
T
G

rad
u

al ty
pin

g
 for R

Jan Vitek, Northeastern University

This is is not a type:

The Iron Rolling Mill by Adolf Menzel

Types enhance productivity

function(x) { 
 var y = x ? 2 : “Y”
 if x y += “ES”
 else y += 40
 return y
}

Types prevent Johnny from going “wrong”

…well-typed programs cannot “go wrong”
Robin Milner, 1978 .

A Theory of Type Polymorphism .

The compile-time type checker for this language
has proven to be a valuable filter which traps a
significant proportion of programming errors.

once the type checker has accepted a program,
code may be generated which assumes that no

objects carry their types at run-time. This is
widely accepted as yielding efficient object code

m (Object [] argh) {
 argh [0] = new Object ()
}

m(new String[“hi”])

The Tower of Programming Languages

Smalltalk

PHP

Lisp

Ruby

JavaScript

Racket

Python

R

Matlab

Perl

Clojure

VBLua Excel

The Tower of Programming Languages

Smalltalk

PHP

Ruby

JavaScript

Racket

Python
Clojure

A gradual type system can gradually enrich
“scripts” with explicit and sound types
without changing code

— Matthias Felleisen, TLDI 2010

The Gradual Typing Hypothesis

From Static to Dynamic Adding dynamic types to C]

Gavin Bierman1, Erik Meijer2, and Mads Torgersen2

1 Microsoft Research
2 Microsoft Corporation

{gmb,emeijer,madst}@microsoft.com

Abstract. Developers using statically typed languages such as C] and Java in-
creasingly have to interoperate with APIs and object models defined in dynamic
languages. This impedance mismatch results in code that is difficult to under-
stand, awkward to analyze, and expensive to maintain. In this paper we describe
new features in C]4.0 that support the safe combination of dynamically and stati-
cally typed code by deferring type checking of program fragments with static type
dynamic until runtime. When executed, these dynamic code fragments are type-
checked and resolved using the same rules as statically typed code. We formalize
these features in a core fragment of C] and prove important safety properties.

1 Introduction

Real-world software applications are architected in several tiers. The increased use of
JavaScript and other dynamic languages in web-based applications mean that the mid-
tier software, typically written in a statically-typed language such as C] and Java, has
to interoperate with dynamically-typed top-tier code and objects. There is clearly an
impedance mismatch between these two data models, which leads to particularly awk-
ward coding in the mid-tier code.

The Dynamic Language Runtime (DLR) is an API which runs on top of the Com-
mon Language Runtime (CLR). Its purpose is to enable efficient implementations of dy-
namic programming languages—for example, IronRuby and IronPython—on the CLR,
but also to facilitate great interoperability between dynamic languages and statically-
typed CLR languages such as C] [12]. Core to the DLR is the notion of dynamic ob-
jects; i.e., objects that can do their own name binding at runtime instead of having it
done for them by a compiler. These are the currency of dynamic interoperation between
languages.

In this paper we focus on new features in C]4.0 that improve interoperation with
APIs and objects that are defined in dynamic languages and target the DLR. Whilst we
focus on these new features in the context of C], none of them are especially tied to the
language: the design principles, which we capture in our formalization, could easily be
applied to any class-based object-oriented language.

These extensions to C] consist of a new type dynamic and changes to the type system
to allow the safe coexistence of statically and dynamically typed code and data.3 The
combination of static and dynamic type systems has been the focus of considerable

3 This combination of static and dynamic typing is sometimes referred to as gradual typing. We
do not use this terminology to avoid confusion with Siek and Taha’s particular approach [21].

ECOOP 2010

HtmlDocument doc = HtmlPage.Document;
HtmlWindow win = HtmlPage.Window;
string latitude, longitude, name, address;
...

ScriptObject map = win.CreateInstance("VEMap", "myMap");
map.Invoke("LoadMap");
map.Invoke("DeleteAllShapes");

var x = win.CreateInstance("VELatLong", latitude, longitude);
var pin = map.Invoke("AddPushpin", x);

doc.SetProperty("Title", "Information for: " + name);
((ScriptObject)pin).Invoke("SetTitle", name);
((ScriptObject)pin).Invoke("SetDescription", address);

map.Invoke("SetCenterAndZoom", x, 9);

Clearly this style of string-based interoperation is weak, fragile, difficult for tools to
support and expensive to maintain. In C]4.0 we have a new type dynamic. The novelty
is that the type system has been extended to allow access to any member of a dynamic
object (just like in a dynamic language). The compiler inserts calls to the DLR to per-
form the familiar C] resolution rules at runtime. (Of course this means that we may get
lookup errors as exceptions during the execution of the program, but the string-based
interfaces had this property already.) Thus in C]4.0, we can rewrite the previous code
and declare the doc, win and map variables to be of type dynamic.

dynamic doc = HtmlPage.Document;
dynamic win = HtmlPage.Window;
string latitude, longitude, name, address;
...

dynamic map = win.CreateInstance("VEMap", "myMap");
map.LoadMap();
map.DeleteAllShapes();

var x = win.CreateInstance("VELatLong", latitude, longitude);
var pin = map.AddPushpin(x);

doc.Title = "Information for: " + name;
pin.SetTitle(name);
pin.SetDescription(address);
map.SetCenterAndZoom(x, 9);

Notice how all the invocations of Invoke and SetProperty disappear in favour of or-
dinary method calls and member access. This works at runtime because objects such
as map are dynamic objects that know how to correctly lookup members such as the
AddPushpin method on the underlying JavaScript object. Of course the value returned
from map.AddPushpin() again has the static type dynamic, allowing further dynamic
invocations.

Runtime errors possible in dynamic
operations.

Otherwise sound.

<?hh // strict

function annotating(?string $x): string {
 return $x === null ? "Hello" : "Bye";
}

function f(): void {
 // UNSAFE
 annotating(6);
}
function g(): void {
 // UNSAFE
 annotating(true);
}

Optional types

Runtime errors may occur anywhere, the
dynamic type system ensure memory safety
but programs are unsound

Array Operators Using Multiple Dispatch

Array Operators Using Multiple Dispatch
A design methodology for array implementations in dynamic languages

Jeff Bezanson Jiahao Chen Stefan Karpinski Viral Shah Alan Edelman
MIT Computer Science and Artificial Intelligence Laboratory

bezanson@mit.edu, jiahao@mit.edu, stefan@karpinski.org, viral@mayin.org, edelman@mit.edu

Abstract
Arrays are such a rich and fundamental data type that they tend to
be built into a language, either in the compiler or in a large low-
level library. Defining this functionality at the user level instead
provides greater flexibility for application domains not envisioned
by the language designer. Only a few languages, such as C++ and
Haskell, provide the necessary power to define n-dimensional ar-
rays, but these systems rely on compile-time abstraction, sacrificing
some flexibility. In contrast, dynamic languages make it straightfor-
ward for the user to define any behavior they might want, but at the
possible expense of performance.

As part of the Julia language project, we have developed an ap-
proach that yields a novel trade-off between flexibility and compile-
time analysis. The core abstraction we use is multiple dispatch. We
have come to believe that while multiple dispatch has not been es-
pecially popular in most kinds of programming, technical comput-
ing is its killer application. By expressing key functions such as
array indexing using multi-method signatures, a surprising range
of behaviors can be obtained, in a way that is both relatively easy
to write and amenable to compiler analysis. The compact factoring
of concerns provided by these methods makes it easier for user-
defined types to behave consistently with types in the standard li-
brary.

Keywords Julia, multiple dispatch, type inference, array indexing,
static analysis, dynamic dispatch

1. Array libraries
“Unfortunately, it is very difficult for a designer to se-

lect in advance all the abstractions which the users of his
language might need. If a language is to be used at all, it is
likely to be used to solve problems which its designer did
not envision, and for which abstractions embedded in the
language are not sufficient.” - Ref. [22]

n-arrays (arrays of rank n, or simply arrays) are an essential
data structure for technical computing, but are challenging to im-
plement efficiently [24, 26, 27]. There is a long history of special-
purpose compiler optimizations to make operations over arrays ef-

[Copyright notice will appear here once ’preprint’ option is removed.]

ficient, such as loop fusion for array traversals and common subex-
pression elimination for indexing operations [3, 24]. Many lan-
guage implementations therefore choose to build array semantics
into compilers.

Only a few of the languages that support n-arrays, however,
have sufficient power to express the semantics of n-arrays for
general rank n without resorting to hard-coding array behav-
ior into a compiler. Single Assignment C [10] is a notable lan-
guage with built-in n-array support. Other languages have well-
established array libraries, like the C++ libraries Blitz++ [30]
and Boost.MultiArray [9] and Haskell’s Repa (Regular Parallel
Arrays) [15, 20, 21]. These libraries leverage the static semantics
of their host languages to define n-arrays inductively as the outer
product of a 1-array with an (n�1)-array [1]. Array libraries typi-
cally handle dimensions recursively, one at a time; knowing array
ranks at compile-time allows the compiler to infer the amount of
storage needed for the shape information, and unroll index compu-
tations fully.

1.1 Static tradeoffs
Array libraries built using compile-time abstraction have good per-
formance, but also some limitations. First, language features like
C++ templates are not available at run-time, so these libraries do
not support n-arrays where n is known only at run-time. Second,
code using these features is notoriously difficult to read and write;
it is effectively written in a separate sublanguage. Third, the re-
cursive strategy for defining n-arrays naturally favors only certain
indexing behaviors. For example, Repa’s reductions like sum are
only defined naturally over the last index [15]; reducing over a dif-
ferent index requires permutations. However, it is worth noting that
Haskell’s type system encourages elegant factoring of abstractions.
While the syntax may be unfamiliar, we feel that Repa ought to
hold much interest for the technical computing community.

Some applications call for semantics that are not amenable to
static analysis. Some may require arrays whose ranks are known
only at run-time, e.g. when reading in arrays from disk or from a
data stream where the rank is specified as part of the input data. In
these programs, the data structures cannot be guaranteed to fit in
a constant amount of memory. Others may wish to dynamically
dispatch on the rank of an array, a need which a library must
anticipate by providing appropriate virtual methods.

1.2 Dynamic language approaches
Applications requiring run-time flexibility are better expressed
in dynamic languages such as Mathematica, MATLAB, R, and
Python/NumPy, where all operations are dynamically dispatched
(at least semantically, if not in actual implementation). Such flexi-
bility, however, has traditionally come at the price of slower execu-
tion. To improve performance, dynamic languages typically resort
to static analysis at some level. One strategy is to implement ar-

Array Operators Using Multiple Dispatch 1 2014/7/16

ar
X

iv
:1

40
7.

38
45

v1
 [

cs
.P

L]
 1

4
Ju

l 2
01

4

This signature is applicable to 1-dimensional arrays whose element type is some kind of
integer, any type of second argument, and a third argument that is the same type as the
array’s element type. Inside the method, T will be bound to the array element type.

The primary use of this construct is to write methods applicable to a family of parametric
types (e.g. all integer arrays, or all numeric arrays) despite invariance. The other use is
writing “diagonal” constraints as in the example above. Such diagonal constraints significantly
complicate the type lattice operators.

2.8 Constructors

Composite types are applied as functions to construct instances. The default constructor
accepts values for each field as arguments. Users may override the default constructor by
writing method definitions with the same name as the type inside the type definition block.
Inside the type block the identifier new is bound to a pseudofunction that actually constructs
instances from field values. The constructor for the Rational type is a good example:

type Rational{T<:Integer} <: Real

num::T

den::T

function Rational(num::T, den::T)

if num == 0 && den == 0

error("invalid rational: 0//0")

end

g = gcd(den, num)

new(div(num, g), div(den, g))

end

end

This allows Rational to enforce representation as a fraction in lowest terms.

2.9 Singleton Kinds

A generic function’s method table is e↵ectively a dictionary where the keys are types. This
suggests that it should be just as easy to define or look up methods with types themselves as
with the types of values. Defining methods on types directly is analogous to defining class
methods in class-based object systems. With multi-methods, definitions can be associated
with combinations of types, making it easy to represent properties not naturally owned by one
type.

To accomplish this, we introduce a special singleton kind Type{T}, which contains the
type T as its only value. The result is a feature similar to eql specializers in CLOS, except
only for types. An example use is defining type traits:

typemax(::Type{Int64}) = 9223372036854775807

This definition will be invoked by the call typemax(Int64). Note that the name of a
method argument can be omitted if it is not referenced.

7

Runtime errors may occur at any function
invocation as there are no checks, the
dynamic type system ensure memory safety
but programs are unsound

The Design and Implementation of Typed Scheme

Sam Tobin-Hochstadt Matthias Felleisen
PLT, Northeastern University

Boston, MA 02115

Abstract
When scripts in untyped languages grow into large programs, main-
taining them becomes difficult. A lack of types in typical script-
ing languages means that programmers must (re)discover critical
pieces of design information every time they wish to change a pro-
gram. This analysis step both slows down the maintenance process
and may even introduce mistakes due to the violation of undiscov-
ered invariants.
This paper presents Typed Scheme, an explicitly typed exten-

sion of an untyped scripting language. Its type system is based on
the novel notion of occurrence typing, which we formalize and me-
chanically prove sound. The implementation of Typed Scheme ad-
ditionally borrows elements from a range of approaches, includ-
ing recursive types, true unions and subtyping, plus polymorphism
combined with a modicum of local inference. Initial experiments
with the implementation suggest that Typed Scheme naturally ac-
commodates the programming style of the underlying scripting lan-
guage, at least for the first few thousand lines of ported code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Language Con-
structs and Features]: Modules, Packages; D.3.m [Miscellaneous]:
Cartesian Closed

General Terms Languages, Design

Keywords Type Systems, Scheme

1. Type Refactoring: From Scripts to Programs
Recently, under the heading of “scripting languages”, a variety of
new languages have become popular, and even pervasive, in web-
and systems-related fields. Due to their popularity, programmers
often create scripts that then grow into large applications.
Most scripting languages are untyped and have a flexible seman-

tics that makes programs concise. Many programmers find these
attributes appealing and use scripting languages for these reasons.
Programmers are also beginning to notice, however, that untyped
scripts are difficult to maintain over the long run. The lack of types
means a loss of design information that programmers must recover
every time they wish to change existing code. Both the Perl com-
munity (Tang 2007) and the JavaScript community (ECMA Inter-
national 2007) are implicitly acknowledging this problem with the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c⃝ 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

addition of Common Lisp-style (Steele Jr. 1984) typing constructs
to the upcoming releases of their respective languages.
In the meantime, industry faces the problem of porting existing

application systems from untyped scripting languages to the typed
world. Based on our own experience, we have proposed a theoret-
ical model for this conversion process and have shown that partial
conversions can benefit from type-safety properties to the desired
extent (Tobin-Hochstadt and Felleisen 2006). The key assumption
behind our work is the existence of an explicitly typed version of
the scripting language, with the same semantics as the original lan-
guage, so that values can freely flow back and forth between typed
and untyped modules. In other words, we imagine that program-
mers can simply add type annotations to a module and thus intro-
duce a certain amount of type-safety into the program.
At first glance, such an assumption seems unrealistic. Program-

mers in untyped languages often loosely mix and match reasoning
from various type disciplines when they write scripts. Worse, an
inspection of code suggests they also include flow-oriented reason-
ing, distinguishing types for variables depending on prior opera-
tions. In short, untyped scripting languages permit programs that
appear difficult to type-check with existing type systems.
To demonstrate the feasibility of our approach, we have de-

signed and implemented Typed Scheme, an explicitly typed ver-
sion of PLT Scheme. We have chosen PLT Scheme for two rea-
sons. On one hand, PLT Scheme is used as a scripting language
by a large number of users. It also comes with a large body of
code, with contributions ranging from scripts to libraries to large
operating-system like programs. On the other hand, the language
comes with macros, a powerful extension mechanism (Flatt 2002).
Macros place a significant constraint on the design and implemen-
tation of Typed Scheme, since supporting macros requires type-
checking a language with a user-defined set of syntactic forms.
We are able to overcome this difficulty by integrating the type
checker with the macro expander. Indeed, this approach ends up
greatly facilitating the integration of typed and untyped modules.
As envisioned (Tobin-Hochstadt and Felleisen 2006), this integra-
tion makes it easy to turn portions of a multi-module program into
a partially typed yet still executable program.
Here we report on the novel type system, which combines the

idea of occurrence typing with subtyping, recursive types, poly-
morphism and a modicum of inference. We first present a formal
model of the key aspects of occurrence typing and prove it to be
type-sound. Later we describe how to scale this calculus into a full-
fledged, typed version of PLT Scheme and how to implement it.
Finally, we give an account of our preliminary experience, adding
types to thousands of lines of untyped Scheme code. Our experi-
ments seem promising and suggest that converting untyped scripts
into well-typed programs is feasible.

POPL 2008

#lang racket

(provide (struct-out pt)
 distance)

(struct pt (x y))

; distance : pt pt -> real
(define (distance p1 p2)
 (sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
 (sqr (- (pt-y p2) (pt-y p1))))))

#lang typed/racket

(require/typed "distance.rkt"
 [#:struct pt ([x : Real] [y : Real])]
 [distance (-> pt pt Real)])

(distance (pt 3 5) (pt 7 0))

Typed Racket is sound but does not
preserve all correct untyped programs

Errors can occur anywhere but are caught
and properly blamed

fun move(p: like Point) {
 x := p.getX();
 y := p.getY();
 # p.hog(); raises compile-time err
}
fun move(p: Point) {
 x := p.getX();
 y := p.getY();
}

Thorn—Robust, Concurrent, Extensible Scripting on the JVM

Bard Bloom1, John Field1, Nathaniel Nystrom2⇤, Johan Östlund3,
Gregor Richards3, Rok Strniša4, Jan Vitek3, Tobias Wrigstad5†

1 IBM Research 2 University of Texas at Arlington 3 Purdue University
4 University of Cambridge 5 Stockholm University

Abstract
Scripting languages enjoy great popularity due to their sup-
port for rapid and exploratory development. They typically
have lightweight syntax, weak data privacy, dynamic typing,
powerful aggregate data types, and allow execution of the
completed parts of incomplete programs. The price of these
features comes later in the software life cycle. Scripts are
hard to evolve and compose, and often slow. An additional
weakness of most scripting languages is lack of support for
concurrency—though concurrency is required for scalability
and interacting with remote services. This paper reports on
the design and implementation of Thorn, a novel program-
ming language targeting the JVM. Our principal contribu-
tions are a careful selection of features that support the evo-
lution of scripts into industrial grade programs—e.g., an ex-
pressive module system, an optional type annotation facility
for declarations, and support for concurrency based on mes-
sage passing between lightweight, isolated processes. On the
implementation side, Thorn has been designed to accommo-
date the evolution of the language itself through a compiler
plugin mechanism and target the Java virtual machine.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, dis-
tributed, and parallel languages; Object-oriented languages;
D.3.3 [Programming Languages]: Language Constructs and
Features—Concurrent programming structures; Modules,
packages; Classes and objects; Data types and structures;
D.3.4 [Programming Languages]: Processors—Compilers
General Terms Design
Keywords Actors, Pattern matching, Scripting

⇤ Work done while the author was affiliated with IBM Research.
† Work done while the author was affiliated with Purdue University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c� 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

1. Introduction
Scripting languages are lightweight, dynamic programming
languages designed to maximize short-term programmer
productivity by offering lightweight syntax, weak data en-
capsulation, dynamic typing, powerful aggregate data types,
and the ability to execute the completed parts of incomplete
programs. Important modern scripting languages include
Perl, Python, PHP, JavaScript, and Ruby, plus languages
like Scheme that are not originally scripting languages but
have been adapted for it. Many of these languages were orig-
inally developed for specialized domains (e.g., web servers
or clients), but are increasingly being used more broadly.

The rising popularity of scripting languages can be at-
tributed to a number of key design choices. Scripting lan-
guages’ pragmatic view of a program allows execution of
completed sections of partially written programs. This fa-
cilitates an agile and iterative development style—“at every
step of the way a working piece of software” [9]. Execu-
tion of partial programs allows instant unit-testing, interac-
tive experimentation, and even demoing of software at all
times. Powerful and flexible aggregate data types and dy-
namic typing allow interim solutions that can be revisited
later, once the understanding of the system is deep enough
to make a more permanent choice. Scripting languages focus
on programmer productivity early in the software life cycle.
For example, studies show a factor 3–60 reduced effort and
2–50 reduced code for Tcl over Java, C and C++ [38, 39].
However, when the exploratory phase is over and require-
ments have stabilized, scripting languages become less ap-
pealing. The compromises made to optimize development
time make it harder to reason about correctness, harder to do
semantic-preserving refactorings, and in many cases harder
to optimize execution speed. Even though scripts are suc-
cinct, the lack of type information makes the code harder to
navigate. An additional shortcoming of most scripting lan-
guages is lack of first-class support for concurrency. Concur-
rency is no longer just the province of specialized software
such as high-performance scientific algorithms—it is ubiqui-
tous, whether driven by the need to exploit multicore archi-
tectures or the need to interact asynchronously with services
on the Internet. Current scripting languages, when they sup-

OOSPLA 2009

Runtime errors may occur in dynamic and
like type code, they are dynamically caught

Everywhere else we have soundness

What Types for R?

Core

CRAN

Users

Why Types for R?
function (x, na.rm = FALSE, dims = 1L) {
 if (is.data.frame(x))
 x <- as.matrix(x)
 if (!is.array(x) || length(dn <- dim(x)) < 2L)
 stop("'x' must be an array of at least 2D")
 if (dims < 1L || dims > length(dn) - 1L)
 stop("invalid ‘dims'")

Use types to systematize expectations made
by a function on its arguments

function
 (x :~ Matrix(N,…),  
 na.rm :: Logical = FALSE,
 dims :: Range(1,dim(x))= 1L){

Why Types for R?
function (x, i) {
 while (x < i)
 x++
 …

Use types to avoid unnecessary allocation and
to generate efficient native code

function {T<:Numeric}(x :: T, i :: T) {
 while (x < i)
 x++
 …

 x :: Int

 x :: Int[]

 x :: Int[2]

 x :: Int[2,…]

 x ~: Logical

 x :: Int[2,…]

 {N}(x::Int[N],y::Logical[N])

Open questions

• Types for data frames?

• Types for S3, S4, and … ?

• Types for functions…

