Microsoft R Server

R Server Technology

- DeployR
- ConnectR
- ScaleR
- DistributedR

Cloud
- Windows
- Linux
- HDInsight

Hadoop & Spark
- Hortonworks
- Cloudera
- MapR

EDW
- SQL Server 2016
- Teradata Database

RDBMS
- SQL Server 2016 EE
- SQL Server 2016 SE

Desktops & Servers
- Windows
- Linux
R Server “Parallel External Memory Algorithms” (PEMAs)

- The `initialize()` method of the master Pema object is executed
- The master Pema object is serialized and sent to each worker process
- The worker processes call `processData()` once for each chunk of data
 - The fields of the worker’s Pema object are updated from the data
 - In addition, a data frame may be returned from `processData()`, and will be written to an output data source
 - When a worker has processed all of its data, it sends its reserialized Pema object back to the master (or an intermediate combiner)
- The master process loops over all of the Pema objects returned to it, calling `updateResults()` to update its Pema object
- `processResults()` is then called on the master Pema object to convert intermediate results to final results
- `hasConverged()`, whose default returns TRUE, is called, and either the results are returned to the user or another iteration is started
Sample R Script:

```r
rxSetComputeContext(RxHadoopMR(...))
inData <- RxTextData("/ds/AirOnTime.csv", fileSystem = hdfsFS)
model <- rxLogit(ARR_DEL15 ~ DAY_OF_WEEK + UNIQUE_CARRIER, data = inData)
```
Easy to Switch From MapReduce to Spark

Sample R Script:

```r
rxSetComputeContext( RxSpark(...) )

inData <- RxTextData("/ds/AirOnTime.csv", filesystem = hdfsFS)

model <- rxLogit(ARR_DEL15 ~ DAY_OF_WEEK + UNIQUE_CARRIER, data = inData)
```
R Server: scale-out R

- 100% compatible with open source R
 - Any code/package that works today with R will work in R Server

- Wide range of scalable and distributed R functions
 - Examples: rxDataStep(), rxSummary(), rxGlm(), rxDForest(), rxPredict()

- Ability to parallelize any R function
 - Ideal for parameter sweeps, simulation, scoring
Parallelized & Distributed Algorithms

ETL
- Data import – Delimited, Fixed, SAS, SPSS, OBDC
- Variable creation & transformation
- Recode variables
- Factor variables
- Missing value handling
- Sort, Merge, Split
- Aggregate by category (means, sums)

Descriptive Statistics
- Min / Max, Mean, Median (approx.)
- Quantiles (approx.)
- Standard Deviation
- Variance
- Correlation
- Covariance
- Sum of Squares (cross product matrix for set variables)
- Pairwise Cross tabs
- Risk Ratio & Odds Ratio
- Cross-Tabulation of Data (standard tables & long form)
- Marginal Summaries of Cross Tabulations

Statistical Tests
- Chi Square Test
- Kendall Rank Correlation
- Fisher’s Exact Test
- Student’s t-Test

Predictive Statistics
- Sum of Squares (cross product matrix for set variables)
- Multiple Linear Regression
- Covariance & Correlation Matrices
- Logistic Regression
- Predictions/scoring for models
- Residuals for all models

Variable Selection
- Stepwise Regression

Machine Learning
- Decision Trees
- Decision Forests
- Gradient Boosted Decision Trees
- Naïve Bayes

Clustering
- K-Means

Sampling
- Subsample (observations & variables)
- Random Sampling

Simulation
- Simulation (e.g. Monte Carlo)
- Parallel Random Number Generation

Custom Parallelization
- rxDataStep
- rxExec
- PEMA-R API
1. R Server Local Processing:
 - Data in Distributed Storage
 - R process on Edge Node

2. R Server Distributed Processing:
 - Master R process on Edge Node
 - Apache YARN and Spark
 - Worker R processes on Data Nodes
R Server for Hadoop - Connectivity

Remote Execution: ssh

ssh or R Tools for Visual Studio

Thin Client IDEs

https://

Jupyter Notebooks

https://

Web Services

BI Tools & Applications

Edge Node

R Server Master Task

Initiator

Finalizer

Worker Task

MapReduce

Worker Task

Worker Task
HDInsight + R Server: Managed Hadoop for Advanced Analytics in the Cloud

- Easy setup, elastic, SLA
- Spark
 - Integrated notebooks experience
 - Upgraded to latest Version 1.6.1
- R Server
 - Leverage R skills with massively scalable algorithms and statistical functions
 - Reuse existing R functions over multiple machines
R Server on Hadoop/HDInsight scales to hundreds of nodes, billions of rows and terabytes of data.

Logistic Regression on NYC Taxi Dataset

Elapsed Time

Billions of rows

2.2 TB
Typical advanced analytics lifecycle

Prepare: Assemble, cleanse, profile and transform diverse data relevant to the subject.

Model: Use statistical and machine learning algorithms to build classifiers and regression models.

Operationalize: Make predictions and visualizations to support business applications.
Airline Arrival Delay Prediction Demo

- Clean/Join – Using SparkR from R Server
- Train/Score/Evaluate – Scalable R Server functions
- Deploy/Consume – Using AzureML from R Server
Airline data set

• Passenger flight on-time performance data from the US Department of Transportation’s TranStats data collection
• >20 years of data
• 300+ Airports
• Every carrier, every commercial flight
• http://www.transtats.bts.gov
Weather data set

- Hourly land-based weather observations from NOAA
- > 2,000 weather stations
Provisioning a cluster with R Server
Scaling a cluster
Clean and Join using SparkR in R Server

Join airline data with weather at Origin Airport

```r
joinedDF <- SparkR::join(
  airDF,
  weatherDF,
  airDF$OriginAirportID == weatherDF$AirportID &
  airDF$Year == weatherDF$AdjustedYear &
  airDF$Month == weatherDF$AdjustedMonth &
  airDF$DayofMonth == weatherDF$AdjustedDay &
  airDF$CRSDepTime == weatherDF$AdjustedHour,
  joinType = "left_outer"
)
```
Train, Score, and Evaluate using R Server

```
# Train and Test a Decision Tree model

# Train using the scalable rxDTree function

dTreeModel <- rxDTree(formula, data = trainDS,
                      maxDepth = 6, pruneCp = "auto")

# Test using the scalable rxPredict function

rxPredict(dTreeModel, data = testDS, outData = treePredict,
          extraVarsToWrite = c("ArrDel15"), overwrite = TRUE)
```
Publish Web Service from R

```r
# Publish the scoring function as a web service

library(AzureML)

workspace <- workspace(config = "azureml-settings.json")

eendpoint <- publishWebService(workspace, scoringFn,
     name="Delay Prediction Service",
     inputSchema = exampleDF)

# Score new data via the web service

scores <- consume(endpoint, dataToBeScored)
```
Demo Technologies

- HDInsight Premium Hadoop cluster
- Spark on YARN distributed computing
- R Server R interpreter
- SparkR data manipulation functions
- RevoScaleR Statistical & Machine Learning functions
- AzureML R package and Azure ML web service
Building a genetic disease risk application with R

Data
- Public genome data from 1000 Genomes
- About 2TB of raw data

Platform
- HDInsight Hadoop (8 clusters)
 - 1500 cores, 4 data centers
 - Microsoft R Server

Processing
- VariantTools R package (Bioconductor)
- Match against NHGRI GWAS catalog

Analytics
- Disease Risk
- Ancestry

Presentation
- Expose as Web Service APIs
- Phone app, Web page, Enterprise applications
For more information...

R Server
microsoft.com/r-server

HDInsight Premium
microsoft.com/hdinsight