
Tidy evaluation (hygienic fexprs)

Lionel Henry and Hadley Wickham | RStudio

Tidy evaluation

Result of our quest to harness fexprs (NSE functions)

Based on our experience with base R fexprs

tidyeval takes this experience + solves hygiene problems

fexpr = function with pass-by-expression semantics

2

• Model formulas

• base::subset() and transform()

• dplyr, ggplot2

fexprs versus macros

3

Run-time

Return a value

First-class

Not compilable

Compile-time

Code expansion

Transient

Compilable

fexprs macros

Similar to macros (unevaluated arguments) but different

Kent M. Pitman, "Special Forms in Lisp", Proceedings of the 1980 ACM Conference on Lisp and Functional Programming, 1980
Mitchell Wand, "The Theory of Fexprs is Trivial", Lisp and Symbolic Computation, 10(3), 1998
John N. Schutt, Fexprs as the basis of Lisp function application, Worcester Polytechnic Institute, 2010

http://www.ccs.neu.edu/home/wand/pubs.html#Wand98
https://www.wpi.edu/Pubs/ETD/Available/etd-090110-124904/

4

fexprs were abandoned in the 1980s

Hard to compile (for same reason: quote() + eval() is evil)

Weird semantics (dynamic scope and no first-class envs)

macros benefit from more than 50 years of research

Hygiene is a big topic

We'll see it's important for fexprs as well

But fexprs lived on in New S and R!

What did we learn?

fexprs versus macros

What does base R teach us about fexprs?

Overscoping: evaluate expressions in data context

Formulas: systematic capture of environment

5

Overscoping

6

Code is delayed to be evaluated in data context

Original context is still kept in scope

Evaluation makes sure we still have full R semantics

⟶ Major idiom that gives R its identity

Overscoping

7

var <- 1:32
lm(disp ~ var + as.factor(cyl), mtcars)

Model formulas

Code is delayed to be evaluated in data context

Original context is still kept in scope

Evaluation makes sure we still have full R semantics

⟶ Major idiom that gives R its identity

Overscoping

8

var <- 6
subset(mtcars, cyl == var)
with(mtcars, cyl + var)

Datawise operations

Code is delayed to be evaluated in data context

Original context is still kept in scope

Evaluation makes sure we still have full R semantics

⟶ Major idiom that gives R its identity

Hygiene

9

var <- 6
subset(mtcars, cyl == var)
with(mtcars, cyl + var)

Keeping the context around ⟶ notion of hygiene

Symbols should be looked up in the context where they appear

Hygiene fosters locality of reasoning

Hygiene

10

var <- 6
subset(mtcars, cyl == var)
with(mtcars, cyl + var)

contextdata

Macro expansion can hide local variables

For fexprs hygiene is about expansion and evaluation

In R hygiene is complicated by overscoping 
⟶ a proper overscope is crucial for consistent semantics

Overscoping

11

Making an overscope

Turn data to environment

Set original context as parent
eval(expr, data, environment())

Hence eval() takes envir and enclos arguments

We need the original environment!

⟶ formulas for explicit capture; 
 easy and safe to pass around

⟶ parent.frame() for substituted capture

substitute()

12

quote <- function(x) {
 substitute(x)
}

quotes <- function(...) {
 eval(substitute(alist(...)))
}

listify <- function(x, y) {
 substitute(list(x, y))
}

listify(foo, bar())
#> list(foo, bar())

Implicit capture Code expansion

Returns a bare expression

Has to be paired with parent.frame()

What's missing?

Systematic capture of context

Hygienic code expansion

Opting in and out the overscope

13

What's missing?

Systematic capture of context

Hygienic code expansion

Opting in and out the overscope

14

substitute()

Is parent.frame() always the hygienic context?

What if arguments are forwarded?

What if expanded code refers to local symbols?

15

substitute()

16

transform <- function(data, ...) {
 expr <- substitute(list(...))
 vals <- eval(expr, data, parent.frame())
 truncated
}

wrapper <- function(data, ...) {
 var <- "wrong"
 transform(data, ...)
}

What if arguments are forwarded

substitute()

17

transform <- function(data, ...) {
 expr <- substitute(list(...))
 vals <- eval(expr, data, parent.frame())
 # *truncated*
}

wrapper <- function(data, ...) {
 var <- "wrong"
 transform(data, ...)
}

var <- 10

transform(mtcars, new = cyl * var)

wrapper(mtcars, new = cyl * var)

local({
 var <- 1000
 dfs <- list(mtcars, mtcars)
 lapply(dfs, transform, new = cyl * var)
})

What if arguments are forwarded

substitute()

18

ll <- base::list

transform <- function(data, ...) {
 expr <- substitute(ll(...))
 vals <- eval(expr, data, parent.frame())
 truncated
}

This issue is compounded by forwarded arguments

⟶ Lack of hygienic code expansion

What if expanded code refers to local symbols?

What's missing?

Systematic capture of context

Hygienic code expansion

Opting in and out the overscope

19

substitute()

20

How to opt out of the overscope?

var <- 10
mtcars$var <- seq_len(nrow(data))

transform(mtcars, new = cyl * var)

The overscope is a moving part

For data analysis, no worries

For functions, need a bit more hygiene

substitute()

21

How to opt in the overscope?

var <- as.name("disp")
transform(mtcars, new = cyl * var)
#> Error in cyl * var :
#> non-numeric argument to binary operator

Why program against the quoted expression?
No context-switch when extracting function from script

Performance and semantics when fexpr is an interface

⟶ Parameterisation of fexprs against overscope

Tidy evaluation

Systematic capture of context

Hygienic code expansion

Opting in and out the overscope

22

Quosures

Quasiquotation

Quosures

23

Just like formulas, quosures

bundle
a quoted expression

a lexical enclosure

are first-class (easy to pass down to other functions, …)

But they are not literals!

Like symbols and function calls they represent a value

Evaluate in their own environments (possibly overscoped)

They have semantics of reified promises

Quosures

quosure <- local({
 var <- "foo"
 quo(toupper(var))
})

eval(quosure)
#> <quosure: local>
#> ~toupper(var)

var <- "other"
eval_tidy(quosure)
#> [1] "FOO"

quo() creates a  
local quosure

… but self-evaluates under 
tidy evaluation

Subclass of formula that 
self-quotes under evaluation…

24

Quosures

fexpr <- function(x) enquo(x)
fexpr(foo)
#> <quosure: global>
#> ~foo

variadic <- function(...) quos(...)
variadic(foo, bar)
#> [[1]]
#> <quosure: global>
#> ~foo

#> [[2]]
#> <quosure: global>
#> ~bar

enquo() turns 
argument to quosure

quos() turns forwarded 
arguments to quosures

25

Quasiquotation

26

Useful for code expansion (e.g. lisp macroexp)

We enable it in all fexprs ⟶ tamable overscope

UQ() to unquote and inline

UQS() to unquote and splice

!! and !!! syntax

var <- "foo"
quo(list(UQ(var)))
#> <quosure: global>
#> ~list("foo")

quo(list(UQS(letters[1:3])))
#> <quosure: global>
#> ~list("a", "b", "c")

Hygienic code expansion

var <- "foo"

inner <- local({
 var <- "bar"
 quo(var)
})  
nested <- local({
 concat <- c
 quo(concat(var, UQ(inner)))
})

27

nested
#> <quo>
#> ~concat(var, ~var)

eval_tidy(nested)
#> [1] "foo" "bar"

⟶ Full lexical scope within expanded expression!

Quosure overscoping

28

nested
#> <quosure: local>
#> ~concat(var, ~var)

data <- list(var = "boo!")

eval_tidy(nested, data)
#> [1] "boo!" "boo!"

Quosures evaluated within a given expression  
can be overscoped

We'll soon introduce safe quosures
Never evaluated within overscope
Laziness + safety

Taming the overscope

29

cyl <- 10
mutate(mtcars, new = cyl * (!! cyl))

Opting out of the overscope

Opting in
var <- as.name("disp")
mutate(mtcars, new = cyl * (!! var))
mutate(mtcars, new = cyl * disp)

Let's use dplyr::mutate() instead of transform()

Opting in and out

Hygienic overscoping

Summary

30

To sum things up, let's fix transform()
Capture dots in quosures

Hygienic expansion with unquote-splice

Quosure-friendly evaluation

transform <- function(data, ...) {
 expr <- quo(list(UQS(quos(...))))
 vals <- eval_tidy(expr, data)
 # truncated
}

Tidy capture

Tidy evaluation

Tidy overscope

(where tidy means hygienic)

