- using R Under development (unstable) (2024-05-22 r86590)
- using platform: x86_64-pc-linux-gnu
- R was compiled by Debian clang version 18.1.6 (1) Debian flang-new version 18.1.6 (1)
- running under: Debian GNU/Linux trixie/sid
- using session charset: UTF-8
- checking for file ‘Renvlp/DESCRIPTION’ ... OK
- checking extension type ... Package
- this is package ‘Renvlp’ version ‘3.4.5’
- checking package namespace information ... OK
- checking package dependencies ... OK
- checking if this is a source package ... OK
- checking if there is a namespace ... OK
- checking for executable files ... OK
- checking for hidden files and directories ... OK
- checking for portable file names ... OK
- checking for sufficient/correct file permissions ... OK
- checking whether package ‘Renvlp’ can be installed ... OK See the install log for details.
- checking package directory ... OK
- checking for future file timestamps ... OK
- checking DESCRIPTION meta-information ... OK
- checking top-level files ... OK
- checking for left-over files ... OK
- checking index information ... OK
- checking package subdirectories ... OK
- checking code files for non-ASCII characters ... OK
- checking R files for syntax errors ... OK
- checking whether the package can be loaded ... [0s/0s] OK
- checking whether the package can be loaded with stated dependencies ... [0s/0s] OK
- checking whether the package can be unloaded cleanly ... [0s/0s] OK
- checking whether the namespace can be loaded with stated dependencies ... [0s/0s] OK
- checking whether the namespace can be unloaded cleanly ... [0s/0s] OK
- checking loading without being on the library search path ... [0s/0s] OK
- checking use of S3 registration ... OK
- checking dependencies in R code ... OK
- checking S3 generic/method consistency ... OK
- checking replacement functions ... OK
- checking foreign function calls ... OK
- checking R code for possible problems ... [69s/86s] OK
- checking Rd files ... [2s/2s] NOTE checkRd: (-1) testcoef.env.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) xenv.Rd:28: Lost braces; missing escapes or markup? 28 | \item{eta}{The estimated eta. According to the envelope parameterization, beta = Gamma * Omega^{-1} * eta.} | ^
- checking Rd metadata ... OK
- checking Rd line widths ... OK
- checking Rd cross-references ... OK
- checking for missing documentation entries ... OK
- checking for code/documentation mismatches ... OK
- checking Rd \usage sections ... OK
- checking Rd contents ... OK
- checking for unstated dependencies in examples ... OK
- checking contents of ‘data’ directory ... OK
- checking data for non-ASCII characters ... [0s/1s] OK
- checking data for ASCII and uncompressed saves ... OK
- checking examples ... [82s/99s] OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed pois.env 6.155 0.021 7.716 pred.pois.env 6.147 0.024 7.163 testcoef.pois.env 5.915 0.000 6.972 sxenv 5.677 0.000 7.151 testcoef.sxenv 5.396 0.011 6.429 testcoef.logit.env 4.961 0.047 6.382 cv.env 4.992 0.012 5.221 pred.logit.env 4.917 0.013 6.042 senv 3.566 0.004 5.197
- checking PDF version of manual ... [11s/13s] OK
- checking HTML version of manual ... [7s/10s] OK
- checking for non-standard things in the check directory ... OK
- DONE

Status: 1 NOTE