- using R Under development (unstable) (2025-08-30 r88742 ucrt)
- using platform: x86_64-w64-mingw32
- R was compiled by
gcc.exe (GCC) 14.2.0
GNU Fortran (GCC) 14.2.0
- running under: Windows Server 2022 x64 (build 20348)
- using session charset: UTF-8
- checking for file 'shapr/DESCRIPTION' ... OK
- this is package 'shapr' version '1.0.5'
- package encoding: UTF-8
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking whether package 'shapr' can be installed ... OK
See the install log for details.
- used C++ compiler: 'g++.exe (GCC) 14.2.0'
- checking installed package size ... INFO
installed size is 5.9Mb
sub-directories of 1Mb or more:
doc 3.3Mb
libs 1.4Mb
- checking package directory ... OK
- checking 'build' directory ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [1s] OK
- checking whether the package can be loaded with stated dependencies ... [0s] OK
- checking whether the package can be unloaded cleanly ... [1s] OK
- checking whether the namespace can be loaded with stated dependencies ... [0s] OK
- checking whether the namespace can be unloaded cleanly ... [1s] OK
- checking loading without being on the library search path ... [1s] OK
- checking whether startup messages can be suppressed ... [1s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [17s] OK
- checking Rd files ... [3s] OK
- checking Rd metadata ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking line endings in C/C++/Fortran sources/headers ... OK
- checking line endings in Makefiles ... OK
- checking compilation flags in Makevars ... OK
- checking for GNU extensions in Makefiles ... OK
- checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK
- checking use of PKG_*FLAGS in Makefiles ... OK
- checking pragmas in C/C++ headers and code ... OK
- checking compiled code ... OK
- checking installed files from 'inst/doc' ... OK
- checking files in 'vignettes' ... OK
- checking examples ... [1s] OK
- checking for unstated dependencies in 'tests' ... OK
- checking tests ... [175s] ERROR
Running 'testthat.R' [175s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # CRAN OMP THREAD LIMIT
> Sys.setenv("OMP_THREAD_LIMIT" = 1)
>
> library(testthat)
> library(shapr)
Attaching package: 'shapr'
The following object is masked from 'package:testthat':
setup
>
> test_check("shapr")
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 5
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 128`, and is therefore set to `2^n_features = 128`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 7
* Number of observations to explain: 2
-- Main computation started --
i Using 128 of 128 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 64`, and is therefore set to `2^n_features = 64`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 6
* Number of observations to explain: 2
-- Main computation started --
i Using 64 of 64 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 2
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contain `NA`.
Consistency checks between model and data are therefore disabled.
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 4`, and is therefore set to `2^n_groups = 4`.
-- Explanation overview --
* Model class: <Arima>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 2
* Number of observations to explain: 2
-- Main computation started --
i Using 4 of 4 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 10 of 32 coalitions, 2 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 2 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 14 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 2 new.
-- Iteration 7 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 8 -----------------------------------------------------------------
i Using 20 of 32 coalitions, 2 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_groups = 32`, and is therefore set to `2^n_groups = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 5
* Feature groups: Solar.R: {"Solar.R"}; Wind: {"Wind"}; Temp: {"Temp"}; Month:
{"Month"}; Day: {"Day"}
* Number of observations to explain: 3
-- Iterative computation started --
-- Iteration 1 -----------------------------------------------------------------
i Using 6 of 32 coalitions, 6 new.
-- Iteration 2 -----------------------------------------------------------------
i Using 8 of 32 coalitions, 2 new.
-- Iteration 3 -----------------------------------------------------------------
i Using 12 of 32 coalitions, 4 new.
-- Iteration 4 -----------------------------------------------------------------
i Using 16 of 32 coalitions, 4 new.
-- Iteration 5 -----------------------------------------------------------------
i Using 18 of 32 coalitions, 2 new.
-- Iteration 6 -----------------------------------------------------------------
i Using 22 of 32 coalitions, 4 new.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 10 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of group-wise Shapley values: 3
* Feature groups: A: {"Solar.R", "Wind"}; B: {"Temp", "Month_factor"}; C:
{"Day"}
* Number of observations to explain: 3
-- Main computation started --
i Using 6 of 8 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: ctree
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` at 2025-08-31 19:12:10 --------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
* Computations (temporary) saved at:
'D:\temp\2025_08_31_01_50_00_8774\Rtmp4iswgs\shapr_obj_8de046653a83.rds'
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, gaussian, and copula
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: gaussian, gaussian, gaussian, and gaussian
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: independence, empirical, independence, and empirical
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 1000
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* v(S) estimation class: Monte Carlo integration
* Approach: vaeac
* Procedure: Non-iterative
* Number of Monte Carlo integration samples: 10
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
- checking for unstated dependencies in vignettes ... OK
- checking package vignettes ... OK
- checking re-building of vignette outputs ... [14s] OK
- checking PDF version of manual ... [30s] OK
- checking HTML version of manual ... [32s] OK
- DONE
Status: 1 ERROR