
Fast and Accurate Computation of Binomial

Probabilities

Catherine Loader
Lucent Technologies

Room 2C-279
600 Mountain Avenue

Murray Hill, NJ 07974, USA

February 5, 2002

Abstract

An algorithm commonly used to compute binomial probabilities is
shown to be numerically inaccurate for large sample sizes. We develop
an alternative algorithm based on a saddle point expansion, and show it
obeys three common limit theorems, essentially up to machine precision.
The speed of the new algorithm is similar to that of the commonly used
algorithm. Extensions to other distributions and to cumulative probabil-
ities are briefly discussed.

C code implementing the algorithms in this paper is available from the
author’s web page,
http://cm.bell-labs.com/stat/catherine/research.html.

Keywords: binomial probability; numerical accuracy; saddle point

1 Introduction

The binomial distribution is one of the most commonly used distributions in
statistics, with a discrete mass function

p(x;n, p) =
n!

x!(n− x)!
px(1− p)n−x;x = 0, . . . , n. (1)

In this paper, it is shown that an algorithm commonly used for computing
p(x;n, p) is not accurate for large n. An alternative fast algorithm with improved
accuracy is presented in Section 2. Performance under certain large sample limit
theorems is discussed in Section 3. Numerical results and timings are presented
in Section 4.

1

2 Computational Algorithms

A direct implementation of p(x;n, p) would multiply out all the factorials and
powers appearing in (1). This is accurate even for moderately large n, provided
that one is careful to avoid unnecessary underflow and overflow problems. But
the computational time for this algorithm is O(n), making it unsuitable for
routine use.

An alternative computation is to write (1) as

log(p(x;n, p)) = log(n!)− log(x!)− log((n− x)!)
+ x log(p) + (n− x) log(1− p). (2)

Since n! = Γ(n + 1) and the log-gamma function is provided in most math
libraries, this provides a convenient O(1) algorithm for computing p(x;n, p).
This is the algorithm used by the dbinom() functions in S, S-Plus and R1,
and by the binopdf() function in Matlab’s statistics toolbox. NAG uses an
incomplete algorithm similar to that presented below, but misses some crucial
parts of the expansion. As a result, NAG restricts arguments to np(1−p) < 106.
This paper appears to provide the first implementation producing stable results
for larger parameter values with standard finite-precision arithmetic.

The classic algorithm is numerically inaccurate for large n. To see this,
suppose n = 2 × 106, x = 106 and p = 0.5. Then log(n!) ≈ 2.7 × 107, while
log(p(x;n, p)) ≈ −7.5. This implies that cancellation in the subtractions in (2)
will result in the loss of about seven significant figures of precision. This is quite
severe, and gets worse for larger n.

The algorithm recommended in this note is based on a saddle point expan-
sion:

p(x;n, p) = p(x;n, x/n)e−D(x;n,p) (3)

where the deviance D(x;n, p) is defined as

D(x;n, p) = log(p(x;n, x/n))− log(p(x;n, p))

= x log(
x

np
) + (n− x) log(

n− x

n(1− p)
).

To implement the saddle point algorithmm, we need accurate methods for
computing p(x;n, x/n) and D(x;n, p). Evaluation of p(x;n, x/n) uses the Stirling-
De Moivre series:

log(n!) =
1
2

log(2πn) + n log(n)− n + δ(n) (4)

where the remainder term δ(n) has the expansion

δ(n) =
1

12n
− 1

360n3
+

1
1260n5

+ O(n−7).

1Current versions of R have adopted methods from this paper

2

Using this expansion for the factorials in p(x;n, x/n), significant cancellation
occurs, and

p(x;n, x/n) =
√

n

2πx(n− x)
eδ(n)−δ(x)−δ(n−x). (5)

We remark that the expansion (4) is routinely used in evaluating the log-
gamma function. With simplifications, mathematical libraries including Nu-
merical Recipes (Press, Teukolsky, Vetterling and Flannery 1992, Section 6.1)
and the dbinom.f routine in SLATEC (1993), use this expansion for computing
the binomial coefficient n!/x!(n − x)!. But simplifying the binomial coefficient
alone is not sufficient for accurate computation of binomial probabilities; parts
of the coefficient must be incorporated into the deviance.

Inspection of the deviance D(x;n, p) shows (dependent on the sign of x −
np) that one of the log terms is positive and the other negative, creating the
possibility of loss of significance. To avoid this problem, we write

D(x;n, p) = npD0(
x

np
) + nqD0(

n− x

nq
) (6)

where D0(ε) = ε log(ε) + 1− ε and q = 1− p. This function is non-negative for
all ε. For ε close to 1, D0(ε) can be evaluated through the series expansion

npD0(
x

np
) =

(x− np)2

x + np
+ 2x

∞∑
j=1

v2j+1

2j + 1

where v = (x − np)/(x + np). In the author’s implementation, this expansion
is used for |v| < 0.1, or equivalently, 9/11 < ε < 11/9. For other values of
ε, D0(ε) is evaluated directly. The final saddle point algorithm is obtained by
substituting (5) and (6) into (3).

Tail Probabilities. Frequently, one is interested in computing tail proba-
bilities,

Pn,p(X ≥ x) =
n∑

y=x

p(y;n, p).

A common implementation is to factor this sum as a product of the marginal
probability and a correction factor:

Pn,p(X ≥ x) = p(x;n, p)
n∑

y=x

x!(n− x)!
y!(n− y)!

(
p

1− p

)y−x

,

and then compute or approximate p(x;n, p) and the sum separately. Using the
methods in this paper improves accuracy in the computation of p(x;n, p), and
hence of the tail probability.

Other Distributions. Many common distributions have standard imple-
mentations similar to (2), and suffer similar cancellation problems for large
parameter values. For example, the Poisson mass function r(x;λ) may be com-
puted as

log(r(x;λ)) = x log(λ)− log(x!)− λ,

3

which is unstable for large values of λ and x. A more stable algorithm along
the lines of (3) is

r(x;λ) =
1√
2πx

e−δ(x)−λD0(x/λ). (7)

This approach is easily adapted to distributions such as the hypergeometric,
gamma and negative binomial.

Student’s t. The Student’s t density with ν degrees of freedom is

tν(x) =
1√

2π(1 + x2/ν)

Γ(ν+1
2)

Γ(ν
2)

√
ν/2

1
(1 + x2/ν)ν/2

We require an algorithm that is stable both as ν → ∞ and ν → 0. This is
evaluated using

Γ(ν+1
2)

Γ(ν
2)

√
ν/2

=
Γ(ν+3

2)
√

ν/2
Γ(ν+2

2
ν+1
2

= exp(
−D0(n

2 , n+1
2)

+
δ(

n + 1
2

)− δ(
n

2
)

1
(1 + x2/ν)ν/2

= exp(D0(
ν

2
,
ν + x2

2
)− x2

2
).

The first expansion is used for all ν; the second whenever x2 < n.

3 Limit Theorems

Three common limit theorems for the binomial distribution are

1. Poisson limit:
lim

n→∞
p(x;n, λ/n) =

λx

x!
e−λ.

2. Central limit:

lim
n→∞

√
npq · p([np + c

√
npq];n, p) =

1√
2π

e−c2/2.

3. Large Deviation limit. For ε > 0,

lim
n→∞

p(x;n, p)
p∗(x;n, p)

= 1

uniformly for nε < x < n(1− ε), where

p∗(x;n, p) =
√

n

2πx(n− x)
e−D(x;n,p).

4

Numerically, the classic algorithm (2) does not obey any of these limit theorems
and ultimately shows divergence as n increases. The saddle point algorithm
obeys all three, essentially up to the limits of machine precision.

Proofs:

1. Under the Poisson limit, the binomial algorithm (3) reduces to the Poisson
algorithm (7), since n/(n−x) → 1 and δ(n), δ(n−x) and the second term
of the deviance (6) all converge to 0.

2. Under the central limit, x/np = 1+c
√

q/np → 1 and npD0(x/np) → qc2/2
using just the first term of the series expansion. Likewise, nqD0((n −
x)/nq) → pc2/2 and D(x;n, p) → c2/2.

Note that under the central limit, underflow usually occurs at n ≈ 1032,
since np and np + c

√
npq will be numerically equal.

3. The large deviation limit is trivial, since p∗(x;n, p) is the saddle point
method without the error terms δ(n)− δ(x)− δ(n− x). The error terms
converge uniformly to 0 for nε < x < n(1− ε).

4 Examples

For n odd, we evaluate the sum

S(n) =
[n/2]∑
x=0

p(x;n, 0.5)

using direct multiplication, the classic algorithm (2) and the saddle point algo-
rithm (3). The exact sum is S(n) = 0.5, and accuracy of a numerical evaluation
Ŝ(n) is measured by

− log10 |2Ŝ(n)− 1|

which counts the number of decimal digits of accuracy. Figure 1 shows the
results for a range of n. In particular, the classic algorithm is inaccurate for
large n. The multiplication algorithm is best (usually exact) for n < 100. For
larger n, the saddle point method is best, and the algorithm maintains high
accuracy for all values of n.

The next two examples study the convergence of computed probabilities to
theoretical limits. Using either the central limit or large deviation limit,

√
2π × 0.21 · p(0.3n;n, 0.3) → 1.

We compute p(0.3n;n, 0.3) using both the classic and saddle point algorithms
and compute the measure

log10 |
√

2π × 0.21 · p(0.3n;n, 0.3)− 1|.

5

* * * * *** **

*
*

*

* * * ** * *

*

*
*

*

*

*

*

**
**

*
* *

n

A
cc

ur
ac

y
(#

 o
f d

ig
its

)

10 100 1000 10000 100000

10
12

14
16

18

o

o o
o

oo

o
o
oo

oo

o

o o

o
oo

o oo o
o

o
o

oo

o

oooooo

o

o

+
+ ++++

+

++
++

+ +

+ +

+

+

++

+

+
+

++
+

+

+
++

++

+++
+
+

* Multipl’n
o Classic
+ Saddle Pt.

Figure 1: Accuracy of evaulations of S(n) =
∑[n/2]

x=0 p(x;n, 0.5). ‘18’ denotes
accuracy to full machine precision.

This indicates the number of decimal digits agreement between the computed
probability and the desired limit. In Figure 2, the saddle point algorithm con-
verges to the desired limit, with about 15 digits agreement at n = 1015. The
classic algorithm initially shows convergence, but for n ≥ 108 the round-off error
dominates and the computed probability diverges.

Figure 3 studies the algorithms under the Poisson limit for x = 3 and λ = 2.
The error measure is

− log10 |p̂/p0 − 1|

where p0 = 4e−2/3 is the Poisson probability. The results are very similar to the
central limit results in Figure 2, with the classic algorithm diverging for n ≥ 108,
while the saddle point algorithm improves essentially to machine precision.

Table 1 reports computational time, in microseconds per call, for the algo-
rithms. These are computed using the Linux time command, and are averaged

6

o
o

o
o

o
o

o o
o

o
o

o
o

o
o o o

n

Li
m

it
A

gr
ee

m
en

t (

di
gi

ts
)

10^1 10^4 10^7 10^10 10^14

0
5

10
15

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+ +

o Classic
+ Saddle Pt.

Figure 2: Convergence to the central limit for p = 0.3 and x = np.

over 106 calls. The multiplication algorithm is fastest at n = 10 but is not com-
petitive for larger sample sizes. In most cases the classic algorithm and saddle
point algorithms have similar timings, and the times change little as n increases.

All results presented in this section were computed on a 400 MHz. Pen-
tium PC running Linux (RedHat 6.0). The computations were performed using
double precision floating point arithmetic, which has an accuracy of about 16
decimal digits.

References

Char, B. W., K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan
and S. M. Watt (1991). Maple V Language Reference Manual. New York:
Springer-Verlag.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Nu-
merical Recipes in C. The Art of Scientific Computing. Cambridge University
Press.

7

o
o

o
o

o
o

o o
o

o
o

o
o o

o

o

o o o o

n

Li
m

it
A

gr
ee

m
en

t (

of
 d

ig
its

)

10^1 10^5 10^9 10^13 10^17

0
5

10
15

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+ + + +

o Classic
+ Saddle Pt.

Figure 3: Convergence to the Poisson limit for x = 3 and λ = 2.

SLATEC (1993). Common mathematical library, version 4.1. Netlib Archive.
http://www.netlib.org/slatec

8

n Multiplic. Classical Saddle Pt.
10 1.75 4.11 2.97

100 16.53 4.03 4.58
1000 166.80 4.15 4.44

10000 4.53 4.63
100000 4.55 4.64

1000000 4.45 4.55

Table 1: Timings, in microseconds per call, for the multiplication, classical and
saddle point algorithms at various sample sizes.

A Saddle Point Algorithm

The following code implements the saddle point algorithm. The entry point is
dbinom(x,n,p). Also provided is dpois(x,lb) for Poisson probabilities.

The program uses stored values of δ(n);n = 1, . . . , 15. These were computed
in Maple (Char, Geddes, Gonnet, Leong, Monagan and Watt 1991) using the
formula

δ(n) = log(
n!en

nn
√

2πn
).

#include <math.h>

/* NTYPE is the type used for the n and x arguments.
For 32-bit integers, the maximum n is 2^31-1=2147483647.
If larger n is required, NTYPE must be double.

*/
typedef int NTYPE;

#define PI2 6.283185307179586476925286

#define S0 0.083333333333333333333 /* 1/12 */
#define S1 0.00277777777777777777778 /* 1/360 */
#define S2 0.00079365079365079365079365 /* 1/1260 */
#define S3 0.000595238095238095238095238 /* 1/1680 */
#define S4 0.0008417508417508417508417508 /* 1/1188 */

static double sfe[16] = {
0, 0.081061466795327258219670264,
0.041340695955409294093822081, 0.0276779256849983391487892927,
0.020790672103765093111522771, 0.0166446911898211921631948653,
0.013876128823070747998745727, 0.0118967099458917700950557241,
0.010411265261972096497478567, 0.0092554621827127329177286366,
0.008330563433362871256469318, 0.0075736754879518407949720242,
0.006942840107209529865664152, 0.0064089941880042070684396310,
0.005951370112758847735624416, 0.0055547335519628013710386899

9

};

/* stirlerr(n) = log(n!) - log(sqrt(2*pi*n)*(n/e)^n) */
double stirlerr(n)
NTYPE n;
{ double nn;
if (n<16) return(sfe[(int)n]);
nn = (double)n;
nn = nn*nn;
if (n>500) return((S0-S1/nn)/n);
if (n>80) return((S0-(S1-S2/nn)/nn)/n);
if (n>35) return((S0-(S1-(S2-S3/nn)/nn)/nn)/n);
return((S0-(S1-(S2-(S3-S4/nn)/nn)/nn)/nn)/n);

}

/* Evaluate the deviance term
bd0(x,np) = x log(x/np) + np - x

*/
double bd0(x,np)
NTYPE x;
double np;
{ double ej, s, s1, v;
int j;
if (fabs(x-np)<0.1*(x+np))
{ s = (x-np)*(x-np)/(x+np);
v = (x-np)/(x+np);
ej = 2*x*v;
for (j=1; ;j++)
{ ej *= v*v;
s1 = s+ej/(2*j+1);
if (s1==s) return(s1);
s = s1;

}
}
return(x*log(x/np)+np-x);

}

double dbinom(x,n,p)
NTYPE x, n;
double p;
{ double lc;
if (p==0.0) return((x==0) ? 1.0 : 0.0);
if (p==1.0) return((x==n) ? 1.0 : 0.0);
if (x==0) return(exp(n*log(1-p)));
if (x==n) return(exp(n*log(p)));
lc = stirlerr(n) - stirlerr(x) - stirlerr(n-x)

10

- bd0(x,n*p) - bd0(n-x,n*(1.0-p));
return(exp(lc)*sqrt(n/(PI2*x*(n-x))));

}

double dpois(x,lb)
NTYPE x;
double lb;
{ if (lb==0) return((x==0) ? 1.0 : 0.0);
if (x==0) return(exp(-lb));
return(exp(-stirlerr(x)-bd0(x,lb))/sqrt(PI2*x));

}

B Multiplication Algorithm

The routine dbinom_mult(x,n,p) evaluates binomial probabilities using the
multiplication algorithm, in a method that avoids unnecessary overflow and
underflow. For x ≤ n/2, the probability is factorized as

p(x;n, p) =
x∏

i=1

n− x + i

i

x∏
i=1

p
n−x∏
i=1

(1− p).

Terms from the three products are used in an order to keep the accumulated
product as close to 1 as possible, until the first product is exhausted. For
x > n/2, use p(x;n, p) = p(n− x;n, 1− p).

double dbinom_mult(x,n,p)
int x, n;
double p;
{ double f;
int j0, j1, j2;
if (2*x>n) return(dbinom_mult(n-x,n,1-p));
j0 = j1 = j2 = 0;
f = 1.0;
while ((j0<x) | (j1<x) | (j2<n-x))
{ if ((j0<x) && (f<1))
{ j0++;
f *= (double)(n-x+j0)/(double)j0;

}
else
{ if (j1<x) { j1++; f *= p; }

else { j2++; f *= 1-p; }
}

}
return(f);

}

11

