.lm_All 0.1125027 1          V1    Min. :0.0000    1st Qu.:0.1281    Median :0.3530    Mean :0.3899    3rd Qu.:0.6091    Max. :1.0000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.NNLS", verbose = F, cvControl = list(V = 2))                            Risk Coef   SL.rpart_All 0.1986827 0.31226655   SL.glmnet_All 0.1803963 0.66105261   SL.mean_All 0.2534500 0.02668084   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,       "SL.bad_algorithm"), method = "method.NNLS", verbose = T, cvControl = list(V = 2))                                      Risk Coef   SL.rpart_All 0.1921176 0.08939677   SL.glmnet_All 0.1635548 0.91060323   SL.mean_All 0.2504500 0.00000000   SL.bad_algorithm_All NA 0.00000000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.NNLS2", verbose = F, cvControl = list(V = 2))                            Risk Coef   SL.rpart_All 0.2279346 0.05397859   SL.glmnet_All 0.1670620 0.94602141   SL.mean_All 0.2504500 0.00000000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.NNloglik", verbose = F, cvControl = list(V = 2))                            Risk Coef   SL.rpart_All 0.5804469 0.1760951   SL.glmnet_All 0.5010294 0.8239049   SL.mean_All 0.6964542 0.0000000   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,       "SL.bad_algorithm"), method = "method.NNloglik", verbose = T, cvControl = list(V = 2))                                      Risk Coef   SL.rpart_All Inf 0.1338597   SL.glmnet_All 0.5027498 0.8661403   SL.mean_All 0.7000679 0.0000000   SL.bad_algorithm_All NA 0.0000000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.CC_LS", verbose = F, cvControl = list(V = 2))                            Risk Coef   SL.rpart_All 0.2033781 0.16438434   SL.glmnet_All 0.1740498 0.82391928   SL.mean_All 0.2516500 0.01169638      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.CC_nloglik", verbose = F, cvControl = list(V = 2))                           Risk Coef   SL.rpart_All 295.8455 0.1014591   SL.glmnet_All 205.3289 0.7867610   SL.mean_All 277.1389 0.1117798   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,       "SL.bad_algorithm"), method = "method.CC_nloglik", verbose = T, cvControl = list(V = 2))                                     Risk Coef   SL.rpart_All 212.5569 0.2707202   SL.glmnet_All 193.9384 0.7292798   SL.mean_All 277.1389 0.0000000   SL.bad_algorithm_All NA 0.0000000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,       method = "method.AUC", verbose = FALSE, cvControl = list(V = 2))                            Risk Coef   SL.rpart_All 0.2533780 0.3333333   SL.glmnet_All 0.1869683 0.3333333   SL.mean_All 0.5550495 0.3333333   Error in (function (Y, X, newX, ...) : bad algorithm   Error in (function (Y, X, newX, ...) : bad algorithm   Removing failed learners: SL.bad_algorithm_All   Error in (function (Y, X, newX, ...) : bad algorithm      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,       "SL.bad_algorithm"), method = "method.AUC", verbose = TRUE, cvControl = list(V = 2))                                      Risk Coef   SL.rpart_All 0.2467721 0.2982123   SL.glmnet_All 0.1705535 0.3508938   SL.mean_All 0.5150135 0.3508938   SL.bad_algorithm_All NA 0.0000000   Call:   qda(X, grouping = Y, prior = prior, method = method, tol = tol,       CV = CV, nu = nu)      Prior probabilities of groups:           0 1   0.6245059 0.3754941      Group means:          crim zn indus chas nox rm age dis   0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307   1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371           rad tax ptratio black lstat   0 11.588608 459.9209 19.19968 340.6392 16.042468   1 6.157895 322.2789 17.21789 383.3425 7.015947   Call:   qda(X, grouping = Y, prior = prior, method = method, tol = tol,       CV = CV, nu = nu)      Prior probabilities of groups:           0 1   0.6245059 0.3754941      Group means:          crim zn indus chas nox rm age dis   0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307   1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371           rad tax ptratio black lstat   0 11.588608 459.9209 19.19968 340.6392 16.042468   1 6.157895 322.2789 17.21789 383.3425 7.015947   Y    0 1   62 38      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = sl_lib, cvControl = list(V = 2))                                     Risk Coef   SL.randomForest_All 0.0384594 0.98145221   SL.mean_All 0.2356000 0.01854779   $grid   NULL      $names   [1] "SL.randomForest_1"      $base_learner   [1] "SL.randomForest"      $params   list()         Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2))                                     Risk Coef   SL.randomForest_1_All 0.05215472 1   SL.randomForest_1 <- function(...) SL.randomForest(...)   $grid   NULL      $names   [1] "SL.randomForest_1"      $base_learner   [1] "SL.randomForest"      $params   list()      [1] "SL.randomForest_1"   [1] 1      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2), env = sl_env)                                     Risk Coef   SL.randomForest_1_All 0.04151372 1   $grid     mtry   1 1   2 2      $names   [1] "SL.randomForest_1" "SL.randomForest_2"      $base_learner   [1] "SL.randomForest"      $params   list()      [1] "SL.randomForest_1" "SL.randomForest_2"      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2), env = sl_env)                                     Risk Coef   SL.randomForest_1_All 0.05852161 0.8484752   SL.randomForest_2_All 0.05319324 0.1515248   $grid     mtry   1 1   2 2      $names   [1] "SL.randomForest_1" "SL.randomForest_2"      $base_learner   [1] "SL.randomForest"      $params   list()      [1] "SL.randomForest_1" "SL.randomForest_2"      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2), env = sl_env)                                     Risk Coef   SL.randomForest_1_All 0.04540374 0.2120815   SL.randomForest_2_All 0.03931360 0.7879185   $grid     mtry nodesize maxnodes   1 1 NULL NULL   2 2 NULL NULL      $names   [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"      $base_learner   [1] "SL.randomForest"      $params   list()      [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2), env = sl_env)                                               Risk Coef   SL.randomForest_1_NULL_NULL_All 0.05083433 0.2589592   SL.randomForest_2_NULL_NULL_All 0.04697238 0.7410408   $grid     mtry maxnodes   1 1 5   2 2 5   3 1 10   4 2 10   5 1 NULL   6 2 NULL      $names   [1] "SL.randomForest_1_5" "SL.randomForest_2_5" "SL.randomForest_1_10"   [4] "SL.randomForest_2_10" "SL.randomForest_1_NULL" "SL.randomForest_2_NULL"      $base_learner   [1] "SL.randomForest"      $params   list()         Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2), env = sl_env)                                          Risk Coef   SL.randomForest_1_5_All 0.04597977 0.0000000   SL.randomForest_2_5_All 0.03951320 0.0000000   SL.randomForest_1_10_All 0.04337471 0.1117946   SL.randomForest_2_10_All 0.03898477 0.8882054   SL.randomForest_1_NULL_All 0.04395171 0.0000000   SL.randomForest_2_NULL_All 0.03928269 0.0000000      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2))                                          Risk Coef   SL.randomForest_1_5_All 0.05330062 0.4579034   SL.randomForest_2_5_All 0.05189278 0.0000000   SL.randomForest_1_10_All 0.05263432 0.1614643   SL.randomForest_2_10_All 0.05058144 0.0000000   SL.randomForest_1_NULL_All 0.05415397 0.0000000   SL.randomForest_2_NULL_All 0.05036643 0.3806323      Call:   SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,       cvControl = list(V = 2))                                          Risk Coef   SL.randomForest_1_5_All 0.05978213 0   SL.randomForest_2_5_All 0.05628852 0   SL.randomForest_1_10_All 0.05751494 0   SL.randomForest_2_10_All 0.05889935 0   SL.randomForest_1_NULL_All 0.05629605 1   SL.randomForest_2_NULL_All 0.05807645 0   Ranger result      Call:    ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)      Type: Regression   Number of trees: 500   Sample size: 506   Number of independent variables: 13   Mtry: 3   Target node size: 5   Variable importance mode: none   Splitrule: variance   OOB prediction error (MSE): 10.57547   R squared (OOB): 0.8749748   Ranger result      Call:    ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)      Type: Probability estimation   Number of trees: 500   Sample size: 506   Number of independent variables: 13   Mtry: 3   Target node size: 1   Variable importance mode: none   Splitrule: gini   OOB prediction error (Brier s.): 0.08262419   Ranger result      Call:    ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)      Type: Regression   Number of trees: 500   Sample size: 506   Number of independent variables: 13   Mtry: 3   Target node size: 5   Variable importance mode: none   Splitrule: variance   OOB prediction error (MSE): 10.46443   R squared (OOB): 0.8762876   Ranger result      Call:    ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)      Type: Probability estimation   Number of trees: 500   Sample size: 506   Number of independent variables: 13   Mtry: 3   Target node size: 1   Variable importance mode: none   Splitrule: gini   OOB prediction error (Brier s.): 0.08395011   Generalized Linear Model of class 'speedglm':      Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)      Coefficients:   (Intercept) crim zn indus chas nox     3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01            rm age dis rad tax ptratio     3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01         black lstat     9.312e-03 -5.248e-01      Generalized Linear Model of class 'speedglm':      Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)      Coefficients:    ------------------------------------------------------------------                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***   crim -1.080e-01 0.032865 -3.2865 1.087e-03 **   zn 4.642e-02 0.013727 3.3816 7.781e-04 ***   indus 2.056e-02 0.061496 0.3343 7.383e-01   chas 2.687e+00 0.861580 3.1184 1.925e-03 **   nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***   rm 3.810e+00 0.417925 9.1161 1.979e-18 ***   age 6.922e-04 0.013210 0.0524 9.582e-01   dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***   rad 3.060e-01 0.066346 4.6129 5.071e-06 ***   tax -1.233e-02 0.003761 -3.2800 1.112e-03 **   ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***   black 9.312e-03 0.002686 3.4668 5.729e-04 ***   lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      ---   null df: 505; null deviance: 42716.3;   residuals df: 492; residuals deviance: 11078.78;   # obs.: 506; # non-zero weighted obs.: 506;   AIC: 3027.609; log Likelihood: -1498.804;   RSS: 11078.8; dispersion: 22.51785; iterations: 1;   rank: 14; max tolerance: 1e+00; convergence: FALSE.   Generalized Linear Model of class 'speedglm':      Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)      Coefficients:    ------------------------------------------------------------------                Estimate Std. Error z value Pr(>|z|)   (Intercept) 10.682635 3.921395 2.7242 6.446e-03 **   crim -0.040649 0.049796 -0.8163 4.143e-01   zn 0.012134 0.010678 1.1364 2.558e-01   indus -0.040715 0.045615 -0.8926 3.721e-01   chas 0.248209 0.653283 0.3799 7.040e-01   nox -3.601085 2.924365 -1.2314 2.182e-01   rm 1.155157 0.374843 3.0817 2.058e-03 **   age -0.018660 0.009319 -2.0023 4.525e-02 *   dis -0.518934 0.146286 -3.5474 3.891e-04 ***   rad 0.255522 0.061391 4.1622 3.152e-05 ***   tax -0.009500 0.003107 -3.0574 2.233e-03 **   ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***   black -0.001451 0.002558 -0.5674 5.704e-01   lstat -0.318436 0.054735 -5.8178 5.964e-09 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      ---   null df: 505; null deviance: 669.76;   residuals df: 492; residuals deviance: 296.39;   # obs.: 506; # non-zero weighted obs.: 506;   AIC: 324.3944; log Likelihood: -148.1972;   RSS: 1107.5; dispersion: 1; iterations: 7;   rank: 14; max tolerance: 7.55e-12; convergence: TRUE.   Generalized Linear Model of class 'speedglm':      Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)      Coefficients:    ------------------------------------------------------------------                 Estimate Std. Error t value Pr(>|t|)   (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***   crim -1.080e-01 0.032865 -3.2865 1.087e-03 **   zn 4.642e-02 0.013727 3.3816 7.781e-04 ***   indus 2.056e-02 0.061496 0.3343 7.383e-01   chas 2.687e+00 0.861580 3.1184 1.925e-03 **   nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***   rm 3.810e+00 0.417925 9.1161 1.979e-18 ***   age 6.922e-04 0.013210 0.0524 9.582e-01   dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***   rad 3.060e-01 0.066346 4.6129 5.071e-06 ***   tax -1.233e-02 0.003761 -3.2800 1.112e-03 **   ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***   black 9.312e-03 0.002686 3.4668 5.729e-04 ***   lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      ---   null df: 505; null deviance: 42716.3;   residuals df: 492; residuals deviance: 11078.78;   # obs.: 506; # non-zero weighted obs.: 506;   AIC: 3027.609; log Likelihood: -1498.804;   RSS: 11078.8; dispersion: 22.51785; iterations: 1;   rank: 14; max tolerance: 1e+00; convergence: FALSE.   Generalized Linear Model of class 'speedglm':      Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)      Coefficients:    ------------------------------------------------------------------                Estimate Std. Error z value Pr(>|z|)   (Intercept) 10.682635 3.921395 2.7242 6.446e-03 **   crim -0.040649 0.049796 -0.8163 4.143e-01   zn 0.012134 0.010678 1.1364 2.558e-01   indus -0.040715 0.045615 -0.8926 3.721e-01   chas 0.248209 0.653283 0.3799 7.040e-01   nox -3.601085 2.924365 -1.2314 2.182e-01   rm 1.155157 0.374843 3.0817 2.058e-03 **   age -0.018660 0.009319 -2.0023 4.525e-02 *   dis -0.518934 0.146286 -3.5474 3.891e-04 ***   rad 0.255522 0.061391 4.1622 3.152e-05 ***   tax -0.009500 0.003107 -3.0574 2.233e-03 **   ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***   black -0.001451 0.002558 -0.5674 5.704e-01   lstat -0.318436 0.054735 -5.8178 5.964e-09 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1      ---   null df: 505; null deviance: 669.76;   residuals df: 492; residuals deviance: 296.39;   # obs.: 506; # non-zero weighted obs.: 506;   AIC: 324.3944; log Likelihood: -148.1972;   RSS: 1107.5; dispersion: 1; iterations: 7;   rank: 14; max tolerance: 7.55e-12; convergence: TRUE.   Linear Regression Model of class 'speedlm':      Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)      Coefficients:   (Intercept) crim zn indus chas nox     3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01            rm age dis rad tax ptratio     3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01         black lstat     9.312e-03 -5.248e-01      Linear Regression Model of class 'speedlm':      Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)      Coefficients:    ------------------------------------------------------------------                     coef se t p.value   (Intercept) 36.459488 5.103459 7.144 3.283e-12 ***   crim -0.108011 0.032865 -3.287 1.087e-03 **   zn 0.046420 0.013727 3.382 7.781e-04 ***   indus 0.020559 0.061496 0.334 7.383e-01   chas 2.686734 0.861580 3.118 1.925e-03 **   nox -17.766611 3.819744 -4.651 4.246e-06 ***   rm 3.809865 0.417925 9.116 1.979e-18 ***   age 0.000692 0.013210 0.052 9.582e-01   dis -1.475567 0.199455 -7.398 6.013e-13 ***   rad 0.306049 0.066346 4.613 5.071e-06 ***   tax -0.012335 0.003761 -3.280 1.112e-03 **   ptratio -0.952747 0.130827 -7.283 1.309e-12 ***   black 0.009312 0.002686 3.467 5.729e-04 ***   lstat -0.524758 0.050715 -10.347 7.777e-23 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   ---   Residual standard error: 4.745298 on 492 degrees of freedom;   observations: 506; R^2: 0.741; adjusted R^2: 0.734;   F-statistic: 108.1 on 13 and 492 df; p-value: 0.   Linear Regression Model of class 'speedlm':      Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)      Coefficients:    ------------------------------------------------------------------                    coef se t p.value   (Intercept) 1.667540 0.366239 4.553 6.670e-06 ***   crim 0.000303 0.002358 0.128 8.979e-01   zn 0.002303 0.000985 2.338 1.981e-02 *   indus -0.004025 0.004413 -0.912 3.621e-01   chas 0.033853 0.061829 0.548 5.843e-01   nox -0.724254 0.274116 -2.642 8.501e-03 **   rm 0.135798 0.029992 4.528 7.483e-06 ***   age -0.003107 0.000948 -3.278 1.121e-03 **   dis -0.074892 0.014313 -5.232 2.482e-07 ***   rad 0.016816 0.004761 3.532 4.515e-04 ***   tax -0.000672 0.000270 -2.490 1.311e-02 *   ptratio -0.049838 0.009389 -5.308 1.677e-07 ***   black 0.000147 0.000193 0.760 4.474e-01   lstat -0.019759 0.003639 -5.429 8.912e-08 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   ---   Residual standard error: 0.340537 on 492 degrees of freedom;   observations: 506; R^2: 0.519; adjusted R^2: 0.506;   F-statistic: 40.86 on 13 and 492 df; p-value: 0.   Linear Regression Model of class 'speedlm':      Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)      Coefficients:    ------------------------------------------------------------------                     coef se t p.value   (Intercept) 36.459488 5.103459 7.144 3.283e-12 ***   crim -0.108011 0.032865 -3.287 1.087e-03 **   zn 0.046420 0.013727 3.382 7.781e-04 ***   indus 0.020559 0.061496 0.334 7.383e-01   chas 2.686734 0.861580 3.118 1.925e-03 **   nox -17.766611 3.819744 -4.651 4.246e-06 ***   rm 3.809865 0.417925 9.116 1.979e-18 ***   age 0.000692 0.013210 0.052 9.582e-01   dis -1.475567 0.199455 -7.398 6.013e-13 ***   rad 0.306049 0.066346 4.613 5.071e-06 ***   tax -0.012335 0.003761 -3.280 1.112e-03 **   ptratio -0.952747 0.130827 -7.283 1.309e-12 ***   black 0.009312 0.002686 3.467 5.729e-04 ***   lstat -0.524758 0.050715 -10.347 7.777e-23 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   ---   Residual standard error: 4.745298 on 492 degrees of freedom;   observations: 506; R^2: 0.741; adjusted R^2: 0.734;   F-statistic: 108.1 on 13 and 492 df; p-value: 0.   Linear Regression Model of class 'speedlm':      Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)      Coefficients:    ------------------------------------------------------------------                    coef se t p.value   (Intercept) 1.667540 0.366239 4.553 6.670e-06 ***   crim 0.000303 0.002358 0.128 8.979e-01   zn 0.002303 0.000985 2.338 1.981e-02 *   indus -0.004025 0.004413 -0.912 3.621e-01   chas 0.033853 0.061829 0.548 5.843e-01   nox -0.724254 0.274116 -2.642 8.501e-03 **   rm 0.135798 0.029992 4.528 7.483e-06 ***   age -0.003107 0.000948 -3.278 1.121e-03 **   dis -0.074892 0.014313 -5.232 2.482e-07 ***   rad 0.016816 0.004761 3.532 4.515e-04 ***   tax -0.000672 0.000270 -2.490 1.311e-02 *   ptratio -0.049838 0.009389 -5.308 1.677e-07 ***   black 0.000147 0.000193 0.760 4.474e-01   lstat -0.019759 0.003639 -5.429 8.912e-08 ***      -------------------------------------------------------------------   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   ---   Residual standard error: 0.340537 on 492 degrees of freedom;   observations: 506; R^2: 0.519; adjusted R^2: 0.506;   F-statistic: 40.86 on 13 and 492 df; p-value: 0.   [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]      ══ Skipped tests (9) ═══════════════════════════════════════════════════════════   • empty test (9): , , , , , , , ,      ══ Failed tests ════════════════════════════════════════════════════════════════   ── Error ('test-XGBoost.R:25:1'): (code run outside of `test_that()`) ──────────   Error in `UseMethod("predict")`: no applicable method for 'predict' applied to an object of class "NULL"   Backtrace:       ▆    1. ├─stats::predict(sl, X) at test-XGBoost.R:25:1    2. └─SuperLearner::predict.SuperLearner(sl, X)    3. ├─base::do.call(...)    4. └─stats::predict(...)      [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]   Error:   ! Test failures.   Execution halted
  • checking for unstated dependencies in vignettes ... OK
  • checking package vignettes ... OK
  • checking re-building of vignette outputs ... [282s]