- using R Under development (unstable) (2025-08-23 r88688)
- using platform: x86_64-pc-linux-gnu
- R was compiled by
gcc-15 (Debian 15.2.0-1) 15.2.0
GNU Fortran (Debian 15.2.0-1) 15.2.0
- running under: Debian GNU/Linux forky/sid
- using session charset: UTF-8
- checking for file ‘deepregression/DESCRIPTION’ ... OK
- this is package ‘deepregression’ version ‘2.2.0’
- package encoding: UTF-8
- checking CRAN incoming feasibility ... [1s/1s] OK
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for executable files ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking for sufficient/correct file permissions ... OK
- checking whether package ‘deepregression’ can be installed ... OK
See the install log for details.
- checking package directory ... OK
- checking for future file timestamps ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [4s/5s] OK
- checking whether the package can be loaded with stated dependencies ... [4s/6s] OK
- checking whether the package can be unloaded cleanly ... [4s/6s] OK
- checking whether the namespace can be loaded with stated dependencies ... [4s/5s] OK
- checking whether the namespace can be unloaded cleanly ... [4s/6s] OK
- checking loading without being on the library search path ... [4s/6s] OK
- checking whether startup messages can be suppressed ... [4s/5s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [28s/33s] OK
- checking Rd files ... [1s/1s] OK
- checking Rd metadata ... OK
- checking Rd line widths ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking examples ... [4s/4s] OK
- checking for unstated dependencies in ‘tests’ ... OK
- checking tests ... [4m/16m] ERROR
Running ‘testthat.R’ [4m/16m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(deepregression)
Loading required package: tensorflow
Loading required package: tfprobability
Loading required package: keras
The keras package is deprecated. Use the keras3 package instead.
>
> if (reticulate::py_module_available("tensorflow") &
+ reticulate::py_module_available("keras") &
+ .Platform$OS.type != "windows"){
+ test_check("deepregression")
+ }
Downloading pygments (1.2MiB)
Downloading tensorboard (5.2MiB)
Downloading ml-dtypes (4.7MiB)
Downloading keras (1.3MiB)
Downloading tf-keras (1.6MiB)
Downloading tensorflow-probability (6.7MiB)
Downloading tensorflow (615.0MiB)
Downloading ml-dtypes
Downloading pygments
Downloading tensorboard
Downloading keras
Downloading tf-keras
Downloading tensorflow-probability
Downloading tensorflow
Installed 44 packages in 456ms
2025-08-24 15:36:32.120023: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-08-24 15:36:32.121971: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-08-24 15:36:32.127376: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-08-24 15:36:32.141508: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1756042592.165312 3405165 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1756042592.172790 3405165 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1756042592.192439 3405165 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1756042592.192493 3405165 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1756042592.192498 3405165 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1756042592.192503 3405165 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-08-24 15:36:32.197854: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
8192/11490434 [..............................] - ETA: 0s
16384/11490434 [..............................] - ETA: 52s
49152/11490434 [..............................] - ETA: 41s
81920/11490434 [..............................] - ETA: 39s
131072/11490434 [..............................] - ETA: 28s
180224/11490434 [..............................] - ETA: 24s
245760/11490434 [..............................] - ETA: 20s
368640/11490434 [..............................] - ETA: 14s
491520/11490434 [>.............................] - ETA: 12s
737280/11490434 [>.............................] - ETA: 8s
1048576/11490434 [=>............................] - ETA: 6s
1523712/11490434 [==>...........................] - ETA: 4s
2220032/11490434 [====>.........................] - ETA: 3s
3448832/11490434 [========>.....................] - ETA: 1s
5046272/11490434 [============>.................] - ETA: 1s
7438336/11490434 [==================>...........] - ETA: 0s
9764864/11490434 [========================>.....] - ETA: 0s
11490434/11490434 [==============================] - 1s 0us/step
2025-08-24 15:36:52.176762: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
Epoch 1/2
1/15 [=>............................] - ETA: 26s - loss: 2.3051
9/15 [=================>............] - ETA: 0s - loss: 2.2279
15/15 [==============================] - 2s 32ms/step - loss: 2.2047 - val_loss: 2.1376
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 2.1137
7/15 [=============>................] - ETA: 0s - loss: 2.0777
15/15 [==============================] - 0s 18ms/step - loss: 2.0593 - val_loss: 1.9954
Epoch 1/2
1/15 [=>............................] - ETA: 14s - loss: 2.6629
10/15 [===================>..........] - ETA: 0s - loss: 2.6533
15/15 [==============================] - 1s 30ms/step - loss: 2.6533 - val_loss: 2.6393
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 2.6358
12/15 [=======================>......] - ETA: 0s - loss: 2.6346
15/15 [==============================] - 0s 12ms/step - loss: 2.6365 - val_loss: 2.6227
Epoch 1/2
1/15 [=>............................] - ETA: 12s - loss: 4.1701
11/15 [=====================>........] - ETA: 0s - loss: 4.1792
15/15 [==============================] - 1s 23ms/step - loss: 4.0062 - val_loss: 3.4240
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 4.3026
12/15 [=======================>......] - ETA: 0s - loss: 3.9271
15/15 [==============================] - 0s 11ms/step - loss: 3.9103 - val_loss: 3.3606
Epoch 1/3
1/3 [=========>....................] - ETA: 2s - loss: 7.9864
3/3 [==============================] - 1s 137ms/step - loss: 8.7055 - val_loss: 7.2396
Epoch 2/3
1/3 [=========>....................] - ETA: 0s - loss: 9.5053
3/3 [==============================] - 0s 48ms/step - loss: 8.6326 - val_loss: 7.1833
Epoch 3/3
1/3 [=========>....................] - ETA: 0s - loss: 8.5150
3/3 [==============================] - 0s 32ms/step - loss: 8.5566 - val_loss: 7.1282
Epoch 1/2
1/15 [=>............................] - ETA: 9s - loss: 653.6502
11/15 [=====================>........] - ETA: 0s - loss: 1183.8137
15/15 [==============================] - 1s 34ms/step - loss: 1248.0040 - val_loss: 1370.1050
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 755.2901
14/15 [===========================>..] - ETA: 0s - loss: 964.7537
15/15 [==============================] - 0s 9ms/step - loss: 960.7450 - val_loss: 1055.7158
Epoch 1/2
1/15 [=>............................] - ETA: 11s - loss: 927.8141
12/15 [=======================>......] - ETA: 0s - loss: 2380.3286
15/15 [==============================] - 1s 27ms/step - loss: 3026.8003 - val_loss: 321.5525
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 991.2161
11/15 [=====================>........] - ETA: 0s - loss: 3033.7759
15/15 [==============================] - 0s 11ms/step - loss: 2679.4148 - val_loss: 292.7626
Epoch 1/2
1/15 [=>............................] - ETA: 14s - loss: 2.3149
9/15 [=================>............] - ETA: 0s - loss: 2.2388
15/15 [==============================] - 1s 29ms/step - loss: 2.2516 - val_loss: 2.2750
Epoch 2/2
1/15 [=>............................] - ETA: 0s - loss: 2.1948
10/15 [===================>..........] - ETA: 0s - loss: 2.2188
15/15 [==============================] - 0s 13ms/step - loss: 2.2132 - val_loss: 2.2328
Fitting member 1 ...Epoch 1/10
1/32 [..............................] - ETA: 37s - loss: 2.3293
14/32 [============>.................] - ETA: 0s - loss: 2.3423
27/32 [========================>.....] - ETA: 0s - loss: 2.3338
32/32 [==============================] - 1s 4ms/step - loss: 2.3303
Epoch 2/10
1/32 [..............................] - ETA: 0s - loss: 2.3269
13/32 [===========>..................] - ETA: 0s - loss: 2.3187
25/32 [======================>.......] - ETA: 0s - loss: 2.3073
32/32 [==============================] - 0s 4ms/step - loss: 2.2977
Epoch 3/10
1/32 [..............................] - ETA: 0s - loss: 2.3270
11/32 [=========>....................] - ETA: 0s - loss: 2.2778
21/32 [==================>...........] - ETA: 0s - loss: 2.2748
32/32 [==============================] - ETA: 0s - loss: 2.2650
32/32 [==============================] - 0s 5ms/step - loss: 2.2650
Epoch 4/10
1/32 [..............................] - ETA: 0s - loss: 2.2270
12/32 [==========>...................] - ETA: 0s - loss: 2.2328
24/32 [=====================>........] - ETA: 0s - loss: 2.2332
32/32 [==============================] - 0s 4ms/step - loss: 2.2325
Epoch 5/10
1/32 [..............................] - ETA: 0s - loss: 2.2185
17/32 [==============>...............] - ETA: 0s - loss: 2.2090
31/32 [============================>.] - ETA: 0s - loss: 2.2011
32/32 [==============================] - 0s 4ms/step - loss: 2.2002
Epoch 6/10
1/32 [..............................] - ETA: 0s - loss: 2.1431
12/32 [==========>...................] - ETA: 0s - loss: 2.1670
24/32 [=====================>........] - ETA: 0s - loss: 2.1740
32/32 [==============================] - 0s 5ms/step - loss: 2.1681
Epoch 7/10
1/32 [..............................] - ETA: 0s - loss: 2.2840
13/32 [===========>..................] - ETA: 0s - loss: 2.1583
25/32 [======================>.......] - ETA: 0s - loss: 2.1366
32/32 [==============================] - 0s 4ms/step - loss: 2.1359
Epoch 8/10
1/32 [..............................] - ETA: 0s - loss: 2.0769
15/32 [=============>................] - ETA: 0s - loss: 2.1076
26/32 [=======================>......] - ETA: 0s - loss: 2.1102
32/32 [==============================] - 0s 4ms/step - loss: 2.1036
Epoch 9/10
1/32 [..............................] - ETA: 0s - loss: 2.0602
10/32 [========>.....................] - ETA: 0s - loss: 2.1068
26/32 [=======================>......] - ETA: 0s - loss: 2.0764
32/32 [==============================] - 0s 5ms/step - loss: 2.0717
Epoch 10/10
1/32 [..............................] - ETA: 0s - loss: 2.0980
19/32 [================>.............] - ETA: 0s - loss: 2.0377
30/32 [===========================>..] - ETA: 0s - loss: 2.0396
32/32 [==============================] - 0s 4ms/step - loss: 2.0400
Done in 3.241244 secs
Fitting member 2 ...Epoch 1/10
1/32 [..............................] - ETA: 0s - loss: 2.1814
12/32 [==========>...................] - ETA: 0s - loss: 2.3720
24/32 [=====================>........] - ETA: 0s - loss: 2.3417
32/32 [==============================] - 0s 4ms/step - loss: 2.3312
Epoch 2/10
1/32 [..............................] - ETA: 0s - loss: 2.4545
15/32 [=============>................] - ETA: 0s - loss: 2.3411
28/32 [=========================>....] - ETA: 0s - loss: 2.2945
32/32 [==============================] - 0s 4ms/step - loss: 2.2785
Epoch 3/10
1/32 [..............................] - ETA: 0s - loss: 2.5406
13/32 [===========>..................] - ETA: 0s - loss: 2.2695
30/32 [===========================>..] - ETA: 0s - loss: 2.2240
32/32 [==============================] - 0s 4ms/step - loss: 2.2334
Epoch 4/10
1/32 [..............................] - ETA: 0s - loss: 2.0854
16/32 [==============>...............] - ETA: 0s - loss: 2.1746
32/32 [==============================] - 0s 3ms/step - loss: 2.1937
Epoch 5/10
1/32 [..............................] - ETA: 0s - loss: 2.2393
17/32 [==============>...............] - ETA: 0s - loss: 2.1791
29/32 [==========================>...] - ETA: 0s - loss: 2.1651
32/32 [==============================] - 0s 4ms/step - loss: 2.1597
Epoch 6/10
1/32 [..............................] - ETA: 0s - loss: 2.0225
18/32 [===============>..............] - ETA: 0s - loss: 2.1451
32/32 [==============================] - 0s 3ms/step - loss: 2.1276
Epoch 7/10
1/32 [..............................] - ETA: 0s - loss: 2.4568
16/32 [==============>...............] - ETA: 0s - loss: 2.1088
31/32 [============================>.] - ETA: 0s - loss: 2.0940
32/32 [==============================] - 0s 4ms/step - loss: 2.0961
Epoch 8/10
1/32 [..............................] - ETA: 0s - loss: 1.9680
15/32 [=============>................] - ETA: 0s - loss: 2.0623
26/32 [=======================>......] - ETA: 0s - loss: 2.0754
32/32 [==============================] - 0s 4ms/step - loss: 2.0644
Epoch 9/10
1/32 [..............................] - ETA: 0s - loss: 2.0730
15/32 [=============>................] - ETA: 0s - loss: 2.0602
32/32 [==============================] - 0s 3ms/step - loss: 2.0336
Epoch 10/10
1/32 [..............................] - ETA: 0s - loss: 2.1117
12/32 [==========>...................] - ETA: 0s - loss: 2.0073
26/32 [=======================>......] - ETA: 0s - loss: 1.9918
32/32 [==============================] - 0s 4ms/step - loss: 2.0026
Done in 1.385268 secs
Fitting member 3 ...Epoch 1/10
1/32 [..............................] - ETA: 0s - loss: 41.9180
12/32 [==========>...................] - ETA: 0s - loss: 47.0636
23/32 [====================>.........] - ETA: 0s - loss: 40.6723
32/32 [==============================] - 0s 5ms/step - loss: 39.2828
Epoch 2/10
1/32 [..............................] - ETA: 0s - loss: 34.1315
17/32 [==============>...............] - ETA: 0s - loss: 28.3797
26/32 [=======================>......] - ETA: 0s - loss: 27.7863
32/32 [==============================] - 0s 4ms/step - loss: 27.2884
Epoch 3/10
1/32 [..............................] - ETA: 0s - loss: 27.6960
17/32 [==============>...............] - ETA: 0s - loss: 24.6021
29/32 [==========================>...] - ETA: 0s - loss: 21.6970
32/32 [==============================] - 0s 4ms/step - loss: 21.7021
Epoch 4/10
1/32 [..............................] - ETA: 0s - loss: 13.7574
14/32 [============>.................] - ETA: 0s - loss: 19.0813
27/32 [========================>.....] - ETA: 0s - loss: 18.3997
32/32 [==============================] - 0s 5ms/step - loss: 18.2036
Epoch 5/10
1/32 [..............................] - ETA: 0s - loss: 15.2942
15/32 [=============>................] - ETA: 0s - loss: 16.4400
27/32 [========================>.....] - ETA: 0s - loss: 16.0637
32/32 [==============================] - 0s 4ms/step - loss: 15.8282
Epoch 6/10
1/32 [..............................] - ETA: 0s - loss: 9.8128
10/32 [========>.....................] - ETA: 0s - loss: 13.5695
23/32 [====================>.........] - ETA: 0s - loss: 13.7845
32/32 [==============================] - 0s 5ms/step - loss: 14.0666
Epoch 7/10
1/32 [..............................] - ETA: 0s - loss: 14.0067
19/32 [================>.............] - ETA: 0s - loss: 12.7763
32/32 [==============================] - ETA: 0s - loss: 12.6950
32/32 [==============================] - 0s 3ms/step - loss: 12.6950
Epoch 8/10
1/32 [..............................] - ETA: 0s - loss: 12.2746
11/32 [=========>....................] - ETA: 0s - loss: 11.9713
26/32 [=======================>......] - ETA: 0s - loss: 11.4475
32/32 [==============================] - 0s 5ms/step - loss: 11.5684
Epoch 9/10
1/32 [..............................] - ETA: 0s - loss: 13.3544
16/32 [==============>...............] - ETA: 0s - loss: 10.6689
30/32 [===========================>..] - ETA: 0s - loss: 10.7419
32/32 [==============================] - 0s 3ms/step - loss: 10.6440
Epoch 10/10
1/32 [..............................] - ETA: 0s - loss: 8.5922
17/32 [==============>...............] - ETA: 0s - loss: 9.3869
32/32 [==============================] - ETA: 0s - loss: 9.8495
32/32 [==============================] - 0s 3ms/step - loss: 9.8495
Done in 1.493408 secs
Fitting member 4 ...Epoch 1/10
1/32 [..............................] - ETA: 0s - loss: 2.8816
12/32 [==========>...................] - ETA: 0s - loss: 3.2172
27/32 [========================>.....] - ETA: 0s - loss: 2.9532
32/32 [==============================] - 0s 4ms/step - loss: 2.9588
Epoch 2/10
1/32 [..............................] - ETA: 0s - loss: 2.3825
19/32 [================>.............] - ETA: 0s - loss: 2.8742
32/32 [==============================] - 0s 3ms/step - loss: 2.9011
Epoch 3/10
1/32 [..............................] - ETA: 0s - loss: 3.9315
14/32 [============>.................] - ETA: 0s - loss: 2.9395
23/32 [====================>.........] - ETA: 0s - loss: 2.9088
32/32 [==============================] - 0s 5ms/step - loss: 2.8534
Epoch 4/10
1/32 [..............................] - ETA: 0s - loss: 2.3602
12/32 [==========>...................] - ETA: 0s - loss: 2.6534
26/32 [=======================>......] - ETA: 0s - loss: 2.8024
32/32 [==============================] - 0s 4ms/step - loss: 2.8062
Epoch 5/10
1/32 [..............................] - ETA: 0s - loss: 2.7419
13/32 [===========>..................] - ETA: 0s - loss: 2.7061
23/32 [====================>.........] - ETA: 0s - loss: 2.7823
32/32 [==============================] - 0s 5ms/step - loss: 2.7623
Epoch 6/10
1/32 [..............................] - ETA: 0s - loss: 1.7251
14/32 [============>.................] - ETA: 0s - loss: 2.5452
32/32 [==============================] - ETA: 0s - loss: 2.7193
32/32 [==============================] - 0s 4ms/step - loss: 2.7193
Epoch 7/10
1/32 [..............................] - ETA: 0s - loss: 2.8260
12/32 [==========>...................] - ETA: 0s - loss: 2.7719
24/32 [=====================>........] - ETA: 0s - loss: 2.6041
32/32 [==============================] - 0s 4ms/step - loss: 2.6774
Epoch 8/10
1/32 [..............................] - ETA: 0s - loss: 2.2710
16/32 [==============>...............] - ETA: 0s - loss: 2.6983
30/32 [===========================>..] - ETA: 0s - loss: 2.6296
32/32 [==============================] - 0s 4ms/step - loss: 2.6383
Epoch 9/10
1/32 [..............................] - ETA: 0s - loss: 3.0022
14/32 [============>.................] - ETA: 0s - loss: 2.7629
24/32 [=====================>........] - ETA: 0s - loss: 2.6937
32/32 [==============================] - 0s 4ms/step - loss: 2.6007
Epoch 10/10
1/32 [..............................] - ETA: 0s - loss: 2.6980
19/32 [================>.............] - ETA: 0s - loss: 2.3980
28/32 [=========================>....] - ETA: 0s - loss: 2.5031
32/32 [==============================] - 0s 4ms/step - loss: 2.5630
Done in 1.511275 secs
Fitting member 5 ...Epoch 1/10
1/32 [..............................] - ETA: 0s - loss: 112.3703
14/32 [============>.................] - ETA: 0s - loss: 160.9385
27/32 [========================>.....] - ETA: 0s - loss: 141.0971
32/32 [==============================] - 0s 4ms/step - loss: 139.0890
Epoch 2/10
1/32 [..............................] - ETA: 0s - loss: 141.4559
17/32 [==============>...............] - ETA: 0s - loss: 101.6428
30/32 [===========================>..] - ETA: 0s - loss: 96.1611
32/32 [==============================] - 0s 4ms/step - loss: 95.6168
Epoch 3/10
1/32 [..............................] - ETA: 0s - loss: 97.2787
18/32 [===============>..............] - ETA: 0s - loss: 83.6157
31/32 [============================>.] - ETA: 0s - loss: 73.9531
32/32 [==============================] - 0s 3ms/step - loss: 74.6476
Epoch 4/10
1/32 [..............................] - ETA: 0s - loss: 42.6719
14/32 [============>.................] - ETA: 0s - loss: 64.5960
24/32 [=====================>........] - ETA: 0s - loss: 63.6280
32/32 [==============================] - 0s 5ms/step - loss: 61.8040
Epoch 5/10
1/32 [..............................] - ETA: 0s - loss: 51.5790
15/32 [=============>................] - ETA: 0s - loss: 54.4421
30/32 [===========================>..] - ETA: 0s - loss: 53.6450
32/32 [==============================] - 0s 4ms/step - loss: 53.1899
Epoch 6/10
1/32 [..............................] - ETA: 0s - loss: 35.5863
17/32 [==============>...............] - ETA: 0s - loss: 46.4085
32/32 [==============================] - 0s 3ms/step - loss: 46.9254
Epoch 7/10
1/32 [..............................] - ETA: 0s - loss: 43.7696
12/32 [==========>...................] - ETA: 0s - loss: 44.6775
25/32 [======================>.......] - ETA: 0s - loss: 43.9927
32/32 [==============================] - 0s 4ms/step - loss: 42.0744
Epoch 8/10
1/32 [..............................] - ETA: 0s - loss: 43.0723
12/32 [==========>...................] - ETA: 0s - loss: 39.9295
29/32 [==========================>...] - ETA: 0s - loss: 37.9504
32/32 [==============================] - 0s 4ms/step - loss: 38.1152
Epoch 9/10
1/32 [..............................] - ETA: 0s - loss: 45.3285
13/32 [===========>..................] - ETA: 0s - loss: 34.6790
31/32 [============================>.] - ETA: 0s - loss: 34.9863
32/32 [==============================] - 0s 4ms/step - loss: 34.8808
Epoch 10/10
1/32 [..............................] - ETA: 0s - loss: 29.3974
12/32 [==========>...................] - ETA: 0s - loss: 30.0236
22/32 [===================>..........] - ETA: 0s - loss: 30.7542
31/32 [============================>.] - ETA: 0s - loss: 32.0094
32/32 [==============================] - 0s 5ms/step - loss: 32.1088
Done in 1.471473 secs
Epoch 1/2
1/3 [=========>....................] - ETA: 1s - loss: 2.3341
3/3 [==============================] - 1s 172ms/step - loss: 2.3038 - val_loss: 2.2154
Epoch 2/2
1/3 [=========>....................] - ETA: 0s - loss: 2.3662
3/3 [==============================] - 0s 68ms/step - loss: 2.3004 - val_loss: 2.2128
Epoch 1/2
1/3 [=========>....................] - ETA: 0s - loss: 52.8941
3/3 [==============================] - 0s 104ms/step - loss: 47.0024 - val_loss: 27.1291
Epoch 2/2
1/3 [=========>....................] - ETA: 0s - loss: 49.6579
3/3 [==============================] - 0s 50ms/step - loss: 46.6172 - val_loss: 26.8568
Fitting member 1 ...
Done in 5.897056 secs
Fitting member 2 ...
Done in 5.863565 secs
Fitting member 3 ...
Done in 6.058224 secs
Fitting normal
Fitting bernoulli
Fitting bernoulli_prob
WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7f5df1dc1940> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
Fitting beta
WARNING:tensorflow:5 out of the last 11 calls to <function Model.make_test_function.<locals>.test_function at 0x7f5df19796c0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
Fitting betar
Fitting chi2
Fitting chi
Fitting exponential
Fitting gamma
Fitting gammar
Fitting gumbel
Fitting half_normal
Fitting horseshoe
Fitting inverse_gaussian
Fitting laplace
Fitting log_normal
Fitting logistic
Fitting negbinom
Fitting negbinom
Fitting pareto_ls
Fitting poisson
Fitting poisson_lograte
Fitting normal
Fitting bernoulli
Fitting bernoulli_prob
Fitting gamma
Fitting poisson
Epoch 1/2
1/29 [>.............................] - ETA: 29s - loss: 11.2004
11/29 [==========>...................] - ETA: 0s - loss: 10.4834
22/29 [=====================>........] - ETA: 0s - loss: 10.6107
29/29 [==============================] - 1s 16ms/step - loss: 10.6607 - val_loss: 7.6350
Epoch 2/2
1/29 [>.............................] - ETA: 0s - loss: 7.1379
12/29 [===========>..................] - ETA: 0s - loss: 9.7647
22/29 [=====================>........] - ETA: 0s - loss: 9.5857
29/29 [==============================] - 0s 8ms/step - loss: 9.5296 - val_loss: 6.8647
Fitting model with 1 orthogonalization(s) ... Fitting Fold 1 ...
Done in 2.553033 secs
Fitting Fold 2 ...
Done in 0.493022 secs
Epoch 1/2
1/2 [==============>...............] - ETA: 0s - loss: 22.0463
2/2 [==============================] - 0s 27ms/step - loss: 22.4672
Epoch 2/2
1/2 [==============>...............] - ETA: 0s - loss: 21.8272
2/2 [==============================] - 0s 22ms/step - loss: 20.5671
Fitting Fold 1 ...
Done in 1.820647 secs
Fitting Fold 2 ...
Done in 0.5037026 secs
Epoch 1/2
1/2 [==============>...............] - ETA: 0s - loss: 22.0463
2/2 [==============================] - 0s 9ms/step - loss: 22.4672
Epoch 2/2
1/2 [==============>...............] - ETA: 0s - loss: 21.8272
2/2 [==============================] - 0s 16ms/step - loss: 20.5671
[ FAIL 13 | WARN 0 | SKIP 0 | PASS 681 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test_deepregression.R:109:3'): Generalized additive model ───────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─deepregression::deepregression(...) at test_deepregression.R:109:3
2. │ └─base::lapply(...)
3. │ └─deepregression (local) FUN(X[[i]], ...)
4. │ └─subnetwork_builder[[i]](...)
5. │ ├─deep_splitted[[2]](orthog_fun(deep, ox))
6. │ │ └─x %>% layer_dense(units = 1L, activation = "linear")
7. │ └─deepregression (local) orthog_fun(deep, ox)
8. │ └─deepregression:::orthog_tf(Y, X, deactivate_oz_at_test)
9. │ └─reticulate::import_from_path("layers", path = python_path)
10. │ └─reticulate:::import_from_path_immediate(module, path, convert)
11. │ └─reticulate::import(module, convert = convert)
12. │ └─reticulate:::py_module_import(module, convert = convert)
13. └─keras::layer_dense(., units = 1L, activation = "linear")
14. └─keras::create_layer(...)
── Error ('test_deepregression.R:193:3'): Generalized additive model with RWT in formula ──
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─deepregression::deepregression(...) at test_deepregression.R:193:3
2. │ └─base::lapply(...)
3. │ └─deepregression (local) FUN(X[[i]], ...)
4. │ └─subnetwork_builder[[i]](...)
5. │ ├─deep_splitted[[2]](orthog_fun(deep, ox))
6. │ │ └─x %>% layer_dense(units = 1L, activation = "linear")
7. │ └─deepregression (local) orthog_fun(deep, ox)
8. │ └─deepregression:::orthog_tf(Y, X, deactivate_oz_at_test)
9. │ └─reticulate::import_from_path("layers", path = python_path)
10. │ └─reticulate:::import_from_path_immediate(module, path, convert)
11. │ └─reticulate::import(module, convert = convert)
12. │ └─reticulate:::py_module_import(module, convert = convert)
13. └─keras::layer_dense(., units = 1L, activation = "linear")
14. └─keras::create_layer(...)
── Error ('test_layers.R:14:3'): custom layers ─────────────────────────────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. └─deepregression::layer_hadamard_diff(...) at test_layers.R:14:3
2. └─reticulate::import_from_path("layers", path = python_path)
3. └─reticulate:::import_from_path_immediate(module, path, convert)
4. └─reticulate::import(module, convert = convert)
5. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_layers.R:48:3'): lasso layers ──────────────────────────────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. └─deepregression::tib_layer(units = 1L, la = 1) at test_layers.R:48:3
2. └─reticulate::import_from_path("layers", path = python_path)
3. └─reticulate:::import_from_path_immediate(module, path, convert)
4. └─reticulate::import(module, convert = convert)
5. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_node.R:26:3'): node regression ─────────────────────────────────
<python.builtin.ModuleNotFoundError/python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ModuleNotFoundError: No module named 'keras.src.engine'
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. └─deepregression::deepregression(...) at test_node.R:26:3
2. └─base::lapply(...)
3. └─deepregression (local) FUN(X[[i]], ...)
4. └─subnetwork_builder[[i]](...)
5. └─base::lapply(1:length(pp_in), function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
6. └─deepregression (local) FUN(X[[i]], ...)
7. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
8. ├─base::do.call(layer_class, layer_args)
9. └─deepregression (local) `<fn>`(...)
10. └─reticulate::import_from_path("node", path = python_path)
11. └─reticulate:::import_from_path_immediate(module, path, convert)
12. └─reticulate::import(module, convert = convert)
13. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_node.R:104:3'): node bernoulli ─────────────────────────────────
<python.builtin.ModuleNotFoundError/python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ModuleNotFoundError: No module named 'keras.src.engine'
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. └─deepregression::deepregression(...) at test_node.R:104:3
2. └─base::lapply(...)
3. └─deepregression (local) FUN(X[[i]], ...)
4. └─subnetwork_builder[[i]](...)
5. └─base::lapply(1:length(pp_in), function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
6. └─deepregression (local) FUN(X[[i]], ...)
7. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
8. ├─base::do.call(layer_class, layer_args)
9. └─deepregression (local) `<fn>`(...)
10. └─reticulate::import_from_path("node", path = python_path)
11. └─reticulate:::import_from_path_immediate(module, path, convert)
12. └─reticulate::import(module, convert = convert)
13. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_node.R:190:3'): node multinoulli ───────────────────────────────
<python.builtin.ModuleNotFoundError/python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ModuleNotFoundError: No module named 'keras.src.engine'
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. └─deepregression::deepregression(...) at test_node.R:190:3
2. └─base::lapply(...)
3. └─deepregression (local) FUN(X[[i]], ...)
4. └─subnetwork_builder[[i]](...)
5. └─base::lapply(1:length(pp_in), function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
6. └─deepregression (local) FUN(X[[i]], ...)
7. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
8. ├─base::do.call(layer_class, layer_args)
9. └─deepregression (local) `<fn>`(...)
10. └─reticulate::import_from_path("node", path = python_path)
11. └─reticulate:::import_from_path_immediate(module, path, convert)
12. └─reticulate::import(module, convert = convert)
13. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_node.R:276:3'): node overlap ───────────────────────────────────
<python.builtin.ModuleNotFoundError/python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ModuleNotFoundError: No module named 'keras.src.engine'
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─testthat::expect_warning(...) at test_node.R:276:3
2. │ └─testthat:::quasi_capture(...)
3. │ ├─testthat (local) .capture(...)
4. │ │ └─base::withCallingHandlers(...)
5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo))
6. └─deepregression::deepregression(...)
7. └─base::lapply(...)
8. └─deepregression (local) FUN(X[[i]], ...)
9. └─subnetwork_builder[[i]](...)
10. └─base::lapply(1:length(pp_in), function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
11. └─deepregression (local) FUN(X[[i]], ...)
12. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
13. ├─base::do.call(layer_class, layer_args)
14. └─deepregression (local) `<fn>`(...)
15. └─reticulate::import_from_path("node", path = python_path)
16. └─reticulate:::import_from_path_immediate(module, path, convert)
17. └─reticulate::import(module, convert = convert)
18. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_orthogonalization.R:44:5'): orthogonalization ──────────────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─base::suppressWarnings(...) at test_orthogonalization.R:44:5
2. │ └─base::withCallingHandlers(...)
3. ├─deepregression::deepregression(...)
4. │ └─base::lapply(...)
5. │ └─deepregression (local) FUN(X[[i]], ...)
6. │ └─subnetwork_builder[[i]](...)
7. │ ├─deep_splitted[[2]](orthog_fun(deep, ox))
8. │ │ └─x %>% layer_dense(units = 1, activation = "linear")
9. │ └─deepregression (local) orthog_fun(deep, ox)
10. │ └─deepregression:::orthog_tf(Y, X, deactivate_oz_at_test)
11. │ └─reticulate::import_from_path("layers", path = python_path)
12. │ └─reticulate:::import_from_path_immediate(module, path, convert)
13. │ └─reticulate::import(module, convert = convert)
14. │ └─reticulate:::py_module_import(module, convert = convert)
15. └─keras::layer_dense(., units = 1, activation = "linear")
16. └─keras::create_layer(...)
── Error ('test_orthogonalization.R:106:5'): custom orthogonalization ──────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─base::suppressWarnings(...) at test_orthogonalization.R:106:5
2. │ └─base::withCallingHandlers(...)
3. ├─deepregression::deepregression(...)
4. │ └─base::lapply(...)
5. │ └─deepregression (local) FUN(X[[i]], ...)
6. │ └─subnetwork_builder[[i]](...)
7. │ ├─deep_splitted[[2]](orthog_fun(deep, ox))
8. │ │ └─x %>% layer_dense(units = 1, activation = "linear")
9. │ └─deepregression (local) orthog_fun(deep, ox)
10. │ └─deepregression:::orthog_tf(Y, X, deactivate_oz_at_test)
11. │ └─reticulate::import_from_path("layers", path = python_path)
12. │ └─reticulate:::import_from_path_immediate(module, path, convert)
13. │ └─reticulate::import(module, convert = convert)
14. │ └─reticulate:::py_module_import(module, convert = convert)
15. └─keras::layer_dense(., units = 1, activation = "linear")
16. └─keras::create_layer(...)
── Error ('test_orthogonalization.R:163:3'): orthogonalization at test time ────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─deepregression::deepregression(...) at test_orthogonalization.R:163:3
2. │ └─base::lapply(...)
3. │ └─deepregression (local) FUN(X[[i]], ...)
4. │ └─subnetwork_builder[[i]](...)
5. │ ├─deep_splitted[[2]](orthog_fun(deep, ox))
6. │ │ └─x %>% layer_dense(units = 1, activation = "linear")
7. │ └─deepregression (local) orthog_fun(deep, ox)
8. │ └─deepregression:::orthog_tf(Y, X, deactivate_oz_at_test)
9. │ └─reticulate::import_from_path("layers", path = python_path)
10. │ └─reticulate:::import_from_path_immediate(module, path, convert)
11. │ └─reticulate::import(module, convert = convert)
12. │ └─reticulate:::py_module_import(module, convert = convert)
13. └─keras::layer_dense(., units = 1, activation = "linear")
14. └─keras::create_layer(...)
── Error ('test_subnetwork_init.R:35:3'): subnetwork_init ──────────────────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─base::suppressWarnings(subnetwork_init(list(pp), gaminputs = gaminputs)) at test_subnetwork_init.R:35:3
2. │ └─base::withCallingHandlers(...)
3. └─deepregression::subnetwork_init(list(pp), gaminputs = gaminputs)
4. ├─deepregression::layer_add_identity(...)
5. └─base::lapply((1:length(pp_in))[outputs_wo_oz], function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
6. └─deepregression (local) FUN(X[[i]], ...)
7. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
8. ├─base::do.call(layer_class, layer_args)
9. └─deepregression (local) `<fn>`(name = "lasso_z__1", units = 1L, la = 0.001)
10. └─reticulate::import_from_path("layers", path = python_path)
11. └─reticulate:::import_from_path_immediate(module, path, convert)
12. └─reticulate::import(module, convert = convert)
13. └─reticulate:::py_module_import(module, convert = convert)
── Error ('test_subnetwork_init.R:77:3'): shared layer within formula ──────────
<python.builtin.ImportError/python.builtin.Exception/python.builtin.BaseException/python.builtin.object/error/condition>
Error in `py_module_import(module, convert = convert)`: ImportError: cannot import name 'Conv' from 'keras.src.layers.convolutional.base_conv' (/tmp/check-CRAN-regular-hornik/cache/R/reticulate/uv/cache/archive-v0/t8T8CEPGnFbZY0y47sPm_/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py)
Run `reticulate::py_last_error()` for details.
Backtrace:
▆
1. ├─base::suppressWarnings(subnetwork_init(list(pp), gaminputs = gaminputs)) at test_subnetwork_init.R:77:3
2. │ └─base::withCallingHandlers(...)
3. └─deepregression::subnetwork_init(list(pp), gaminputs = gaminputs)
4. └─base::lapply(1:length(pp_in), function(i) pp_lay[[layer_matching[i]]]$layer(inputs[[i]]))
5. └─deepregression (local) FUN(X[[i]], ...)
6. └─pp_lay[[layer_matching[i]]]$layer(inputs[[i]])
7. ├─base::do.call(layer_class, layer_args)
8. └─deepregression (local) `<fn>`(name = "lasso_z__1", units = 1L, la = 0.001)
9. └─reticulate::import_from_path("layers", path = python_path)
10. └─reticulate:::import_from_path_immediate(module, path, convert)
11. └─reticulate::import(module, convert = convert)
12. └─reticulate:::py_module_import(module, convert = convert)
[ FAIL 13 | WARN 0 | SKIP 0 | PASS 681 ]
Error: Test failures
Execution halted
- checking PDF version of manual ... [7s/9s] OK
- checking HTML version of manual ... [2s/3s] OK
- checking for non-standard things in the check directory ... OK
- DONE
Status: 1 ERROR