ALTRE P and Other Things

Luke Tierney \(^1\) Gabe Becker \(^2\) Tomas Kalibera \(^3\)

\(^1\)University of Iowa

\(^2\)Genentech

\(^3\)Czech Technical University in Prague

July 3, 2017
The C level R implementation works with a fixed set of data types, e.g. INTSXP, REALSXP, ENVSXP.

Contents are accessed through a function/macro abstraction.

ALTREP allows for alternate representations of these data types.

To existing C code these look like ordinary R objects.

Some of the goals:
- allow vector data to be in a memory-mapped file or distributed;
- allow compact representation of arithmetic sequences;
- allow adding meta-data to objects;
- allow computations/allocations to be deferred;
- support alternative representations of environments.

Current state is available in the ALTREP SVN branch.

More details are available in ALTREP.md at the branch root.
Abstract Classes

- A set of abstract classes for R data types:
 - ALTREP
 - ALTENV
 - ALTVEC
 - ALTINTEGER
 - ALTREAL
 - ALTSTRING

- The most specific classes correspond to R data types.
- Concrete classes specialize one of these.
ALTERNATE object methods:
- Duplicate
- Coerce
- Length
- Inspect

The standard macros defer to these methods for ALTERNATE objects.

Duplicate and Coerce methods can return NULL to fall back to the default behavior.
ALTVEC methods:
- Dataptr
- Dataptr_or_null
- Extract_subset

Dataptr may need to allocate memory; for now GC is suspended when calling the method.

Dataptr_or_null will not allocate.

Dataptr_or_null and Extract_subset can be used to avoid fully allocating an object.
Specific vector methods (patterned after JNI):

- Elt
- Set_elt
- Get_region
- No_NA
- Is_sorted
- and several others.

Some numeric vector methods:

- Min
- Max
- Sum
- Prod
Changes to Existing Functions

- Some functions modified to avoid using **DATAPTR**:
 - mean
 - min
 - max
 - sum
 - prod.
- These use **Get_region** to process data in chunks.
- Many more functions could be modified along these lines.
- Subsetting has also been modified to avoid using **DATAPTR**.
- This means **head**, **sample**, for example, may avoid allocation.
Classes can provide custom serialization by defining methods for
 - `Serialized_state`
 - `Unserialize`

Packages can register ALTREP classes.

Serialization records the package and class name.

Unserializing loads the package namespace and looks up the registered class.

A sample package implementing a memory mapped vector object is available on GitHub.
Vectors created by `n1:n2`, `seq_along` or `seq_len` can be represented compactly.

In R 3.3.x (or 3.4.0 with JIT disabled)

```r
> system.time(for (i in 1:1e9) break)
user  system elapsed
 0.258 1.141 1.400
> x <- 1:1e10
Error: cannot allocate vector of size 74.5 Gb
```

In the ALTREP branch:

```r
> system.time(for (i in 1:1e9) break)
user  system elapsed
 0 0 0
> x <- 1:1e10
> length(x)
[1] 1e+10
```
Converting integers or reals to strings is expensive.

In `lm` and `glm` default row labels on design matrices are created but rarely used.

The ALTREP branch
- modifies the internal `coerce` function to return a deferred string conversion object;
- this class has a subset method that returns another deferred conversion object.

For `lm` or `glm` with $n = 10^7$ and $p = 2$ this produces a 5 to 10 fold speedup.

Deferred evaluation could be useful in many other settings as well.
The **ALTREP** branch includes sample classes for memory mapped integer and real vectors.

The file can be opened for reading and writing or in read-only mode.

When used by **ALTREP**-aware code these will not result in allocating memory for holding all the data.

Using non-aware functions may result in attempts to allocate large objects.

The class provides an option for signaling an error when the raw data pointer is requested.
Currently changing an attribute on a shared vector requires a copy of the vector data.

Wrapper can hold the new attribute value and a reference to the original object to access its data.

Wrapper objects can also be used to attach meta-data, such as:
- is the vector sorted;
- are there no NA values.

The sort function returns a wrapper that records that the vector is sorted.
ALTREP objects are allocated as CONS cells with an altrep header bit set.

Standard macros, like LENGTH look at this bit to decide whether to dispatch.

To allow efficient scalar identification there is also a scalar bit,

With the ALTREP changes operations like DATAPTR, STRING_ELT, and SET_STRING_ELT now might cause allocation.

Eventually code should be rewritten to allow for this.

For now, GC is suspended in these allocations.
Some Issues and Notes

- Deferred evaluations/allocations are very useful, but:
 - allocation failures can be delayed and come at unexpected times;
 - operations may produce unexpected large allocations, e.g. $\log(1:1e10)$;
 - some situations can lead to repeated evaluations.
- Memory mapping issues:
 - serialization failure when the file is not available;
 - some settings might need a conversion layer (e.g. a file of 8-bit integers).
- Length and data address consistency; can these change during object lifetime?
- Deferred edits might be useful for improving complex assignment performance.
Changes Needed in R-devel

- ALTREP needs one or two new header bits.
- This requires a binary-incompatible header change.
- Because of alignment issues, adding 32 bits to the header does not increase object sizes on (most if not all) 64-bit platforms.
- This also allows room for a reasonable size reference count.
- This does seem like a good opportunity to also reserve 64 bits for the vector length fields (which does increase vector object sizes).
- There is now a mechanism in place (**R_INTERNALS_UUID**) that prevents loading packages with compiled code created by a binary-incompatible R.
- It would be good to make this change fairly soon; if there are other header adjustments needed these could happen now also.
Transition Stages for R-devel

- Rough order of steps:
 - Header changes.
 - Add support for basic framework, packages.
 - Modify some functions to take advantage of support.
 - Create ALTREP object within R-devel.

- Header change will be most disruptive; best to do it soon.

- Will need to check against CRAN, Bioconductor at each stage.
Other Things

- Reference counting:
 - more maintainable;
 - allow less duplicating;
 - may help improving complex assignment performance.

- Compilation:
 - reduce remaining interpreted/compiled differences;
 - pre-compile packages by default;
 - more optimization opportunities.

- Integer and logical sum:
 - Currently \(\text{sum}(x > 0) \) can return \(\text{NA} \) for a long vector.
 - Allow \(\text{sum}(x) \) to return a double?