

Byte Code Compiler
Recent Work on R Runtime

Tomas Kalibera

with Luke Tierney
Jan Vitek

“Math” related improvements

● Matrix products
– Check NaN/Inf inputs more consistently
– Faster NaN/Inf checks (pqR, SIMD)
– Faster BLAS matrix * vector using DGEMV
– Multiple implementations

● Default, internal (long double), blas, default.simd

● BLAS/LAPACK library path detection
● Use of ctanh/ctan workarounds

Runtime improvements

● applyClosure/execClosure
● Stack detection
● Timeout support for system, system2
● Customizable maximum number of DLLs
● Bug fixes:

– Error/warning expressions, pairlist subsetting, protect
fixes, #! line in Rscript, sprintf coerction, summaryRprof,
Windows file timestamps, installChar->installTrChar,
Windows Ctrl+C in cfe.exe, ...

Package checking

● PROTECT errors – static analysis tool
– A full check (CRAN, BIOC) reported to maintainers
– Automated checks using rchk, integrated into

CRAN results

● Constants corruption
– Repeated manual checks, reported to maintainers

● ‘If’ statement with non-scalar condition
– A full check

JIT, byte code compiler/interpreter

● Srcref and expression tracking support
● Improvements and bug fixes:

– Error messages, interaction of serialization with JIT,
invocation of bcEval in loops without context,
triggering JIT compilation of loops, C stack use in
bcEval with gcc6, compilation with source
references, cleaner cmpfun invocation

● Debugging of packages and reaching to
maintainers

“debugging correctness”

Performance improvements with BC

convolveSlow <- function(x,y) {
 nx <- length(x)
 ny <- length(y)
 z <- numeric(nx + ny - 1)
 for(i in seq(length = nx)) {
 xi <- x[[i]]
 for(j in seq(length = ny)) {
 ij <- i + j - 1
 z[[ij]] <- z[[ij]] + xi * y[[j]]
 }
 }
 z
 }

BC is 9x faster than AST
(even including compilation)

Example from J. Chambers: Extending R

x = y = as.double(1:8000)

Performance improvements with BC

dgamma <- array(rep(0, (NUM - 1) * 4), c(2, 2, (NUM - 1)))
for (k in 1:(NUM - 1)) {
 denom <- 0
 for (i in 0:1) {
 for (j in 0:1) {
 fx <- (1 - j) * f0x[k + 1] + j * f1x[k + 1]
 denom <- denom + alpha[k, i + 1] * A[i + 1, j + 1]
 * fx * beta[k + 1, j + 1]
 }
 }
 for (i in 0:1) {
 gamma[k, i + 1] <- 0
 for (j in 0:1) {
 fx <- (1 - j) * f0x[k + 1] + j * f1x[k + 1]
 dgamma[i + 1, j + 1, k] <- alpha[k, i + 1] *
 A[i + 1, j + 1] * fx * beta[k + 1, j + 1]/denom
 gamma[k, i + 1] <- gamma[k, i + 1] +
 dgamma[i + 1, j + 1, k]
 }
 }
} BC is 4x faster than AST on examples for em.hmm

CRAN package PLIS
examples for em.hmm, EM algorithm for HMM to estimate LIS statistic,
Excerpt from function PLIS:::bwfw.hmm

Performance improvements with BC

while (m < limit && wm < ubd) {
 s1 = 0
 wm = 0
 for (i in 1:(m - 1)) {
 s1 = s1 + x[m - i + 1] - mean
 wm = wm + exp(-i * n * (delta^2)/(2 * sigma^2) +
 n * delta * s1/sigma^2)
 }
 wmv[m] <- wm
 if (wm > ubd || (m + 1) == limit) {
 res <- vector("list", 0)
 if (wm > ubd) {
 res$rl <- m
 res$w <- wmv[1:m]
 }
 else {
 res$rl <- Inf
 res$w <- wmv
 }
 }
m = m + 1 BC is 5x faster than AST on examples for shroArlPfaCed

CRAN package mistat
examples for shroArlPfaCed, ARL, PFA and CED of Shiryayev-Roberts procedure
Excerpt from function mistat:::.runLengthShroNorm

Not all programs benefit from BC
convolveSlow <- function(x,y) {
 nx <- length(x)
 ny <- length(y)
 z <- numeric(nx + ny - 1)
 for(i in seq(length = nx)) {
 xi <- x[[i]]
 for(j in seq(length = ny)) {
 ij <- i + j - 1
 z[[ij]] <- z[[ij]] + xi * y[[j]]
 }
 }
 z
 }

convolveV <- function(x, y) {
 nx <- length(x)
 ny <- length(y)
 xy <- rbind(outer(x,y),
 matrix(0, nx, ny))
 nxy <- nx + ny - 1
 length(xy) <- nxy * ny
 dim(xy) <- c(nxy, ny)
 rowSums(xy)
}

BC is 9x faster than AST
(even including compilation)

BC is as fast as AST

Examples from J. Chambers: Extending R

ConvolveV is 4x faster than convolveSlow
with BC, but uses a lot more memory

x = y = as.double(1:8000)

Summary performance: R examples
207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

3% slowdown (median)

Summary performance: R examples
207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

Expected: most of the examples
do not spend much time
in R interpreter

Performance improvement

Performance degradation

Only small amount of time is spent
in byte-code interpreter

Median time spent in bcEval is 4%.

207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

Most of the slowdown is due to extra
time it takes to compile

With compilation time excluded, median performance change is 0.

207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

Mitigating compilation overhead

● JIT heuristics
– Only compile functions likely to be executed often
– Do not compile trivial functions, without loops, etc
– Already in use, but can be more aggressive when JIT/AST compatibility improves

● Code cache
– Re-use the same code if already compiled
– Helps with code generation

● Precompilation
– Compile package code and installation time
– Not enabled by default for regular packages yet
– Cons: compiling dead/unused code (and code not used by tests)
– Performance issues with de-serialization to be resolved

Pre-compilation often helps

With JIT and pre-compiled packages, median performance change is 0.

207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

Non-compilation slowdowns

Gc overhead,
Performance “bugs”

With compilation time excluded, there are still some slowdowns

207 examples extracted from CRAN packages (runtime >5s, no downloading, set.seed)

Slowdown due to GC interaction

fit = glmnet(x, y, lambda = lambda)

R.path = list()
for(k in 1:rep.num){
 ind.sample = sample(c(1:n), floor(n*sample.ratio), replace=FALSE)
 out.subglm = glmnet(x[ind.sample,],y[ind.sample], lambda = fit$lambda, alpha = alpha)
 R.path[[k]] = out.subglm$beta
 rm(out.subglm)
 gc()
}

gc() called in a tight loop:
85% of time is spent in GC tracing live heap
16% slowdown with JIT over AST

Excerpt from function lasso.stars (archived CRAN package)

The indirect GC overhead may also be due to indirect impact on heap expansion
when there is nothing wrong with the package, such as in AIM, cv.cox.interaction

Slowdown due to code generation

dichotomy <- function(fun, a, b, eps){
 expr <- parse(text = fun)
 execFun <- function(xx){}
 body(execFun) <- expr
 <...>
 flag <- sign(execFun(ab2) * execFun(a))
}

for (i in seq(lev)){
 for(j in seq(pointNum)){
 fun <- as.character(1)
 for (k in seq(fac)){
 if (model[k] == 'Hill_two')
 fun <- paste(fun, '-', pctEcx[k, i] * conc[j], '/ (', param[k, 1],
 '* xx / (', param[k, 2], '- xx))', sep = '')
 else if (model[k] == "Hill_three")
 fun <- paste(fun, '-', pctEcx[k, i] * conc[j], '/ (1 /', param[k, 3],
 '* (1 + (', param[k, 1], '/ xx)^', param[k, 2], '))', sep = '')
 …
 root[i, j] <- dichotomy(fun, lb, ub, eps)

Source code generation
and parsing

“eval(parse(text=))”

CRAN package mixtox

Slowdown due to improper use of
“digest”

digest::digest computes hash including internal object state, but is used when
visible state is needed. Internal state of a closure includes JIT bits and byte-code.

CRAN package R.cache

 # 1. Generate cache file
 key <- list(what=what, ...);
 pathnameC <- generateCache(key=key, dirs=dirs);

 # 1. Look for memoized results
 if (!force) {
 res <- loadCache(pathname=pathnameC, sources=sources);
 if (!is.null(res)) return(res)
 }

 # 2. Otherwise, call method with arguments
 res <- do.call(what, args=list(...), quote=FALSE, envir=envir);

 # 3. Memoize results
 saveCache(res, pathname=pathnameC, sources=sources);

 # 4. Return results
 res;

Computes digest
from closure object

Invokes the closure,
changing its internal state

Summary: how to improve
performance with byte-code

● Package pre-compilation
– Maintainer can enable selectively
– Eventually should be turned on by default

● JIT heuristic
– Compile later (after more calls)

● GC heap sizing heuristic
– Take GC load into account

● Package fixes

“debugging performance”

