
News
The Newsletter of the R Project Volume 6/3, August 2006

Editorial
by Ron Wehrens and Paul Murrell

Welcome to the third issue of R News for 2006, our
second special issue of the year, this time with a fo-
cus on uses of R in Chemistry. Thanks go to our guest
editor, Ron Wehrens, for doing all of the heavy lifting
to get this issue together. Ron describes below the
delights that await in the following pages. Happy
reading!

Paul Murrell
The University of Auckland, New Zealand
paul.murrell@R-project.org

R has become the standard for statistical analysis
in biology and bioinformatics, but it is also gaining
popularity in other fields of natural sciences. This
special issue of R News focuses on the use of R in
chemistry. Although a large number of the Biocon-
ductor packages can be said to relate to chemical sub-
disciplines such as biochemistry or analytical chem-
istry, we have deliberately focused on those applica-
tions with a less obvious bioinformatics component.

Rather than providing a comprehensive
overview, the issue gives a flavour of the diversity
of applications. The first two papers focus on fit-
ting equations that are derived from chemical know-
ledge, in this case with nonlinear regression. Peter
Watkins and Bill Venables show an example from
chromatography, where the retention behaviour of
carboxylic acids is modelled. Their paper features

some nice examples of how to initialize the optimiza-
tion. In the next paper, Johannes Ranke describes the
drfit package for fitting dose-response curves.

The following three papers consider applications
that are more analytical in nature, and feature spec-
tral data of various kinds. First, Bjørn-Helge Mevik
discusses the pls package, which implements PCR
and several variants of PLS. He illustrates the pack-
age with an example using near-infrared data, which
is appropriate, since this form of spectroscopy would
not be used today but for the existance of multi-
variate calibration techniques. Then, Chris Fraley
and Adrian Raftery describe several chemical appli-
cations of the mclust package for model-based clus-
tering. The forms of spectroscopy here yield images
rather than spectra; the examples focus on segment-
ing microarray images and dynamic magnetic res-
onance images. Ron Wehrens and Egon Willigha-
gen continue with a paper describing self-organising
maps for large databases of crystal structures, as im-
plemented in the package wccsom. To compare the
spectral-like descriptors of crystal packing, a spe-
cially devised similarity measure has to be used.

The issue concludes with a contribution by Ra-
jarshi Guha on the connections between R and the
Chemistry Development Kit (CDK), another open-
source project that is rapidly gaining widespread
popularity. With CDK, it is easy to generate descrip-
tors of molecular structure, which can then be used
in R for modelling and predicting properties. The pa-
per includes a description of the rcdk package, where

Contents of this issue:

Editorial . 1
Non-linear regression for optimising the sepa-

ration of carboxylic acids 2
Fitting dose-response curves from bioassays

and toxicity testing 7

The pls package 12
Some Applications of Model-Based Clustering

in Chemistry 17
Mapping databases of X-ray powder patterns . 24
Generating, Using and Visualizing Molecular

Information in R 28

mailto:paul.murrell@R-project.org

Vol. 6/3, August 2006 2

the key point is the connection between R and Java
(which underlies CDK).

Ron Wehrens

Institute for Molecules and Materials
Analytical Chemistry
The Netherlands
R.Wehrens@science.ru.nl

Non-linear regression for optimising the
separation of carboxylic acids
by Peter Watkins and Bill Venables

In analytical chemistry, models are developed to de-
scribe a relationship between a response and one or
more stimulus variables. The most frequently used
model is the linear one where the relationship is lin-
ear in the parameters that are to be estimated. This is
generally applied to instrumental analysis where the
instrument response, as part of a calibration process,
is related to a series of solutions of known concentra-
tion. Estimation of the linear parameters is relatively
simple and is routinely applied in instrumental anal-
ysis. Not all relationships though are linear with re-
spect to the parameters. One example of this is the
Arrhenius equation which relates the effect of tem-
perature on reaction rates:

k = A exp (−Ea/RT)× exp(ε) (1)

where k is the rate coefficient, A is a constant, Ea is
the activation energy, R is the universal gas constant,
and T is the temperature in degrees Kelvin. As k is
the measured response at temperature T, A and Ea
are the parameters to be estimated. The last factor
indicates that there is an error term, which we as-
sume is multiplicative on the response. In this article
we will assume that the error term is normal and ho-
moscedastic, that is, ε ∼ N(0,σ2)

One way to find estimates for A and Ea is to trans-
form the Arrhenius equation by taking logarithms
of both sides. This converts the relationship from a
multiplicative one to a linear one with homogeneous,
additive errors. In this form linear regression may be
used to estimate the coefficients in the usual way.

Note that if the original error structure is not mul-
tiplicative, however, and the appropriate model is,
for example, as in the equation

k = A exp (−Ea/RT) +ε (2)

then taking logarithms of both sides does not lead to
a linear relationship. While it may be useful to ignore
this as a first step, the optimum estimates can only
be obtained using non-linear regression techniques,
that is by least squares on the original scale and not
in the logarithmic scale. Starting from initial values
for the unknown parameters, the estimates are itera-
tively refined until, it is hoped, the process converges
to the maximum likelihood estimates.

This article is intended to show some of the pow-
erful general facilities available in R for non-linear re-
gression, illustrating the ideas with simple, yet im-
portant non-linear models typical of those in use in
Chemometrics. The particular example on which
we focus is one for the response behaviour of a car-
boxylic acid using reverse-phase high performance
liquid chromatography and we use it to optimise the
separation of a mixture of acids.

Non-linear regression in general is a very un-
structured class of problems as the response func-
tion of the regression may literally be any function at
all of the parameters and the stimulus variables. In
specific applications, however, certain classes of non-
linear regression models are typically of frequent oc-
currence. The general facilities in R allow the user
to build up a knowledge base in the software itself
that allows the fitting algorithm to find estimates for
initial values and to find derivatives of the response
function with respect to the unknown parameters au-
tomatically. This greatly simplifies the model fitting
process for such classes of models and usually makes
the process much more stable and reliable.

The working example

Aromatic carboxylic acids are an important class of
compounds since many are pharmacologically and
biologically significant. Thus it is useful to be able
to separate, characterise and quantify these types of
compounds. One way to do this is with chromatog-
raphy, more specifically, reverse phase high perfor-
mance liquid chromatography (RP-HPLC). Due to
the ionic nature of these compounds, analysis by
HPLC can be complicated as the hydrogen ion con-
centration is an important factor for separation of
these compounds. Waksmundzka-Hajnos (1998) re-
ported a widely used equation that models the sepa-
ration of monoprotic carboxylic acids (i.e. containing
a single hydrogen ion) depending on the hydrogen
ion concentration, [H+]. This is given by

k =
(k−1 + k0([H+]/Ka))

(1 + [H+]/Ka)
+ε (3)

where k is the capacity factor, k0 and k−1 are the k
values for the non-ionised and ionised forms of the

R News ISSN 1609-3631

mailto:R.Wehrens@science.ru.nl

Vol. 6/3, August 2006 3

carboxylic acid, and Ka is the acidity constant. In
this form, non-linear regression can be applied to
Equation 3 to estimate the parameters, k0, k−1 and
Ka. Deming and Turoff (1978) reported HPLC mea-
surements for four carboxylic acids containing a sin-
gle hydrogen ion; benzoic acid (BA), o-aminobenzoic
acid (OABA), p-aminobenzoic acid (PABA) and p-
hydroxybenzoic acid (HOBA).

The R data set we use here has a stimulus variable
named pH and four responses named BA, OABA, PABA
and HOBA, the measured capacity factors for the acids
at different pH values. The data set is given as an
appendix to this article.

Initial values

While non-linear regression is appropriate for the fi-
nal estimates, we can pay less attention to the error
structure when trying to find initial values. In fact
we usually disregard it and simply manipulate the
equation to a form where we can find initial values
by simple approximation methods. One way to do
this for this example, suggested to us by Petra Kuh-
nert, is to multiply the equation by the denominator
and re-arrange to give

k[H+] ≈ k−1Ka + kKa + [H+]k0 = θ + kKa + [H+]k0
(4)

where the three unknowns on the right hand side
areθ = k−1Ka, Ka and k0. The initial values can found
by ignoring the error structure and simply regressing
the artificial response, k[H+] on the notional ’stimu-
lus’ variables k and [H+], with an intercept term. The
initial values for k−1, k0 and Ka then follow simply.

We can in fact do slightly better than this by
noting that if the value for the parameter Ka were
known, the original equation is then linear in k−1 and
k0. In principle, then, we could use the approximate
idea to obtain an initial value for Ka only and then
use the entire data set to find initial values for the
other two parameters by linear regression with the
original equation. Intuitively we might expect this
to yield slightly better initial estimates as while the
value for Ka is still somewhat doubtful, at least those
for k−1 and k0 do in fact respect the appropriate er-
ror structure, but sadly there is no guarantee that this
will be the case.

Partially linear models

The non-linear fitting function supplied with R is nls.
Normally the user has to supply initial values for all
unknown parameters. However if the linear regres-
sion has a form like the one above where, if some of
the parameters are known, the regression becomes
linear in the others, a special algorithm allows us to
capitalise on this fact. The benefit is two-fold: firstly,
we need only supply initial values for some of the
parameters and secondly, the algorithm is typically
more stable than it would otherwise be.

Parameters in the first set, (for our example, just
Ka) are called the “non-linear parameters” while the
second set are the “linear parameters” (though a bet-
ter term might be “conditionally linear parameters”).
The so-called “partially linear” fitting algorithm re-
quires only that initial values be supplied for the
non-linear parameters. To illustrate the entire fitting
process, we note that when BA is the response, a rea-
sonable initial value is Ka = 0.0001. Using this we
can fit the regression as follows:

> tmp <- transform(ba, H = 10^(-pH))

> ba.nls <- nls(BA ~ cbind(1, H/Ka)/(1 + H/Ka),

data = tmp, algorithm = "plinear",

start = c(Ka = 0.0001), trace = T)

13.25806 : 0.000100 3.531484 54.819291

7.180198 : 4.293692e-05 5.890920e-01 4.197178e+01

1.441950 : 5.600297e-05 1.635335e+00 4.525067e+01

1.276808 : 5.906698e-05 1.831871e+00 4.597552e+01

1.276494 : 5.920993e-05 1.840683e+00 4.600901e+01

1.276494 : 5.921154e-05 1.840783e+00 4.600939e+01

> coef(ba.nls)

Ka .lin1 .lin2

5.921154e-05 1.840783e+00 4.600939e+01

The first step is for convenience only. Notice that
the regression function is specified as a matrix whose
columns are, in general, functions of the non-linear
parameters. The coefficients for this non-linear
“model matrix” are then the estimates of the linear
parameters.

The trace output shown above shows at each step
the current residual sum of squares and the parame-
ter estimates, beginning with the non-linear param-
eters. As the model specification makes no explicit
reference to the linear parameters, the estimates are
named using a simple naming convention, as shown
in the names of the final coefficient vector.

The trace output shows that the initial value is not
particularly good and the iterative process is strug-
gling, somewhat.

Self-starting non-linear regressions

The idea behind a self-starting non-linear regression
model is that we supply to the fitting algorithm
enough information for the process to generate a
starting value from the data itself. This involves two
steps. Firstly we need to write an initial value routine
which calculates the initial values from the data set.
Secondly we need to generate the self-starting object
itself, which will use this initial value routine.

We begin with the initial value routine. As this
will be called by the fitting algorithm and not directly
by the user, it has to use a somewhat obscure conven-
tion for both the parameter list it uses and the way it
supplies its values. This convention initially appears
to be obscure, but it becomes less so with time. Such
an initial value routine can be defined for this kind
of regression model as follows:

R News ISSN 1609-3631

Vol. 6/3, August 2006 4

SSba.init <- function(mCall, data, LHS) {

#

k ~ (k_1 + k_0*H/Ka)/(1 + H/Ka); H = 10^(-pH)

#

H <- 10^(-eval(mCall[["pH"]], data))

k <- eval(LHS, data)

Ka <- as.vector(coef(lsfit(cbind(H, -k),

H * k, int = TRUE))[3])

b <- coef(nls(k ~ cbind(1, H/Ka)

/(1 + H/Ka),

data = data.frame(k = k, H = H),

algorithm = "plinear",

start = c(Ka = Ka)))

names(b) <- mCall[c("Ka", "k_1", "k_0")]

b

}

The initial comment is a reminder of how the model
will be specified in stage two of the process, and is
optional. The way the parameters are accessed is
conventional.

This initial value function actually goes a step fur-
ther and fits the non-linear regression itself using the
plinear algorithm, so the initial values should be
very good indeed! This is the simplest way to cap-
italise both on the self-starting model and using the
plinear model along the way. The model fitting pro-
cess at the second stage should then converge in one
iteration, which can act as a check on the process.

Note that the value supplied by the function is a
vector with names. These names are not necessarily
the same as in the defining formula, so the final step
of giving names to the value object must again do so
in a conventional way, which will ensure that actual
names used by the user of the self-starting regression
will be correctly specified. In other words, the choice
of names for the parameters remains open to the user
and is not fixed in advance.

To specify a self-starting model, we now proceed
as follows:

SSba <- selfStart(~ (k_1 + k_0*10^(-pH)/Ka)

/(1 + 10^(-pH)/Ka),

initial = SSba.init,

parameters = c("Ka", "k_1", "k_0"),

template = function(pH, k_1, k_0, Ka) {})

The first argument is a one-sided formula giving the
response function. This now has to respect the name
choices used in the initial value routine, of course.
The remaining arguments are the initial value rou-
tine itself, the parameters as a character vector and a
“function template”, that is, a dummy function that
specifies, in effect, just the argument list. The selfS-
tart function itself supplies the innards of this func-
tion, so at the end of the call, SSba is a function with
this argument list that may be used to specify the
right hand side of a non-linear regression.

Fitting the regressions is now a simple task. We
fit all four as follows:

ba.SS <- nls(BA ~ SSba(pH, k_1, k_0, Ka),

data = ba, trace = T)

oaba.SS <- update(ba.SS, OABA ~ .)

paba.SS <- update(ba.SS, PABA ~ .)

hoba.SS <- update(ba.SS, HOBA ~ .)

We have suppressed the trace output, but in fact
all four (appear to) converge in a single step. Of
course the hard work is done inside the initial value
function.

Comparison with published values
We can compare the estimates we get from this rather
limited data set with published values, at least for
the acidity constant, Ka. These values can be found
in Morrison and Boyd (1993).

> Kas <- sapply(list(ba = ba.SS, oaba = oaba.SS,

paba = paba.SS, hoba = hoba.SS), coef)[1,]

> signif(Kas, 4)

ba oaba paba hoba

5.921e-05 6.449e-06 9.631e-06 2.397e-05

> pKas <- scan(quiet = TRUE)

1: 5.8e-05 1.6e-05 1.4e-05 2.6e-05

5:

> KAvalues <- cbind(Calculated = Kas,

Published = pKas)

> signif(KAvalues, 2)

Calculated Published

ba 5.9e-05 5.8e-05

oaba 6.4e-06 1.6e-05

paba 9.6e-06 1.4e-05

hoba 2.4e-05 2.6e-05

In most cases the agreement is quite good.
Thus, the agreement between Ka values suggests

that the calculated parameter estimates can be used
for modelling the HPLC retention behaviour of the
carboxylic acids. To verify this, the predicted values
can be compared with the experimental data. Figure
1 shows the predicted and measured data as a func-
tion of [H+] or pH = − log10[H+].

To display the fitted self-starting functions we
evaluate them on a finer scale of pH values than we
have in the observations themselves. This can be
done using the predict function in R, but we find it
useful here to evaluate the predictions directly using
eval, as we needed to use in the initial value routine.

form <- Quote((k_1 + k_0*10^(-pH)/Ka)/

(1 + 10^(-pH)/Ka))

evaluate on a fine grid of pH values

at <- function(x, m) c(x, as.list(coef(m)))

pHData <- list(pH = seq(3.5, 6, len = 250))

pHData <- transform(pHData,

ba = eval(form, at(pHData, ba.SS)),

oaba = eval(form, at(pHData, oaba.SS)),

paba = eval(form, at(pHData, paba.SS)),

hoba = eval(form, at(pHData, hoba.SS)))

first plot the fitted lines

with(pHData,

R News ISSN 1609-3631

Vol. 6/3, August 2006 5

matplot(pH, cbind(ba, oaba, paba, hoba),

col = 16:19, type = "l", lty = 1,

ylab = "Capacity factor",

main = "Retention behaviour"))

then add the observed points

with(ba,

matpoints(pH, cbind(BA, OABA, PABA, HOBA),

col = 16:19, pch = 16:19, cex = 0.8))

legend(5.5, 35, c("BA", "OABA", "PABA", "HOBA"),

text.col = 16:19, col = 16:19, lty = 1,

pch = 16:19, bty = "n")

Notice how eval may be used to evaluate a quoted
expression, using a list with names as the second ar-
gument to provide values for the variables and pa-
rameters.

3.5 4.0 4.5 5.0 5.5 6.0

0
10

20
30

40

Retention behaviour

pH

C
ap

ac
ity

 fa
ct

or

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

BA
OABA
PABA
HOBA

Figure 1: Plot of capacity factor for selected aromatic
carboxylic acids against pH

Figure 1 shows that the fit of the predicted val-
ues from the self-starting models appears to be quite
good with the experimental data.

Diagnostics

The residual plot (predicted - measured vs predicted)
(Figure 2) suggests that there may be some outliers.
This is particularly notable for BA and OABA.

Further presentation of results

A ’window diagram’ is a graphical method for show-
ing chromatographic data (Cooper and Hurtubise,
1985), and is suitable for visualing the degree of chro-
matographic separation. The degree of separation
can be optimised by maximising the selectivity, α, of
the most difficult to resolve peak pairs as a function

of pH. The selectivity factor, αi j, is defined by:

αi j = ki/k j (5)

where ki and k j are the respective capacity factors.
For their data, Deming and Turoff (1978) ensured
that α was greater than or equal to 1. In the cases
where α was found to be less than 1 then the recipro-
cal was taken and used for α. This amounts to defin-
ing αi j as

αi j = max(ki , k j)/ min(ki , k j) (6)

alpha <- function(ki, kj) pmax(ki,kj)/pmin(ki,kj)

pHData <- transform(pHData,

aBO = alpha(ba, oaba),

aBP = alpha(ba, paba),

aBH = alpha(ba, hoba),

aOP = alpha(oaba, paba),

aOH = alpha(oaba, hoba),

aPH = alpha(paba, hoba))

The window diagram (Figure 3) can be produced by
plotting the selectivity factor, αi j, as a function of pH.

with(pHData,

matplot(pH, cbind(aBO, aBP, aBH, aOP, aOH, aPH),

type = "l", col = 16:21, lty = 1:6,

main = "Window diagram",

ylab = "Selectivity factor"))

abline(v = 4.5, lty = 4)

leg.txt <-

c("aBO", "aBP", "aBH", "aOP", "aOH", "aPH")

legend(5.5, 4.5, leg.txt, col = 16:21,

text.col = 16:21, lty = 1:6, bty = "n")

3.5 4.0 4.5 5.0 5.5 6.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Window diagram

pH

S
el

ec
tiv

ity
 fa

ct
or

aBO
aBP
aBH
aOP
aOH
aPH

Figure 3: Window diagram for all six combinations
of carboxylic acids

The conditions that give α as unity represent a
minimum performance for the chromatographic sep-
aration while separations with α > 1 represent bet-
ter separation for that pair of compounds. Thus, we

R News ISSN 1609-3631

Vol. 6/3, August 2006 6

●
●

●

●

●

●

●

●●

●

●●

5 15 25 35

−
0.

8
−

0.
4

0.
0

0.
4

BA

Fitted

R
es

id
ua

l ●

●

●

●

●

●

●

●

●

●●●

4 6 8 10 14

−
0.

5
0.

0
0.

5

OABA

Fitted

R
es

id
ua

l

●

●

●

●

●

●●

●

●

●
●
●

2 3 4 5 6 7 8

−
0.

2
0.

0
0.

2

PABA

Fitted

R
es

id
ua

l

●

●

●

●

●

●

●

●●
●

●

●

2 4 6 8 12

−
0.

2
0.

0

HOBA

Fitted

R
es

id
ua

l

Figure 2: Residual plots for non-linear regression for BA, OABA, PABA and HOBA

seek the point where the best separation occurs for
the worst separated compounds. Inspection of Fig-
ure 3 shows that this occurs at pH 4.5.

Final remarks

In conclusion, non-linear regression has been used
to model the retention behaviour of four related car-
boxylic acids using Equation 1. Using the predicted
values for each acid, the optimum point for separa-
tion of the four compounds was identified and used
to find the optimal pH.

The example is simple, but sufficient to show the
power of non-linear regression in Chemometric ap-
plications, and, more importantly, the value of in-
vesting some time and effort to produce self-starting
model functions for specific classes of regressions.
The example also shows some of the power and flexi-
bility of R itself to investigate the data, to fit the mod-
els, to check the diagnostics, to predict from the esti-
mates and to present the results.

Bibliography

H. A. Cooper and R. J. Hurtubise. Solubility param-
eter and window diagram optimization methods
for the reversed-phase chromatographic optimiza-
tion of complex hydroxyl aromatic mixtures. J.
Chrom. A, 328, 81–91, 1985. 5

S. N. Deming and M. L. H. Turoff. Optimisation of
reverse-phase liquid chromatographic separation
of weak organic acids. Anal. Chem., 58, 546–548,
1978. 3, 5, 7

R. T. Morrison and R. N. Boyd. Organic Chemistry.
Allyn and Bacon, Newton, Mass, 5th edition, 1993.
4

M. Waksmundzka-Hajnos. Chromatographic sepa-
rations of aromatic carboxylic acids. J. Chrom. B,
717, 93–118, 1998. 2

Peter Watkins
CSIRO Food Science Australia
peter.watkins@csiro.au

Bill Venables
CSIRO Mathematical and Information Sciences
bill.venables@csiro.au

R News ISSN 1609-3631

mailto:peter.watkins@csiro.au
mailto:bill.venables@csiro.au

Vol. 6/3, August 2006 7

Appendix

The data set used for this article is shown in the ta-
ble. It is taken from Deming and Turoff (1978) where
it was published in retention times. For this article,
the data has been converted to their corresponding
capacity factors.

pH BA OABA PABA HOBA
3.79 34.21 15.06 8.85 14.30
3.79 34.27 14.64 8.33 14.52
4.14 25.85 14.24 8.00 12.30
4.38 20.46 13.33 7.58 10.76
4.57 15.61 12.61 6.82 8.91
4.74 12.42 11.33 5.76 7.24
4.74 11.42 10.55 5.76 7.06
4.92 9.64 10.15 5.09 5.94
5.11 7.30 9.12 4.15 4.52
5.35 5.15 6.36 2.88 3.09
5.67 3.18 3.92 1.60 1.68
5.67 3.18 3.92 1.58 1.62

Fitting dose-response curves from
bioassays and toxicity testing
by Johannes Ranke

Introduction

During the development of new chemicals, but also
in risk assessment of existing chemicals, they have to
be characterized concerning their potential to harm
biological organisms. Characterizing chemicals ac-
cording to this potential has many facettes and re-
quires various types of experiments. One of the most
important types is the dose-response experiment.

In such experiments, the responses of biologi-
cal organisms to different doses1 are observed in a
quantitative way. Examples of the observed vari-
ables (endpoints of toxicity) are the length of wheat
seedlings after being exposed to different concentra-
tions of the chemical substance for a defined time in-
terval, the activity of luminescent bacteria, the ability
of cell cultures to reduce a specific dye, the growth
rate according to number of individuals or biomass,
the number of viable offspring and many others.

These observed variables have in common that
a reference magnitude for healthy and viable organ-
isms can be defined (normalised response level r =
1), and that the magnitude of the variable (response)
is limited by a zero response (r = 0) where the maxi-
mum of the effect is observed. The drfit package cov-
ers the case where there is a continuum of possible
response values between 0 and 1 (inclusive). Addi-
tionally, responses above 1 are frequently observed
due to variability or as the result of stimulation by a
subtoxic dose, and even responses below 0 may be
present, depending on the type of data and the ap-
plied preprocessing.

If the responses are binomial, such as life and
death for a number of individuals, it is adviseable

to choose the readily available glm fitting procedures
(generalized linear models), where the probit and
logit links are already built-in (e.g. Chapter 7.2 in
Venables and Ripley (2002)) or to look into the drc
package.

Dose-response relationships for continuous re-
sponse tests can generally be expressed as

r = f (d,~p) +ε (1)

where r is the normalised response at dose d, f (d,~p)
is the model function with parameter vector ~p, and ε

is the error variable describing the variability in the
observations not explainable by the model function
f (d,~p).

This article shows how different model func-
tions f (d,~p) can be conveniently fitted to such dose-
response data using the R package drfit, yielding the
vector of parameters ~p that gives the description of
the data with the least residual error. The fitting can
be carried out for many substances with a single call
to the main function drfit.

The results that the user will probably be most
interested in are the doses at which a response of
50 % relative to healthy control organisms is to be ex-
pected (termed ED50), as this is a very robust param-
eter describing the toxicity of the substance toward
the organism investigated.

The drfit package internally uses the R function
nls for nonlinear regression analysis as detailed by
Bates and Watts (1988). Confidence intervals for the
model parameters are calculated by the confint.nls
function from the MASS package as described in
Venables and Ripley (2002).

drfit defines a dose-response data representation
as a special case of an R dataframe, facilitates fit-
ting standard dose-response models (probit, logit,

1 The term dose is used here in a generalised way, referring to doses in the strict sense like mg oral intake per kg body weight as well
as to measured concentrations in aquatic toxicity tests or nominal concentrations in cell culture assays.

R News ISSN 1609-3631

Vol. 6/3, August 2006 8

weibull and linlogit at the time of this writing), and
a function to produce different types of plots of the
data as well as the fitted curves.

Optionally, the raw data can be kept in an exter-
nal database connected by RODBC. This has proven
to be useful if the data of a large number of dose-
response experiments have to be evaluated, as for ex-
ample in bioassays based on microtiter plates.

Recently, the R package drc containing similar
functionalities to drfit has been uploaded to CRAN.
Unfortunately, I have noticed the existence of this
package only during the preparation of this article,
after having maintained drfit on CRAN for almost
one and a half years. Maybe in the future it will be
possible to join forces.

In this introductory article, it is explained how the
input data must be formatted, how dose-response
curves are fitted to the data using the drfit func-
tion and in what ways the data and the models can
be plotted by the drplot function. Since the pack-
age was actively developed during the preparation
of this article, the reader is advised to upgrade to the
latest drfit version available. Note that R ≥ 2.1.0 is
needed for recent drfit versions.

Collecting dose-response data

The drfit function expects the dose-response data as
a data frame containing at least a factor called ’sub-
stance’, a vector called ’unit’ containing the unit used
for the dose, a column ’response’ with the response
values of the test system normalized using the "nat-
ural" zero response as 0, and the response of the con-
trol organisms as a "natural" 1. Therefore, values out-
side this interval, and especially values above 1 may
occur in the normalized data. An example of such
data can be easily obtained from the built-in dataset
XY.

> library(drfit)
> data(XY)
> print(XY,digits=2)

nr. substance dose unit fronds response
1 1 Control 0 mg/L 174 1.050
2 2 Control 0 mg/L 143 0.973
3 3 Control 0 mg/L 143 0.973
4 4 Substance X 10 mg/L 147 0.983
5 5 Substance X 10 mg/L 148 0.986
6 6 Substance X 10 mg/L 148 0.986
7 7 Substance X 100 mg/L 63 0.651
8 8 Substance X 100 mg/L 65 0.663
9 9 Substance X 100 mg/L 55 0.598
10 10 Substance X 300 mg/L 20 0.201
11 11 Substance X 300 mg/L 22 0.238
12 12 Substance X 300 mg/L 25 0.288
13 13 Substance X 1000 mg/L 13 0.031
14 14 Substance X 1000 mg/L 16 0.113
15 15 Substance X 1000 mg/L 16 0.113
16 16 Control 0 mg/L 153 0.999

17 17 Control 0 mg/L 144 0.975
18 18 Control 0 mg/L 163 1.024
19 19 Substance Y 10 mg/L 20 0.201
20 20 Substance Y 10 mg/L 19 0.180
21 21 Substance Y 10 mg/L 21 0.220
22 22 Substance Y 100 mg/L 13 0.031
23 23 Substance Y 100 mg/L 12 0.000
24 24 Substance Y 100 mg/L 13 0.031
25 25 Substance Y 300 mg/L 12 0.000
26 26 Substance Y 300 mg/L 12 0.000
27 27 Substance Y 300 mg/L 14 0.061
28 28 Substance Y 1000 mg/L 12 0.000
29 29 Substance Y 1000 mg/L 12 0.000
30 30 Substance Y 1000 mg/L 12 0.000

Normalisation of the response data is not done
within the drfit package. It can either be carried out
with a typical spreadsheet file, with some extra lines
of R code, or by an external procedure, while or be-
fore the data is read into a database.

If the data is collected and normalised using MS
Excel, it can be easily transferred to R by saving it in
CSV format, and reading it in using the R function
read.csv2 or alternatively by the read.xls function
from the gdata package. If OpenOffice.org Calc is be-
ing used, and the default values are used for export-
ing the data in CSV format, the function read.csv is
very helpful.

Figure 1 shows a possible spreadsheet layout for
capturing dose-response data including both the ob-
served endpoint (number of fronds in this case) and
the normalized response values.

Total growth inhibition is in this case the nat-
ural lower limit of the response and the response
will therefore be zero if the number of duckweed
(Lemna minor) fronds stays at the initial level n0 dur-
ing the observation time. The natural reference for
the healthy organisms (response=1) is in this case
given by the growth rate of the controls µc, calculated
by

µc =
ln(n̄c)− ln(n0)

t− t0
(2)

where n̄c is the mean number of fronds in the control
experiments after the observation time. The growth
rates µi are calculated in the same way, and the nor-
malized responses are then easily obtained by

ri =
µi
µc

(3)

If the spreadsheet from Figure 1 (which can be
found at http://www.uft.uni-bremen.de/chemie/
ranke/data/drfit/) were exported by writing a
CSV file, this file could be processed by something
like

> d <- read.csv('sampledata.csv',skip=2,dec=',')

R News ISSN 1609-3631

http://www.uft.uni-bremen.de/chemie/ranke/data/drfit/
http://www.uft.uni-bremen.de/chemie/ranke/data/drfit/

Vol. 6/3, August 2006 9

depending on the path to the CSV file, the number
of lines before the column headings and the decimal
separator used.

Figure 1: Data structure for a typical toxicity test in
OpenOffice Calc. Note that the response column is
calculated (see text).

Fitting and plotting

A quick result for a compatible dataframe can usu-
ally be obtained by a simple call to drfit

> rXY <- drfit(XY)

The contents of the dataframe rXY containing the
results of the fitting procedure are shown in Figure
2. Each fitted dose-response model (usually only one
per substance) produces one line. The number of
dose levels ndl is reported, the total number of data
points used for the model fitting n, the decadic log-
arithms of the lowest dose lld and the highest dose
lhd tested.

The next column contains the type of the dose-
response model fitted (probit, logit, weibull or lin-
logit) or, if not applicable, a classification of the sub-
stance data as “active” (if the response at the lowest
dose is < 0.5) , “inactive” (if the response at the high-
est dose is > 0.5) or “no fit”.

The log ED50 is given with its confidence interval
as calculated by the confint.nls function from the
MASS package. This only works if the log ED50 is
one of the model parameters. Therefore, in the case
of the weibull model, no confidence interval is given.

Finally, the residual sum of squares sigma is listed
and the fitted parameters a and b, or, in the case of
the three paramater model linlogit, the parameters
a, b and c are listed.

Once the drfit function has been successfully
called and the result assigned a name (rXY in this
case), dose-response plots for the fitted data can eas-
ily be created using the drplot function. The follow-
ing example produces a single graph (overlay=TRUE)
with the fitted dose-response curves and raw data
(dtype="raw") for all substances and fitted models in
dataframes XY and rXY using color (bw=FALSE). Ad-
ditionally, the scatter of the responses in control ex-
periments can be displayed, by setting the argument
ctype to "std" or "conf": as shown in Figure 3.

> drplot(rXY,XY,overlay=TRUE,bw=FALSE,
ylim=c("auto",1.3),dtype="raw", ctype="conf")

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Decadic Logarithm of the dose in mg/L

N
or

m
al

iz
ed

 r
es

po
ns

e

●●●

●●

●

●

●

●

●

●●

●
●

●

●
●
●

●●

●

●●●

Substance X
Substance Y

Figure 3: Output of the drplot function for the sam-
ple data XY from the package.

If the user prefers to view the raw data with er-
ror bars, the argument dtype can be set to "std" for
showing standard deviations (default) or "conf" for
showing confidence intervals.

In the following, the analysis of a somewhat more
complicated, but also more interesting example is il-
lustrated, which has been published by Ranke et al.
(2004) before the basic drfit code was packaged .

First, dose-response curves with the default set-
tings of drfit are generated as shown in Figure 4.

> data(IM1xIPC81)
> dIM <- IM1xIPC81
> rIM <- drfit(dIM)
> drplot(rIM,dIM,overlay=TRUE,bw=FALSE)

R News ISSN 1609-3631

Vol. 6/3, August 2006 10

> print(rXY,digits=2)
Substance ndl n lld lhd mtype logED50 2.5% 97.5% unit sigma a b

1 Control 1 6 -Inf -Inf inactive NA NA NA mg/L NA NA NA
2 Substance X 4 12 1 3 probit 2.2 2.1 2.2 mg/L 0.041 2.2 0.51
3 Substance Y 4 12 1 3 active NA NA NA mg/L NA NA NA

Figure 2: Contents of the dataframe containing the results from the fitting procedure for example data from
the package (see text for explanations).

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Decadic Logarithm of the dose in µM

N
or

m
al

iz
ed

 r
es

po
ns

e

● ● ●
●

●

●
● ●

●

● ●

●
● ●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ●
● ● ●

IM13 BF4
IM14 BF4
IM15 BF4
IM16 BF4
IM17 BF4
IM18 BF4
IM19 BF4
IM1−10 BF4

Figure 4: Dose-response plot showing the toxicities
in a homologous series of compounds and the fitted
probit model for IM1-10 BF4.

The graph shows that only one dose-response
curve is fitted with the built-in default arguments of
the drfit function and that the legend is interfering
with the data. It is obvious that for almost all sub-
stances in this data, response values > 1 are caused in
a certain dose range, a phenomenon which is called
hormesis. In order to properly model such data,
the so-called linear-logistic dose-response model has
been introduced by Brain and Cousens (1989). The
drfit package makes use of it in the parameteriza-
tion suggested by van Ewijk and Hoekstra (1993),
which allows for a convenient calculation of confi-
dence intervals of the ED50.

To include the linear-logistic model (linlogit in
drfit terminology) in the fitting procedure and list
the results including confidence intervals for a confi-
dence level of 90 % two-sided, one simply calls

> rIM2 <- drfit(dIM,linlogit=TRUE,level=0.9,
chooseone=FALSE)

First, the linlogit argument causes the linlogit
model to be additionally tried. Then, the argu-
ment chooseone=FALSE leads to reporting one line

for each fitted model. If the argument chooseone is
set to TRUE (default), only the first convergent dose-
response model (probit and linlogit in this case) from
the somewhat arbitrary sequence linlogit > probit >
logit > weibull is reported.

The dataframe with the results shown in Figure
5 accordingly lists all instances of fitted models, and
gives confidence intervals for the log ED50 values.

Then, a customized plot can be generated:

> drplot(rIM2,dIM,overlay=TRUE,bw=FALSE,
xlim=c("auto",5))

The xlim argument to drplot fixes the interfer-
ence between legend and data. Furthermore, the plot
produced in the above example shown in Figure 6
shows two fitted dose-response curves for the sub-
stance IM1-10 BF4 (grey lines), one for the probit and
one for the linlogit model.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Decadic Logarithm of the dose in µM

N
or

m
al

iz
ed

 r
es

po
ns

e

● ● ●
●

●

●
● ●

●

● ●

●
● ●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ●
● ● ●

IM13 BF4
IM14 BF4
IM15 BF4
IM16 BF4
IM17 BF4
IM18 BF4
IM19 BF4
IM1−10 BF4

Figure 6: Dose-response plot showing the dose-
response curves for a homologous series of com-
pounds and all fitted linlogit and probit models.

External databases

Certain screening bioassays can be carried out with
relatively low investments of time and money, so

R News ISSN 1609-3631

Vol. 6/3, August 2006 11

> print(rIM2,digits=2)
Substance ndl n lld lhd mtype logED50 5% 95% unit sigma a b c

1 IM13 BF4 9 81 0.592 3.0 inactive NA NA NA microM NA NA NA NA
2 IM14 BF4 20 216 -0.010 3.2 no fit NA NA NA microM NA NA NA NA
3 IM15 BF4 9 135 0.592 3.0 inactive NA NA NA microM NA NA NA NA
4 IM16 BF4 9 108 0.592 3.0 inactive NA NA NA microM NA NA NA NA
5 IM17 BF4 9 81 0.592 3.0 linlogit 2.58 2.52 2.65 microM 0.24 2.58 2.30 0.015
6 IM18 BF4 9 135 0.592 3.0 linlogit 1.68 1.63 1.73 microM 0.23 1.68 2.24 0.057
7 IM19 BF4 9 81 0.592 3.0 linlogit 1.65 1.61 1.69 microM 0.15 1.65 1.98 0.110
8 IM1-10 BF4 11 162 -0.010 3.0 linlogit 0.77 0.70 0.84 microM 0.30 0.77 1.94 0.458
9 IM1-10 BF4 11 162 -0.010 3.0 probit 0.83 0.75 0.90 microM 0.31 0.83 0.33 NA

Figure 5: Contents of the dataframe containing the results from the fitting procedure for the chain length data
IM1xIPC81 from the package (see text for explanations).

large volumes of dose-response data can build
up (high-throughput screening/high-content screen-
ing). The drfit package makes it possible to retrieve
data stored in databases accessible by ODBC using
the RODBC package internally. Since RODBC works
on Windows, Mac OS X and Unix platforms, the code
is platform- and database independent to a high de-
gree.

For storing cytotoxicity data in a MySQL
database, the following minimum database defini-
tion is advisable:

CREATE TABLE `cytotox` (

`pk` int(11) unsigned NOT NULL auto_increment,

`plate` int(11) NOT NULL default '0',

`experimentator` varchar(40) NOT NULL

default '',

`substance` varchar(100) NOT NULL default '',

`celltype` varchar(20) NOT NULL default '',

`conc` float NOT NULL default '0',

`unit` set('unit1','...') default 'unit1',

`viability` float NOT NULL default '0',

`performed` date NOT NULL

default '0000-00-00',

`ok` set('not ok','ok','?','no fit')

default '?',

PRIMARY KEY (`pk`),

)

The pk and the performed data field are not in-
terpreted by the package, databases with any other
columns missing might work but have not been
tested.

The column called viability contains the nor-
malised response that has been calculated at the time
of the data import into the database. Of course, the
Data Source has to be configured to be a valid and
accessible ODBC DSN on the platform used, e.g. by
installing and configuring unixodbc and myodbc un-
der Linux or MyODBC under Windows. This also in-
volves setting up the MySQL server to listen to net-
work connections, if it is not located on the local com-
puter, and adequate MySQL user privileges.

With such a setup, the drdata function from the
package can be used to conveniently retrieve data

from the database and evaluate it with the drfit and
drplot functions:

> s <- c("Sea-Nine","TBT","ZnPT2")
> d <- drdata(s,experimentator = "fstock",
whereClause="performed < 2006-04-04")
> r <- drfit(d,linlogit=TRUE)
> drplot(r,d,dtype="none",
bw=FALSE,overlay=TRUE)

The whereClause argument to the drdata func-
tion allows for flexible selection of data to be used for
the analysis, e.g. by using comparison operators on
columns containing dates as illustrated in the above
example.

Additionally, the use of the argument
dtype="none" to the drplot function is shown,
which leads to the display of the fitted models only,
without the data, as shown in Figure 7.

In the UFT Center of Environmental Research
and Technology, we use the drfit package for reg-
ular batch-processing of all our dose-response data
from several bioassays for a substance library of
more than 200 compounds. The results are in
turn written to a database, and the drplot function
is used to create updated dose-response plots ev-
ery time the raw data has been augmented. The
whole process of fitting all data and producing the
plots takes less about 1 minute on an 1600 MHz
AMD Sempron PC for the cytotoxicity data for 227
substances, provided that the new data has been
checked by the checkplate and checksubstance
functions, which allow for an easy validation of ex-
perimental dose-response data generated by plate-
reader bioassays stored in a drfit conformant
MySQL database.

R News ISSN 1609-3631

Vol. 6/3, August 2006 12

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Decadic Logarithm of the dose in µM

N
or

m
al

iz
ed

 r
es

po
ns

e

Sea−Nine
TBT
ZnPT2

Figure 7: Dose-response plot showing the fitted
dose-response curves for three antifouling biocides
in the cytotoxicity assay fitted with the linlogit
model.

The whole system provides the basis for analysis
of the toxicity data, e.g. by (Quantitative) Structure-
Activity Relationships (SAR/QSAR), which may
provide a deeper chemical understanding of the in-
teraction of the chemicals with biological organisms.

Bibliography

D. M. Bates and D. G. Watts. Nonlinear Regression
Analysis and its Applications. Wiley Series in Prob-
ability and Mathematical Statistics. Wiley, New
York, 1988. 7

P. Brain and R. Cousens. An equation to de-
scribe dose responses where there is stimulation of
growth at low doses. Weed Research, 29:93–96, 1989.
10

J. Ranke, K. Mölter, F. Stock, U. Bottin-Weber, J. Poc-
zobutt, J. Hoffmann, B. Ondruschka, J. Filser, and
B. Jastorff. Biological effects of imidazolium ionic
liquids with varying chain lengths in acute Vibrio
fischeri and WST-1 cell viability assays. Ecotoxicol-
ogy and Environmental Safety, 28(3):396–404, 2004.
9

P. H. van Ewijk and J. A. Hoekstra. Calculation of
the EC50 and its confidence interval when subtoxic
stimulus is present. Ecotoxicology and Environmen-
tal Safety, 25:25–32, 1993. 10

W. N. Venables and B. D. Ripley. Modern Ap-
plied Statistics with S. Statistics and Computing.
Springer, New York, 2002. 7

Johannes Ranke
Department of Bioorganic Chemistry
UFT Center for Environmental Research and Technology
University of Bremen jranke@uni-bremen.de

The pls package
by Bjørn-Helge Mevik

Introduction

The pls package implements Partial Least Squares
Regression (PLSR) and Principal Component Re-
gression (PCR). It is written by Ron Wehrens and
Bjørn-Helge Mevik.

PCR is probably well-known to most statisticians.
It consists of a linear regression of one or more re-
sponses Y onto a number of principal component
scores from a predictor matrix X (Næs and Martens,
1988).

PLSR is also a linear regression onto a number of
components from X, but whereas principal compo-
nent analysis maximizes the variance of the scores,
PLS maximizes the covariance between the scores
and the response. The idea is that this should give
components that are more relevant for the response.
Typically, PLSR achieves the same (or smaller) pre-

diction error as PCR, with fewer components. A
good introduction to PLSR and PCR can be found
in Martens and Næs (1989). A review of PLSR is
given in Wold et al. (2001) (in fact, all of that is-
sue of Chemolab is dedicated to PLSR). Frank and
Friedman (1993) provides a more technical treat-
ment, from a statistical viewpoint.

PLSR and PCR are commonly used in situations
where there are collinearities or near-collinearities
in X, for instance when there are more variables
than observations. This is a very common situation
in fields like chemometrics, where various types of
spectroscopic data are often used to predict other
measurements.

There are other regression methods that can be
applied to such data, for instance ridge regression.
Studies have indicated that in terms of prediction
error, ridge regression can perform slightly better
than PLSR. However, one of the major advantages of
PLSR and PCR is interpretation. In addition to a pre-
diction equation, one gets score and loading vectors

R News ISSN 1609-3631

mailto:jranke@uni-bremen.de

Vol. 6/3, August 2006 13

for each component. These can be plotted and inter-
preted by the field expert. There is a strong focus on
graphical assessment and interpretation in fields like
chemometrics.

Typical usage

To illustrate the usage of the package, we will use a
data set published in Kalivas (1997). It consists of oc-
tane number and near infrared (NIR) spectra of 60
gasoline samples. Each NIR spectrum consists of 401
diffuse reflectance measurements from 900 to 1700
nm. The spectra are shown in Figure 1.

0.
0

0.
4

0.
8

1.
2

lo
g(

1/
R)

1000 nm 1400 nm

Figure 1: NIR spectra

The user interface is inspired by lm, and has a
formula interface and methods for plot, predict,
fitted, etc. The main modelling functions are plsr
and pcr, which fit PLSR and PCR models, respec-
tively. They are both simple wrappers for mvr, and
return a fitted model as an object of class "mvr". The
object usually contains fit results for models with 0,
1, . . ., ncomp components, where ncomp is specified
in the call. Because the score vectors are mean cen-
tered and orthogonal, one can inspect submodels by
selecting subsets of the components, without having
to refit the model. Many extraction and plot func-
tions support this through the argument comps (or,
for a few functions, ncomp).

It is customary to use cross-validation (CV)
(Stone, 1974) or test set validation to determine how
many components to use in the regression. The mod-
elling functions can perform cross-validation, and
the results are stored in the model object.

We will illustrate the use of pls by doing a PLSR
analysis of the gasoline data. A typical way of calling
plsr is:

> gas1 <- plsr(oct ~ NIR, ncomp = 10,

+ data = gasoline, validation = "LOO")

This fits a model with 10 components, and in-
cludes leave-one-out (LOO) cross-validated predic-
tions (Lachenbruch and Mickey, 1968). One can ex-
tract different elements of the fitted model with func-
tions like coef, scores, loadings, etc.

The print method for "mvr" objects shows the
type of model and fit algorithm, while the summary
method gives more details about the fit and valida-
tion results (if any):

> summary(gas1)

Data: X dimension: 60 401
Y dimension: 60 1

Fit method: kernelpls
Number of components considered: 10

VALIDATION: RMSEP
Cross-validated using 60 leave-one-out segs.

(Intercept) 1 comps 2 comps
CV 1.543 1.328 0.3813
adjCV 1.543 1.328 0.3793

3 comps 4 comps 5 comps 6 comps
CV 0.2579 0.2412 0.2412 0.2294
adjCV 0.2577 0.2410 0.2405 0.2288

7 comps 8 comps 9 comps 10 comps
CV 0.2191 0.2280 0.2422 0.2441
adjCV 0.2183 0.2273 0.2411 0.2433

TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps

X 70.97 78.56 86.15 95.4
oct 31.90 94.66 97.71 98.0

5 comps 6 comps 7 comps 8 comps
X 96.12 96.97 97.32 98.1
oct 98.68 98.93 99.06 99.1

9 comps 10 comps
X 98.32 98.71
oct 99.20 99.24

The validation results here are Root Mean Squared
Error of Prediction (RMSEP). There are two cross-
validation estimates: ‘CV’ is the ordinary CV esti-
mate, and ‘adjCV’ is a bias-corrected CV estimate
(Mevik and Cederkvist, 2004) (For a LOO CV, there
is virtually no difference).

As an alternative, one can plot the RMSEPs in or-
der to decide how many components to use. The
function RMSEP returns an object of class "mvrVal",
with its own print and plot methods. RMSEP can
also calculate a test set estimate, if a test set is pro-
vided with the newdata argument. (If one prefers
MSE, one can use the function MSEP.)

> plot(RMSEP(gas1), legendpos = "topright")

This plots the estimated RMSEPs as functions of the
number of components (Figure 2). The legendpos
argument adds a legend at the indicated position.
Three components seem to be enough. This gives an
RMSEP of 0.258. As mentioned in the introduction,
the main practical difference between PCR and PLSR
is that PCR often needs more components than PLSR
to achieve the same prediction error. On this data
set, PCR would need four components to achieve the
same RMSEP.

R News ISSN 1609-3631

Vol. 6/3, August 2006 14

0 2 4 6 8 10

0.
2

0.
6

1.
0

1.
4

oct

number of components

RM
SE

P

CV
adjCV

Figure 2: Cross-validated RMSEP curves

Once the number of components has been cho-
sen, one can inspect different aspects of the fit by
plotting predictions, scores, loadings, etc. The de-
fault plot is a prediction plot:

> plot(gas1, ncomp = 3, asp = 1, line = TRUE)

84 85 86 87 88 89

84
85

86
87

88
89

oct, 3 comps, validation

measured

pr
ed

ict
ed

Figure 3: Cross-validated predictions

This shows the cross-validated predictions with
three components versus measured values (Figure 3).
We have chosen an aspect ratio of 1, and to draw
a target line. One can plot fitted values instead of
cross-validated predictions, by using the argument
which = "train".

Other plots can be selected with the argument
plottype:

> plot(gas1, plottype = "scores",

+ comps = 1:3)

Comp 1 (71.0 %)

−0.2 0.1 0.3

−0
.3

0.
0

0.
2

−0
.2

0.
1

0.
3

Comp 2 (7.6 %)

−0.3 0.0 0.2 −0.2 0.0 0.2

−0
.2

0.
0

0.
2

Comp 3 (7.6 %)

Figure 4: Score plot

This gives a pairwise plot of the score values (Fig-
ure 4). Score plots are much used to look for pat-
terns, groups or outliers in the data. (For instance,
plotting the two first components for a model built
on the NIR dataset included in pls, clearly indicates
the experimental design of the data.) The numbers
in parentheses after the component labels are the rel-
ative amount of X-variance explained by each com-
ponent. The explained variances can be extracted ex-
plicitly with explvar(gas1).

Another common plot is the loading plot (Fig-
ure 5), which is much used for component interpreta-
tion, by looking for known spectral peaks or profiles:

> plot(gas1, "loadings", comps = 1:3,

+ legendpos = "topleft")

> abline(h = 0)

0 100 200 300 400

−0
.2

0.
0

0.
2

0.
4

variable

lo
ad

in
g

va
lu

e

Comp 1 (71.0 %)
Comp 2 (7.6 %)
Comp 3 (7.6 %)

Figure 5: Loading plot

R News ISSN 1609-3631

Vol. 6/3, August 2006 15

The package also implements biplots and correla-
tion loadings plots. All the plots can also be accessed
directly with functions predplot, scoreplot, etc.

Multi-response models

Multi-response models are handled automatically by
the fit, extraction and plot functions in pls. The pack-
age contains a small sensory data set with 5 quality
parameters Quality and 6 sensory attributes Panel
for 16 olive oil samples. To see whether the sensory
attributes can be explained by the quality measure-
ments, one can do a regression of Panel on Quality:

> data(sensory)

> olive1 <- plsr(Panel ~ Quality,

+ data = sensory, val = "LOO")

The plot method for "mvrVal" objects gives one
validation curve for each response (Figure 6):

> plot(RMSEP(olive1), nCols = 2)

The nCols = 2 argument tells the underlying
plot.mvrVal function to use two columns instead
of three for the panels. The syrup attribute is best
explained by a single component, but overall, two
components seem optimal. The reduction in RMSEP
is quite moderate for all responses, which is not un-
usual for sensory data. This can also be seen in a
prediction plot (Figure 7):

> plot(olive1, ncomp = 2, asp = 1,

+ line = TRUE, nCols = 2)

0 1 2 3 4 5

16
18

20

yellow

0 1 2 3 4 5

22
26

green

0 1 2 3 4 5

4.
0

4.
6

5.
2

brown

0 1 2 3 4 5

5.
5

6.
5

glossy

0 1 2 3 4 5

7.
5

8.
5

transp

number of components

RM
SE

P

0 1 2 3 4 5

2.
2

2.
6

3.
0

syrup

Figure 6: Cross-validated RMSEP curves

20 40 60

30
50

yellow, 2 comps, validation

10 30 50 70

20
40

60

green, 2 comps, validation

10 15 20 25

10
15

20

brown, 2 comps, validation

70 75 80 85 90

75
80

85

glossy, 2 comps, validation

65 70 75 80 85 90

70
75

80
85

transp, 2 comps, validation

measured

pr
ed

ict
ed

42 46 50

46
50

syrup, 2 comps, validation

Figure 7: Cross-validated predictions

A correlation loadings plot can tell us which pre-
dictors are adequately described by the model, and
which predictors correspond to the different compo-
nents:

> corrplot(olive1, comps = 1:2,

+ labels = "names")

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Comp 1 (99.59 %)

Co
m

p
2

(0
.2

8
%

)

Acidity

Peroxide
K232

K270DK

Figure 8: Correlation loadings plot

R News ISSN 1609-3631

Vol. 6/3, August 2006 16

Figure 8 indicates that all predictors are quite well
described, and that Peroxide and K232 are most
correlated with component 1, while Acidity corre-
sponds to the second component. The labels =
"names" argument labels the points with the vari-
able names. They can also be labelled with num-
bers. The default is the standard plot symbol. The
percentages give the amount of X-variance explained
by each component. We see that the first compo-
nent explains almost all variance of X. However, the
RMSEPs in Figure 6 show that two components are
needed to explain all responses adequately.

Flexible cross-validation

The cross-validation in pls can handle quite complex
situations, with respect to both the segments and the
treatment of the data.

Often, the observations in a data set are grouped
in some way or another, for instance when there are
replicates. In such cases, each cross-validation seg-
ment should consist of entire groups. As an exam-
ple, assume that the gasoline data actually consists of
three replicate measurements performed on 20 sam-
ples, and that the replicates are stored in consecutive
rows in the data table. This can be handled with

> gas2 <- update(gas1, validation = "CV",

+ segment.type = "consecutive",

+ length.seg = 3)

which gives 20 consecutive segments of size three.
One can also choose interleaved or randomly se-
lected (the default) segments. If one specifies
length.seg, the number of segments are calculated,
and vice versa if segments is specified. Care is taken
so that the segment sizes differ at most by 1.

For full flexibility, e.g. for unequal segment sizes,
the segments can be specified explicitly, as a list of
index vectors. See ?mvrCv for details.

In spectroscopic applications, the spectra often
have to be preprocessed in order to eliminate arte-
facts such as light scattering effects. This is often
done by taking the first or second derivative of the
spectra, or using Multiplicative Scatter Correction
(MSC). Currently, pls has a function msc which im-
plements MSC. It can be used directly in model for-
mulas: gas2 <- plsr(oct ~ msc(NIR), ...). This
is implemented such that the same preprocessing is
applied to new data in predict(gas2, newdata =
new.data).

Formulas like this pose a problem for the built-in
cross-validation: For efficiency reasons, the formula
is evaluated only once in mvr, on the complete data
set, even when the built-in CV is used. However,
the scatter correction ought to be re-calculated for
each CV segment, because it depends on the whole
data set. This can be done by using the more general
(but slower) function crossval for cross-validation.

It takes an "mvr" object and returns a cross-validated
object:

> gas2 <- plsr(oct ~ msc(NIR), ncomp = 6,

+ data = gasoline)

> gas2 <- crossval(gas2, length.seg = 1)

> RMSEP(gas2)

(Intercept) 1 comps 2 comps
CV 1.543 1.296 0.3975
adjCV 1.543 1.296 0.3971

3 comps 4 comps 5 comps 6 comps
CV 0.2516 0.2400 0.2212 0.2266
adjCV 0.2514 0.2389 0.2208 0.2263

As can be seen, there seems to be little effect of the
MSC on these data. In fact, Figure 1 indicates that
there is little scatter in the spectra.

Internals and Extensions

There are quite a few algorithms for calculating PLS
scores and loadings. Most of them are equivalent
for single-response models, and give more or less
the same results for multi-response models. The
pls package currently implements three of the more
well-known algorithms: kernel PLS, SimPLS and the
orthogonal scores algorithm.

Under the hood, mvr first handles the formula
and data, and then sends the data to an underlying
fit function, as determined by the method argument.

These fit functions can be called directly, which
can be useful when speed is important, or when us-
ing PLSR or PCR as building blocks in other algo-
rithms. As a simple example, a “quick ’n dirty” cross-
validation can be made like this:

> X <- gasoline$NIR

> y <- gasoline$oct

> n <- nrow(X)

> A <- 10

> cvpreds <- matrix(nrow = n, ncol = A)

> for (i in 1:n) {

+ fit <- kernelpls.fit(X[-i,], y[-i],

+ ncomp = A, stripped = TRUE)

+ for (j in 1:A)

+ cvpreds[i,j] <- (X[i,] -

+ fit$Xmeans) %*%

+ fit$coefficients[,,j]

+ cvpreds[i,] <- cvpreds[i,] + fit$Ymeans

+ }

> sqrt(colMeans((y - cvpreds)^2))

[1] 1.3281674 0.3813088 0.2578943
[4] 0.2411522 0.2411555 0.2294477
[7] 0.2191377 0.2279735 0.2421662
[10] 0.2440551

This is of course identical to the LOO CV results in
summary(gas1).

R News ISSN 1609-3631

Vol. 6/3, August 2006 17

Another example can be found in the package
lspls, which is available on CRAN. lspls uses ordi-
nary least squares regression and PLSR to fit a re-
sponse to a sequence of matrices (Jørgensen et al.,
2005).

Bibliography

I. E. Frank and J. H. Friedman. A statistical view
of some chemometrics regression tools. Technomet-
rics, 35(2):109–148, 1993. 12

K. Jørgensen, B.-H. Mevik, and T. Næs. Combining
designed experiments with several blocks of spec-
troscopic data. Submitted, 2005. 17

J. H. Kalivas. Two data sets of near infrared spectra.
Chemometrics and Intelligent Laboratory Systems, 37:
255–259, 1997. 13

P. A. Lachenbruch and M. R. Mickey. Estimation of
error rates in discriminant analysis. Technometrics,
10(1):1–11, 1968. 13

H. Martens and T. Næs. Multivariate Calibration. Wi-
ley, Chichester, 1989. 12

B.-H. Mevik and H. R. Cederkvist. Mean squared
error of prediction (MSEP) estimates for princi-
pal component regression (PCR) and partial least
squares regression (PLSR). Journal of Chemometrics,
18(9):422–429, 2004. 13

T. Næs and H. Martens. Principal component regres-
sion in NIR analysis: Viewpoints, background de-
tails and selection of components. Journal of Chemo-
metrics, 2:155–167, 1988. 12

M. Stone. Cross-validatory choice and assesment of
statistical predictions. Journal of the Royal Statistical
Society, Series B—Methodological, 36:111–147, 1974.
13

S. Wold, M. Sjöström, and L. Eriksson. PLS-
regression: a basic tool of chemometrics. Chemo-
metrics and Intelligent Laboratory Systems, 58(2):109–
130, 2001. 12

Bjørn-Helge Mevik
IKBM, Norwegian University of Life Sciences,
Ås, Norway.
bjorn-helge.mevik@umb.no

Some Applications of Model-Based
Clustering in Chemistry
by Chris Fraley and Adrian E. Raftery

Interest in clustering has experienced a recent surge
due to the emergence of new areas of application.
Prominent among these is the analysis of images re-
sulting from new technologies involving chemical
processes, such as microarray or proteomics data,
and contrast-enhanced medical imaging. Cluster-
ing is applied to the image data to produce segmen-
tations that are appropriately interpretable. Other
applications include minefield detection (Dasgupta
and Raftery 1998; Stanford and Raftery 2000), finding
flaws in textiles (Campbell et al. 1997; 1999), group-
ing coexpressed genes (Yeung et al. 2001), in vivo
MRI of patients with brain tumors (Wehrens et al.
2002), and statistical process control (Thissen et al.
2005).

The use of clustering methods based on proba-
bility models rather than heuristic procedures is be-
coming increasingly common due to recent advances
in methods and software for model-based cluster-
ing, and the fact that the results are more easily in-
tepretable. Finite mixture models (McLachlan and
Peel, 2000), in which each component probability
corresponds to a cluster, provide a principled statis-
tical approach to clustering. Models that differ in the

number of components and/or component distribu-
tions can be compared using statistical criteria. The
clustering process estimates a model for the data that
allows for overlapping clusters, as well as a proba-
bilistic clustering that quantifies the uncertainty of
observations belonging to components of the mix-
ture.

The R package mclust (Fraley and Raftery 1999,
2003) implements clustering based on normal mix-
ture models. The main clustering functionality is
provided by the function EMclust, together with its
associated summary and plot methods. Users can
specify various parameterizations of the variance or
covariance of the normal mixture model, includ-
ing spherical and diagonal models in the multivari-
ate case, along with the desired numbers of mix-
ture components to consider. The mixture parame-
ters are estimated via the EM algorithm (Dempster
et al. 1977; McLachlan and Krishnan 1997), initialized
by model-based hierarchical clustering (Banfield and
Raftery 1993; Fraley 1998). The best model is selected
according to the Bayesian Information Criterion or
BIC (Schwarz 1978), a criterion that adds a penalty to
the loglikelihood that increases with the number of
parameters in the model.

In this article, we discuss an application of model-

R News ISSN 1609-3631

mailto:bjorn-helge.mevik@umb.no

Vol. 6/3, August 2006 18

based clustering to diabetes diagnosis from glucose
and insulin levels in blood plasma. We also discuss
two applications in image segmentation. In the first,
model-based clustering is used to give an initial seg-
mentation of microarray images for signal extraction.
In the second, model-based clustering is used to seg-
ment a dynamic breast MR image to reveal possible
tumors.

Model-based Clustering

In model-based clustering, the data x are viewed as
coming from a mixture density f (x) = ∑G

k=1 τk fk(x),
where fk is the probability density function of the ob-
servations in group k, and τk is the probability that an
observation comes from the kth mixture component
(0 < τk < 1 for all k = 1, . . . , G and ∑k τk = 1).

Each component is usually modeled by the nor-
mal or Gaussian distribution. In the univariate case,
component distributions are characterized by the
mean µk and the variance σ2

k , and have the proba-
bility density function

φ(xi ; µk,σ2
k) =

1√
(2πσ2

k)
exp

{
− (xi −µk)2

2σ2
k

}
. (1)

In the multivariate case, component distributions are
characterized by the mean µk and the covariance ma-
trix Σk, and have the probability density function

φ(xi ; µk, Σk) =
exp{− 1

2 (xi −µk)TΣ−1
k (xi −µk)}√

det(2πΣk)
.

(2)
The likelihood for data consisting of n observations
assuming a Gaussian mixture model with G multi-
variate mixture components is

n

∏
i=1

G

∑
k=1

τkφ(xi ; µk, Σk). (3)

For reviews of model-based clustering, see McLach-
lan and Peel (2000) and Fraley and Raftery (2002).

For a fixed number of components G, the model
parameters τk, µk, and Σk can be estimated using
the EM algorithm initialized by hierarchical model-
based clustering (Dasgupta and Raftery 1998; Fra-
ley and Raftery 1998). Data generated by mixtures
of multivariate normal densities are characterized by
groups or clusters centered at the means µk, with
increased density for points nearer the mean. The
corresponding surfaces of constant density are ellip-
soidal.

Geometric features (shape, volume, orientation)
of the clusters are determined by the covariances Σk,
which may also be parametrized to impose cross-
cluster constraints. There are a number of possible
parameterizations of Σk, many of which are imple-
mented in mclust. Common instances include Σk =

λI, where all clusters are spherical and of the same
size; Σk = Σ constant across clusters, where all clus-
ters have the same geometry but need not be spheri-
cal; and unrestricted Σk, where each cluster may have
a different geometry.

Banfield and Raftery (1993) proposed a general
framework for geometric cross-cluster constraints in
multivariate normal mixtures by parametrizing co-
variance matrices through eigenvalue decomposi-
tion in the following form:

Σk = λkDk AkDT
k , (4)

where Dk is the orthogonal matrix of eigenvectors,
Ak is a diagonal matrix whose elements are propor-
tional to the eigenvalues, and λk is an associated con-
stant of proportionality. Their idea was to treat λk, Ak
and Dk as independent sets of parameters, and either
constrain them to be the same for each cluster or al-
low them to vary among clusters. When parameters
are fixed, clusters will share certain geometric prop-
erties: Dk governs the orientation of the kth compo-
nent of the mixture, Ak its shape, and λk its volume,
which is proportional to λd

k det(Ak). The model op-
tions available in mclust are summarized in Table 1.

A ‘best’ model for the data can be estimated by fit-
ting models with differing parameterizations and/or
numbers of clusters to the data by maximum like-
lihood, and then applying a statistical criterion for
model selection. The Bayesian Information Criterion
or BIC (Schwarz 1978) is the model selection criterion
provided in the mclust software; the ‘best’ model is
taken to be the one with the highest BIC value.

Example 1: Diabetes Diagnosis
from Glucose and Insulin Levels

We first illustrate the use of mclust on the diabetes
dataset (Reaven and Miller 1979) giving three mea-
surements for each of 145 subjects:

glucose - plasma glucose response
to oral glucose

insulin - plasma insullin response
to oral glucose

sspg - steady-state plasma glucose
(measures insulin resistance)

This dataset is included in the mclust package. The
subjects were clinically diagnosed into three groups:
normal, chemically diabetic, and overtly diabetic.
The diagnosis is given in the first column of the
diabetes dataset, which is excluded from the clus-
ter analysis.

The following code computes the BIC curves us-
ing the function EMclust and then plots them (see
Figure 1, upper left):

> data(diabetes)
> diBIC <- EMclust(diabetes[,-1])
> plot(diBIC)

R News ISSN 1609-3631

Vol. 6/3, August 2006 19

Table 1: Parameterizations of the multivariate Gaussian mixture model available in mclust. In the column
labeled ‘# covariance parameters’, d denotes the dimension of the data, and G denotes the number of mixture
components. The total number of parameters for each model can be obtained by adding Gd parameters for the
means and G− 1 parameters for the mixing proportions.

identifier Model # covariance parameters Distribution Volume Shape Orientation
EII λI 1 Spherical = = NA
VII λk I G Spherical = NA
EEI λA d Diagonal = = axes
VEI λk A G + (d-1) Diagonal = axes
EVI λAk 1 + G(d-1) Diagonal = axes
VVI λk Ak Gd Diagonal axes
EEE λDADT d(d+1)/2 Ellipsoidal = = =
EEV λDk ADT

k 1 + (d-1) + G[d(d-1)/2] Ellipsoidal = =
VEV λkDk ADT

k G + (d-1) + G[d(d-1)/2] Ellipsoidal =
VVV λkDk AkDT

k G[d(d+1)/2] Ellipsoidal

EII VII EEI VEI EVI VVI EEE EEV VEV VVV
"A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

The model parameters can then be extracted via
the summary function, and results can be plotted us-
ing the function coordProj as follows:

> diS <- summary(diBIC,diabetes[,-1])
> coordProj(diabetes[,-1], dimens=c(2,3),

mu=diS$mu, sigma=diS$sigma,
type="classification",

classification=diS$classification)

The summary object diS contains the parameters and
classification for the best (highest BIC) model. The
function coordProj can be used to plot the data and
mclust classification, marking the means and draw-
ing ellipses (with axes) corresponding to the variance
for each group (see Figure 1, lower left).

For this data, model-based clustering chooses a
model with three components, each having a differ-
ent covariance. Moreover, the corresponding three-
group classification matches the three clinically di-
agnosed groups with 88% accuracy.

The uncertainty of a classification can also be
assessed in model-based clustering. The function
uncerPlot can be used to display the uncertainty of
misclassified objects when there is a known classifi-
cation for comparison. More generally, the function
coordProj can be used to display the relative uncer-
tainty of a classification:

> uncerPlot(diS$z,diabetes[,1])
> coordProj(diabetes[,-1], dimens=c(2,3),

mu=diS$mu, sigma=diS$sigma,
type="uncertainty",

uncertainty=diS$uncertainty)

The resulting plots are shown in Figure 1, upper right
and lower right. In this case, the misclassified data
points tend to be among the most uncertain.

Example 2: Microarray Image Seg-
mentation

Microarray technology is now a widely-used tool in
a number of large-scale assays. While many array
platforms exist, a common method for making DNA
arrays consists of printing the single-stranded DNA
representing the genes on a solid substrate using a
robotic spotting device. In the two-color array, the
cDNA extracted from the experimental and control
samples are first labelled using the Cy3 (green) and
Cy5 (red) fluorescent dyes. Then they are mixed
and hybridized with the arrayed DNA spots. After
hybridization, the arrays are scanned at the corre-
sponding wavelengths separately to obtain the im-
ages corresponding to the two channels. The fluores-
cence measurements are used to determine the rela-
tive abundance of the mRNA or DNA in the samples.

The quantification of the amount of fluorescence
from the hybridized sample can be affected by a vari-
ety of defects that occur during both the manufactur-
ing and processing of the arrays, such as perturba-
tions of spot positions, irregular spot shapes, holes
in spots, unequal distribution of DNA probe within
spots, variable background, and artifacts such as
dust and precipitates. Ideally these events should be
automatically recognized in the image analysis, and
the estimated intensities adjusted to take account of
them.

Li et al. (2005) proposed a robust model-based
method for processing microarray images so as to
estimate foreground and background intensities. It
starts with an automatic gridding algorithm that
uses a sliding window to find the peaks and valleys.
Then model-based clustering is applied to the (uni-
variate) sum of the intensities of the two channels
measuring the red and green signals to provide an
initial segmentation. Based on known information
about the data, it is assumed there can be no more
than three groups in the model (background, fore-

R News ISSN 1609-3631

Vol. 6/3, August 2006 20

A

A
A

A

A A A A
A

2 4 6 8

−
58

00
−

56
00

−
54

00
−

52
00

−
50

00
−

48
00

number of clusters

B
IC

B

B

B B

B B B B B

C

C
C C

C
C

C
C C

D

D

D

D D D D D D

E

E E

E
E E

E E
E

F

F

F
F F F

F
F F

G

G
G G

G G G
G

G

H

H H
H

H H
H

H

H

I

I
I I I I I I I

J

J

J
J J

J
J

0.
0

0.
1

0.
2

0.
3

0.
4

Index

un
ce

rt
ai

nt
y

0 500 1000 1500

0
20

0
40

0
60

0

insulin

ss
pg ●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500

0
20

0
40

0
60

0

insulin

ss
pg

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

Figure 1: Upper left: BIC computed by EMclust for the 10 available model parameterizations and up to 9 clusters for the
diabetes dataset. Different letters encode different model parameterizations, as output from the plot method. The ‘best’
model is taken to be the one with the highest BIC among the fitted models. Lower left: A projection of the diabetes data,
with different symbols indicating the classification corresponding to the best model as computed by EMclust. The compo-
nent means are marked and ellipses with axes are drawn corresponding to their covariances. In this case there are three
components, each with a different covariance. Upper right: Uncertainty of the classification of each observation in the best
model. Observations are ordered by increasing uncertainty along the horizontal axis. Vertical lines indicate misclassified
observations, which in this case tend to be among the most uncertain. Lower right: A projection of the diabetes data
showing classfication uncertainty. Larger symbols indicate the more uncertain observations.

ground, uncertain). If there is more than one group,
connected components below a certain threshold in
size are removed (designated as unknown) from the
brightest group as a precaution against artifacts. The
procedure is depicted in Figure 2.

An implementation is available in Bioconductor
(see http://www.bioconductor.org). The package is
called spotSegmentation, and consists of two basic
functions:

spotgrid: determines spot locations in blocks
within microarray slides

spotseg: determines foreground and background
signals within individual spots

1. Automatic gridding.

2. Model-based clustering for ≤ 3 groups.

3. Threshold connected components.

4. Foreground / background determination:

• If there is more than one group, the fore-
ground is taken to be the group of high-
est mean intensity and the background the
group of lowest mean intensity.

• If there is only one group, it is assumed
that no foreground signal is detected.

Figure 2: Basic Procedure for Model-based Segmentation
of Microarray Blocks.

R News ISSN 1609-3631

Vol. 6/3, August 2006 21

These functions will be illustrated on the
spotSegTest dataset supplied with the package,
which consists of a portion of the first block from
the first microarray slide image from van’t Wout et
al. (2003). This data set is a data frame, with two
columns, one from each of the two channels of ab-
sorption intensities. The spotSegTest dataset can be
obtained via the data command once the spotSeg-
mentation package is installed.

> data(spotSegTest)

Because the data are encoded for compact stor-
age, they need to be transformed as follows in order
to extract the intensities:

> dataTrans <- function(x)
(256*256-1-x)^2*4.71542407E-05

> chan1 <- matrix(dataTrans(spotSegTest[,1]),
144, 199)

> chan2 <- matrix(dataTrans(spotSegTest[,2]),
144, 199)

Note that this transformation is specific to this data;
in general stored image data must be converted as
needed to image intensities. The function spotgrid
can be used to divide the microarray image block
into a grid separating the individual spots.

> Grid <- spotgrid(chan1, chan2, rows = 4,
cols = 6, show = FALSE)

> Grid
$rowcut
[1] 17 50 77 104 139

$colcut
[1] 12 41 66 94 123 151 183

Here we have used the knowlege that there are 4
rows and 6 columns in this subset of spots from the
microarray image. The show option allows display of
the gridded image.
The individual spots can now be segmented using
the function spotseg, which does model-based clus-
tering for up to 3 groups via mclust followed by a
connected component analysis. The following seg-
ments all spots in the block:

Seg <- spotseg(chan1, chan2,
Grid$rowcut, Grid$colcut)

plot(Seg)

The corresponding plot is shown in Figure 3.

Example 3: Dynamic MRI Segmen-
tation

Dynamic contrast-enhanced magnetic resonance
imaging (MRI) is emerging as a powerful tool for the
diagnosis of breast abnormalities (e.g. Hylton 2005).
Because of the high reactivity of breast carcinomas

after gadolinium injection, this technology has the
potential to allow differentiation between malignant
and benign tissues. Its unique ability to provide mor-
phological and functional information can be used
to assist in the differential diagnosis of lesions that
other methods find questionable. It is currently used
as a complementary diagnostic modality in breast
imaging. However, data acquistion, postprocessing,
image analysis and interpretation of dynamic breast
MRI are still active areas of research. Forbes et al.
(2006) developed a region of interest (ROI) selection
method that combines model-based clustering with
Bayesian morphology (Forbes and Raftery 1999), to
produce a classification of the data for potential use
in diagnosis.

Each dynamic MR image consists of 25 sequential
images recording signal intensity after gadolinium
injection. Instead of working directly with the image
data, they are summarized in terms of five derived
variables considered to be of significance in cancer
diagnosis:

• Time to peak: the time at which the signal
peaks.

• Difference at peak: absolute increase of inten-
sity between the beginning of the signal and
the time at which the signal peaks.

• Enhancement slope: in units of intensity/time.

• Maximum step: maximum change between
two adjacent dynamic samples.

• Washout slope: in units of intensity/time.

Model-based classification for up to four groups is
then applied to this data to segment the image. The
choice of four groups is based on knowledge about
the data: the main distinguishable components in
breast tissue are blood vessels, air, fat, and possi-
bly lesions or tumors. Figure 4 gives an example of
model-based clustering applied to multivariate data
derived as decribed above from dynamic contrast-
enhanced breast MRI. Further steps using Bayesian
morphology may then be applied to smooth the re-
sulting image.

Summary

The contributed R package mclust implements pa-
rameter estimation for normal mixture models with
and without constraints, with higher-level functions
for model-based clustering and discriminant analy-
sis. It includes functions for displaying the fitted
models and clustered data.

The Bioconductor package spotSegmentation
uses mclust to determine foreground and back-
ground of spots in microarray images.

R News ISSN 1609-3631

Vol. 6/3, August 2006 22

Figure 3: Left: The sum of channel signals from a portion of a microarray block containing HIV data, with the grid pro-
duced by spotgrid superimposed. Right: the corresponding segmented spots produced by spotseg, based on the grid
produced by spotgrid. The color scheme is as follows: black denotes the spots, yellow denotes background, gray denotes
pixels of uncertain classification.

Figure 4: Reference image (left) and four-class mclust classification (right). The tumor area is shown in red, with the colors
assigned automatically according to the size of the mean difference at peak for pixels within each cluster.

R News ISSN 1609-3631

Vol. 6/3, August 2006 23

Model-based clustering can be used successfully
in a variety of technologies involving chemical pro-
cesses, including image segmentation for cDNA mi-
croarrays and dynamic contrast-enhanced MR.

Bibliography

J. D. Banfield and A. E. Raftery. Model-based Gaus-
sian and non-Gaussian clustering. Biometrics, 49:
803–821, 1993.

J. G. Campbell, C. Fraley, F. Murtagh, and A. E.
Raftery. Linear flaw detection in woven textiles
using model-based clustering. Pattern Recognition
Letters 18, 1539–1548, 1997.

J. G. Campbell, C. Fraley, D. Stanford, F. Murtagh,
and A. E. Raftery. Model-based methods for real-
time textile fault detection. International Journal of
Imaging Systems and Technology 10, 339–346, 1999.

A. Dasgupta and A. E. Raftery. Detecting features
in spatial point processes with clutter via model-
based clustering. Journal of the American Statistical
Association, 93:294–302, 1998.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood for incomplete data via the EM al-
gorithm (with discussion). Journal of the Royal Sta-
tistical Society, Series B, 39:1–38, 1977.

F. Forbes, N. Peyrard, C. Fraley, D. Georgian-Smith,
D. Goldhaber, and A. Raftery. Model-based region-
of-interest selection in dynamic breast MRI. Journal
of Computer Assisted Tomography, 30:576-687, 2006.

F. Forbes and A. E. Raftery. Bayesian morphology:
Fast unsupervised Bayesian image analysis. Jour-
nal of the American Statistical Association, 94:555–
568, 1999.

C. Fraley. Algorithms for model-based Gaussian hi-
erarchical clustering. SIAM Journal on Scientific
Computing, 20:270–281, 1998.

C. Fraley and A. E. Raftery. How many clusters?
Which clustering method? - Answers via model-
based cluster analysis. The Computer Journal, 41:
578–588, 1998.

C. Fraley and A. E. Raftery. MCLUST: Software for
model-based cluster analysis. Journal of Classifica-
tion, 16:297–306, 1999.

C. Fraley and A. E. Raftery. Model-based clustering,
discriminant analysis and density estimation. Jour-
nal of the American Statistical Association, 97:611–
631, 2002.

C. Fraley and A. E. Raftery. Enhanced software for
model-based clustering, density estimation, and
discriminant analysis: MCLUST. Journal of Clas-
sification, 20:263–286, 2003.

N. Hylton. Magnetic resonance imaging of the
breast: Opportunities to improve breast cancer
management. Journal of Clinical Oncology, 23(8):
1678–1684, March 10 2005.

Q. Li, C. Fraley, R. E. Bumgarner, K. Y. Yeung, and
A. E. Raftery. Donuts, scratches, and blanks: Ro-
bust model-based segmentation of microarray im-
ages. Bioinformatics, 21:2875–2882, 2005.

G. J. McLachlan and T. Krishnan. The EM Algorithm
and Extensions. Wiley, 1997.

G. J. McLachlan and D. Peel. Finite Mixture Models.
Wiley, 2000.

G. M. Reaven and R. G. Miller. An attempt to de-
fine the nature of chemical diabetes using a multi-
dimensional analysis. Diabetologia, 16:17–24, 1979.

G. Schwarz. Estimating the dimension of a model.
The Annals of Statistics, 6:461–464, 1978.

D. Stanford and A. E. Raftery. Principal curve cluster-
ing with noise. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 22, 601–609, 2000.

U. Thissen, H. Swierenga, A. P. de Weijer, R. Wehrens,
W. J. Melssen and L. M. .C. Buydens, Multivariate
statistical process control using mixture modeling.
Journal of Chemometrics, 19:23-31, 2005.

R. Wehrens and A. W. Simonetti and L. M. .C. Buy-
dens, Mixture modeling of medical magnetic res-
onance data. Journal of Chemometrics, 16:274-282,
2002.

A. B. van’t Wout, G. K. Lehrman, S. A. Mikeeva,
G. C. O’Keefe, M. G. Katze, R. E. Bumgarner, G. K.
Geiss, and J. I. Mullins. Cellular gene expression
upon human immunodeficiency type 1 infection of
CD4(+)-T-cell lines. Journal of Virology, 77(2):1392–
1402, January 2003.

K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and
W. L. Ruzzo. Model-based clustering and data
transformation for gene expression data. Bioinfor-
matics 17, 977–987, 2001.

Chris Fraley
Department of Statistics
University of Washington
fraley@stat.washington.edu

Adrian E. Raftery
Department of Statistics
University of Washington
raftery@stat.washington.edu

R News ISSN 1609-3631

mailto:fraley@stat.washington.edu
mailto:raftery@stat.washington.edu

Vol. 6/3, August 2006 24

Mapping databases of X-ray powder
patterns
by Ron Wehrens and Egon Willighagen

With the advent of high-throughput analysis meth-
ods, the number of large databases containing in-
formation on chemical compounds has increased
rapidly. They are being used for many different pur-
poses. In the pharmaceutical industry, for exam-
ple, databases containing hundreds of thousands of
drug-like compounds are being used to help iden-
tify promising new drug candidates. Obviously, the
need for efficient data mining tools is increasing as
well. It is especially difficult to assess how the sep-
arate objects in the database relate. Visualisation of
the contents is of prime importance but not trivial; R
offers a rich environment for this kind of exploratory
analysis.

5 10 15 20 25

0
10

00
30

00

Elamin

2θ

I

Figure 1: Crystal structure of ELAMIN (top) and asso-
ciated powder pattern (bottom).

We show an example (Wehrens et al., 2005) of
mapping part of the Cambridge Structural Database
(CSD) (Allen, 2002) to a Kohonen Self-Organising
Map (Kohonen, 2001). This database currently con-
tains nearly 400,000 crystal structures. To assess the
similarity of the crystal packing of these structures,
many options are open. One can, e.g., compare the
unit cell parameters (i.e. lengths of, and angles be-
tween, the three main axes that define the smallest
replicated unit – the unit cell). Although this is easy
and quick, there are several disadvantages to this ap-
proach. Apart from the fact that there is no unique
definition of the unit cell, this representation does not

capture information about the positions of the atoms
within the cell. Therefore, we use X-ray powder
diffractograms, which contain all packing informa-
tion. In Figure 1, the crystal structure of compound
ELAMIN is shown, together with the powder pattern.
The shape of the unit cell determines peak positions,
and the electron density within the unit cell deter-
mines peak heights.

Crucial is the similarity measure used to compare
powder patterns: it must above all capture similari-
ties in peak position, where it should be noted that
the number of peaks in patterns of different com-
pounds may be quite different. This is achieved
by a measure called the weighted cross-correlation
(WCC) (de Gelder et al., 2001). It takes one parame-
ter, the triangle width, the maximal shift that will still
give a positive contribution to the similarity when
comparing peaks.

A self-organising map consists of a regular grid
of units, where each unit has a “codebook vector”,
initially a random selection of patterns from the data
set. During the training of the self-organising map,
patterns are presented in random order. Each time,
the unit that is most similar to the presented pat-
tern is determined. The codebook vectors of this unit
and of all other units within a certain neighbourhood
are updated to become more similar to the presented
pattern. Both the neighbourhood and the learning
rate are decreased during training. At the end of the
training, only the winning unit is updated; this, in
fact, is a k-means clustering. The codebook vectors
then can be interpreted as cluster centers. New ob-
jects can easily be projected in the map by compar-
ing their patterns to all codebook vectors. Such a
two-dimensional map is ideally suited for visual in-
spection and may show relations that otherwise may
have gone unnoticed.

All this is implemented in package wccsom,
available from CRAN. It is based on the SOM func-
tion by B.D. Ripley in package class, but has a num-
ber of extra features, most notably plotting functions,
and the use of the WCC similarity function. The
data used in this paper are proprietary (the CSD is a
commercial database) but the package contains two
smaller sets of powder patterns, provided by René de
Gelder (Crystallography Department, Radboud Uni-
versity Nijmegen).

Example

For illustration purposes, we use a small dataset of
205 simulated powder patterns. Each pattern con-
sists of 481 variables (2θ values). The set is con-

R News ISSN 1609-3631

Vol. 6/3, August 2006 25

structed by searching the CSD for the compounds
that are very similar to a set of twelve seed com-
pounds; each group of compounds is considered to
be a separate class. Powder patterns for three of
the twelve classes are shown in Figure 2. ELAMIN
is the seed compound of class 12. Obviously, not
all classes are equally well defined: the spread in
class three is much larger than in the other two.

5 10 15 20 25

0
40

00
80

00

Class 3

2θ

I

5 10 15 20 25

0
40

00
80

00

Class 6

2θ

I

5 10 15 20 25

0
20

00
40

00

Class 12

2θ

I

Figure 2: Powder patterns of classes 3, 6, and 12 (top
to bottom).

The patterns are stored in a 205 x 481 matrix
testX. They are mapped to a six-by-six Kohonen
map by the following piece of code:

> library(wccsom)
> set.seed(7)
> somnet <- WCCSOM(testX,
+ somgrid(6, 6, "hexagonal"),
+ trwidth=20)

The triangle width for the WCC similarity function
in this case is twenty points, corresponding to one
degree 2θ. The convergence of the network can be as-
sessed after training by plotting the mean change in
similarity of the mapped object to the winning code-
book vectors for each epoch (i.e. a complete presen-
tation of the training set).

> plot(somnet, type="changes")

This is shown in Figure 3. In this case, the
changes at the end of the training are very

small; note that this is also the result of the de-
crease in learning parameter α. The training
is followed by a k-means clustering, which es-
sentially performs a fine-tuning of the network.

0 20 40 60 80 100

0.
00

2
0.

00
6

0.
01

0

Changes

Epoch

M
ea

n
im

pr
ov

em
en

t i
n

si
m

ila
rit

y
Figure 3: Convergence of network training: the plot
shows the increase in similarity between the winning
unit codebook vectors and the mapped objects dur-
ing training.

Several other plots are available:

> mycols <- rainbow(12, start=0, end=.7)
> par(mfrow=c(2,2))
> plot(somnet, type="counts", main="Counts")
> plot(somnet, type="quality",

main="Quality")
> plot(somnet, type="mapping",

main="Mapping",
labels=classes, col=mycols[classes])

> plot(somnet, type="codes", main="Codes")

This leads to the plots in Figure 4. The figure in
the top left shows how many objects are mapped to
each unit: gray indicates an empty unit. In the fig-
ure labelled “Quality”, the mean similarity of objects
to the corresponding codebook vector is indicated in
colour; the blue lines give an indication of the stan-
dard deviations. A line pointing downwards indi-
cates the minimal variation in this set; a line point-
ing upward the maximal. Units containing only one
object are usually very similar to that object; no vari-
ation is indicated in such a case. Which type of ob-
ject is mapped to what unit is shown in the figure
at the bottom left: classes is just a class vector of
length 205. With the exception of class three, which
is structurally the most diverse class, all objects of
one class are mapped to one unit or one group of ad-
jacent units. Finally, the unit codes are shown in the
bottom right plot. As one would expect, they look
very much like powder patterns.

Since the classes are chosen to be well separated,
this is not a difficult example. However, using Eu-
clidean distances or correlations as (dis)similarity
measures does not lead to a good mapping: the
twelve classes are mixed up completely.

R News ISSN 1609-3631

Vol. 6/3, August 2006 26

Counts

5

10

15

20

Quality

0.96

0.97

0.98

0.99

1

Mapping

44
44444

44
44

8

4
444 4

12
12
12121212
121212

22 2
2

5

5

5

3

1

5

7

101010

5

1
11

1

4
4

999
9

9

1
1222

9

10

5

55555

12
12

5

1

777
7

5

222 222

555

66
6

666

3

12

9

10
7

55559

1

777

8

3

111111

3333

3

3 3

18

3

8

12
12

77

1

7
7

6

4

3 3
3

3

6

1111111111

399 999

7

3

9

4

77

6

1

7

1

6
6 33

3

9

3

4

117

4 4

10

888
8

3

6

7

1
88

88

3

222 22

3

7

3

11

1

3

66 99
99

10

333

1

333

Codes

Figure 4: Several plotting types available for WCCSOM objects.

A more interesting case is presented by mapping
all 2303 steroid-like structures present in the CSD
(November 2004 release) to a 16x16 hexagonal grid.
Apart from the plots shown earlier, the summary func-
tion can be used to get more information from the
mapping. In particular, it is possible to get infor-
mation on what objects are mapped to what unit,
and how smooth the map is, i.e. how different the
codebook vectors of neighbouring units are. More-
over, it is possible to summarize other information
that may be present, such as reduced cell parame-
ters. The seed structure for class 3 in the previous
example, ECARAB, is also a steroid. It is mapped to
unit 241 in the steroid map. We can check what other
steroids are mapped there, and can compare their re-
duced cell parameters.

> set.seed(1)
> steroid.net <- WCCSOM(steroidX,
+ gr = somgrid(16, 16, "hexagonal"),
+ trwidth=20)
> options(digits=2)
> summary(steroid.net, type="unit",
+ nr = 241,
+ properties = steroid.props[,1:6])
Agreement with codebook vector of
25 objects mapped to cell 241:

wccs a b c alpha beta gamma

bifqai01 0.98 8.2 14 14 114 90 90
ecarab 0.99 8.1 14 14 114 90 90
eripuq 0.97 8.3 14 14 114 90 90
eripuq01 0.98 8.3 14 14 114 90 90
...
zuzdon 0.99 8.1 14 14 114 90 90
zuzdut 0.97 8.1 14 14 116 90 90
zuzfab 0.95 8.1 14 14 116 90 90

All compounds mapped to this unit have very sim-
ilar reduced cell parameters and very high similari-
ties to the codebook vector. Class 5 of the test data
set, which is also a steroid class but with a differ-
ent symmetry (axis lengths of 7.2, 13.6, and 25.6 Å,
respectively, and all angles α, β and γ equal to 90
degrees), is mapped in a totally different area of the
map.

Although the compounds from the small test
dataset are not all steroids, they still can be mapped
to the steroid map:

> classif <- wccassign(steroid.net, testX)
> par(mfrow=c(2,1))
> plot(steroid.net, "mapping",
+ classif=classif,
+ labels=classes, col=mycols[classes])
> plot(steroid.net, "quality",
+ classif=classif)

R News ISSN 1609-3631

Vol. 6/3, August 2006 27

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

44
4444444

44 8

44444

121212121212121212

222 2

5
5

5

3

1

5

7

10
10

10

5

1111

44

99999

11 222

9

10

5
55555

1212
5

1

7777

5 222222
5

5
5

66 6666

3 129

10

7

5555

9

1

77
7

8

3

11
1111

3333

3
33

1
8

3

8

1212

77

1

77

6

4

333

3 6

11 111111

11
3 99999

7

3

9

4
77

6

1

7

1

66

333 93

4

11
7

44

10

888

8

3

6

7

1

88

8

8

3

22222

3

7

3

11

1

3

66

9

9

99 10333

1

333

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

0.88

0.90

0.92

0.94

0.96

Figure 5: Mapping the test data set to the steroid
map. Bottom figure: quality plot.

This leads to the plot in Figure 5. There is con-
siderably more spread, mainly because of the much
larger variability in powder patterns in the steroid
data set. Note that the mapping quality is also lower.

Upscaling

Training the steroid data set takes roughly 45 min-
utes on a 2.0 GHz AMD Opteron processor. Obvi-
ously, training a network for all structures in the CSD
presents problems regarding memory as well as cal-
culation time. However, one of the advantages of
self-organising maps is that one can train in steps:
first use a subset of the complete database for initial
training, and then gradually add new patterns un-
til all have been presented to the net several times.
An added advantage is that one can easily update
the map when new releases of the database become
available. Care must be taken, however, not to de-
stroy other information in the network.

Still, it is a challenging task, and several tricks

should be applied to increase the speed of train-
ing. One obvious improvement is to use a grow-
ing network instead of a decreasing neighbour-
hood; another is to do the bulk of the training with
fewer variables. For this, functions expand.som and
bucket/debucket are available in package wccsom.
Note that the triangle width for the WCC function
should be adapted accordingly. In the following ex-
ample, we first decrease the resolution of the powder
patterns by a factor of five, and train a small four-
by-four network. This network is expanded twice so
that a similar-sized network as in the above example
is obtained.

> steroid.Xsm <- bucket(steroidX, 5)
> somnet <- WCCSOM(steroid.Xsm,
+ gr=somgrid(4, 4, "hexagonal"),
+ rlen=20, radius=4, trwidth=4)
> for (i in 1:2) {
+ map.exp <- expand.som(somnet)
+ somnet <- WCCSOM(X, gr=map.exp$grid,
+ rlen=20, radius=4,
+ nhbrdist = map.exp$nhbrdist,
+ init = t(map.exp$codes))
+ }

Finally, the original resolution is restored (function
debucket uses linear interpolation), and a few train-
ing epochs are used to fine-tune the codebook vec-
tors. The results are comparable to the original map.

> sternet.codes <- debucket(t(somnet$codes),
+ ncol(steroidX))
> somnet.final <- WCCSOM(steroidX,
+ gr = somnet$grid, rlen=20,
+ radius=4, nhbrdist = map.exp$nhbrdist,
+ init = sternet.codes)
> options(digits = 2)
> ecarabindex <-
+ which(dimnames(steroidX)[[1]] ==
+ "ecarab")
> summary(somnet.final, type="object",
+ nr = ecarabindex,
+ properties = steroid.props[,1:6])
Agreement of object ecarab with
23 other objects mapped to cell 6:

wccs a b c alpha beta gamma
bifqai01 0.98 8.2 14 14 114 90 90
eripuq 0.96 8.3 14 14 114 90 90
eripuq01 0.97 8.3 14 14 114 90 90
...
zuzdon 0.99 8.2 14 14 114 90 90
zuzdut 0.97 8.1 14 14 116 90 90
zuzfab 0.95 8.1 14 14 116 90 90

Again, all compounds mapped to this unit share the
same reduced cell parameters. Indeed, the set of
compounds mapped to this unit is almost identical
to the one found earlier. By this procedure, training
time could be reduced by fifty percent. For larger
data sets and, especially, larger nets, speed improve-
ments are even bigger.

R News ISSN 1609-3631

Vol. 6/3, August 2006 28

One further potential improvement that we have
investigated but so far have been less succesful
with, is the use of stick patterns, rather than semi-
continuous patterns consisting of equidistant points.
Not only will this use less memory (on average 40 –
100 peaks are present in one pattern), but the calcula-
tion of the similarity function is faster, too. Moreover,
it allows for easy selection of the most prominent fea-
tures only, again decreasing computational require-
ments. However, the crucial updating step during
training so far has proved difficult to define.

Applications

The trained map may be used to visualize the con-
tents of the database in a variety of ways. For indi-
vidual compounds, one can show areas that contain
similar crystal packings. Pair-wise comparisons need
not to be performed for the whole database, which
is computationally very expensive: one can concen-
trate on the codebook vectors of the map. All com-
pounds that map to similar units are candidates for
further investigation.

A particular advantage of using semi-continuous
powder patterns is that experimental patterns can di-
rectly be mapped. No peak picking is required. One
can even assign chemical meaning to some character-
istics of the unit vectors. If many peaks are present
in the low 2θ ranges, it means that the cell volume
is quite large. For other forms of spectroscopy, some
peaks may even be interpreted directly. All this may
aid in the elicudation of structure parameters of un-
known compounds.

One can also use the map as a means of stratified
sampling: a small set of compounds (e.g. one for
each unit) can be selected that covers the complete
chemical space. In polymorph prediction, this fea-
ture can be used to reduce the number of structures
before (expensive) energy minimisation.

As a final example, trained maps can be used for
database quality control. Although many steps in the
sequence from measuring data to storing the results
in a database can be automated and in fact are, there
is still more than enough opportunity for error. Com-
pounds with either very unrealistic powder patterns

or properties very dissimilar to compounds mapped
to the same units are candidates for futher investiga-
tion.

In conclusion, the examples in this paper show
how the versatility of the R environment can con-
tribute to a better understanding of the connections
in large databases of molecules. The necessary speed
is obtained by using compiled code; the trained maps
are stored as R objects which can easily be interro-
gated, even by inexperienced R users, and on which
new objects can easily be mapped. One could even
envisage a web-based application similar to exam-
ples mentioned in (Kohonen, 2001).

Acknowledgements

René de Gelder is acknowledged for his crystallo-
graphic input; Willem Melssen for providing exper-
tise on self-organising maps.

Bibliography

F. H. Allen. The Cambridge Structural Database: a
quarter of a million crystal structures and rising.
Acta Crystallogr., B58:380–388, 2002. 24

R. de Gelder, R. Wehrens, and J. A. Hageman. A gen-
eralized expression for the similarity spectra: ap-
plication to powder diffraction pattern classifica-
tion. J. Comput. Chem., 22(3):273–289, 2001. 24

T. Kohonen. Self-Organizing Maps. Number 30 in
Springer Series in Information Sciences. Springer,
Berlin, 3 edition, 2001. 24, 28

R. Wehrens, W.J. Melssen, L. Buydens, and
R. de Gelder. Representing structural databases
in a self-organizing map. Acta Cryst., B61:548–557,
2005. 24

Institute for Molecules and Materials
Analytical Chemistry
The Netherlands
R.Wehrens,e.willighagen@science.ru.nl

Generating, Using and Visualizing
Molecular Information in R
by Rajarshi Guha

Introduction

R, as a statistical computing environment, has a wide
variety of functionality that makes it suitable for

modeling purposes in a number of fields. In the case
of cheminformatics we are often presented with a
large amount of information, from which chemical
meaning and insight must be extracted, using com-
putational tools. In many cases, problems in chem-

R News ISSN 1609-3631

mailto:R.Wehrens,e.willighagen@science.ru.nl

Vol. 6/3, August 2006 29

informatics are essentially data mining problems in
which the data is chemical information. This infor-
mation can be experimentally (such as assay data) or
computationally generated. In the latter case, one re-
quires access to a toolkit or library that is able to gen-
erate chemical information such as fingerprints, sim-
ilarity values or molecular descriptors. A number of
such toolkits are available such as JOELib, OEChem
and the CDK (Steinbeck et al., 2006, 2003). In most
situations one must write a program using the toolkit
to generate chemical information which can then be
imported into an R session and subsequently ana-
lyzed.

In terms of a consistent workflow, it would be
useful to be able to access cheminformatics function-
ality from within the R environment itself. One ex-
ample of such an application would be the develop-
ment of a virtual screening pipeline which involves
accessing and manipulating structures, evaluation of
molecule descriptors and fingerprints and then the
development of predictive models. In the interests
of code reuse, we would prefer not to implement
cheminformatics functionality within an R package
but instead reuse established toolkits. The rest of this
article will describe how the CDK project can be in-
tegrated into the R environment to provide chemin-
formatics functionality resulting in a seamless work-
flow for chemical data mining.

It should be noted that some commercial prod-
ucts do use R as a backend. However the com-
bination of R and the CDK is attractive since both
are Open-Source products and given that one is a
full fledged programming language and the other is
an extensive programming library, their combination
provides the user with a large amount of flexibility in
terms of data access, generation and modeling.

Requirements

As noted, we focus on the integration of the CDK
project with R. The CDK project is a Java framework
for cheminformatics development. Consequently, to
access the classes and methods of the CDK libraries
from R, we require an R-Java bridge. This require-
ment is satisfied by using the SJava package (Temple-
Lang, 2005). The examples in this article have been
tested with SJava 0.68 and R 2.1.0 running on Fedora
Core 3 and 4. In addition, a recent build of the CDK
project is required and either all the individual jar
files or else the single comprehensive jar file must be
placed in the user’s CLASSPATH variable. Finally in
order to visualize molecular structures a recent build
of the Jmol (Howard, 2005) jar file as well as a copy
of the JChemPaint (Krause et al., 2000) jar file should
also be placed in the users CLASSPATH.

If one looks at the documentation for the CDK
project it is clear that it provides a very wide va-
riety of cheminformatics functionality. Performing

certain tasks using the CDK can be quite involved
(such as loading arbitrary file formats) whereas other
tasks can consist of a single call to a static method
(such as getting a fingerprint). Though SJava pro-
vides the means to access all the functionality of the
CDK, many tasks can become tedious to perform in
the R environment. Furthermore, the CDK meth-
ods will generally return non-primitive Java objects
which do not have a corresponding R type. Thus the
user must keep track of R and Java objects. To al-
leviate these problems we have provided a Java li-
brary and associated R wrapper functions, known as
the rcdk library available in the form of an R pack-
age from http://cheminfo.informatics.indiana.
edu/~rguha/code/R/index.html#rcdk. It provides
functions to perform a number of common tasks
without having to directly access the CDK API via
SJava. The aim of the package is to remove some
of the tedious conversions between Java types and
R types as well as simplify a number of tasks which
would otherwise require the user to be more than ca-
sually familiar with the CDK API. Table 1 summa-
rizes the R functions currently available in the rcdk
package.

Generating & using molecular in-
formation

As described above, R is well suited to manipulat-
ing and analyzing data. The first step, however, is
to obtain the data. For cheminformatics problems
an important source of data are chemical structures,
from which we can generate fingerprints, molecu-
lar descriptors and so on. Easy access to the CDK
API using the SJava package provides the user with a
streamlined workflow, whereby statistical and chem-
ical information can be generated and manipulated
within a single environment. In this section we
present two examples of how we can access the
CDK classes to obtain information regarding chemi-
cal structure and then use the data for modeling pur-
poses.

A common task in a cheminformatics setting is
clustering. When clustering molecules, we usu-
ally consider a variety of structural features of the
molecules in question. One approach is to calculate
a set of molecular descriptors. Another common ap-
proach is to evaluate binary fingerprints. Thus for
example, we may have a collection of structure files.
To perform a fingerprint based clustering, we would
load the files into the R environment and then call
the fingerprint method present in the CDK API. The
return value of this method is a java.util.BitSet
object which must be converted to a form usable by
R. This is easily performed by parsing the String rep-
resentation of the BitSet object. With the help of the

R News ISSN 1609-3631

http://cheminfo.informatics.indiana.edu/~rguha/code/R/index.html#rcdk
http://cheminfo.informatics.indiana.edu/~rguha/code/R/index.html#rcdk

Vol. 6/3, August 2006 30

Function Description

edit.molecule Brings up the JChemPaint 2D structure editor and returns the final struc-
ture(s) as a CDK Molecule object

get.desc.values Extracts the numerical values from a CDK DescriptorValue object returned
by a descriptors calculate method

get.fingerprint Returns a list of numeric objects or a single numeric object containing the po-
sitions of the bits that are set to 1 for the specified molecules fingerprint. Uses
the default settings for the CDK Fingerprinter class

load.molecules Loads one or more molecular structure files from disk and returns a list of
CDK Molecule objects

view.molecule Brings up a Jmol window displaying the molecule contained in the specified
file. A Jmol script string can also be supplied

view.molecule.table Displays multiple molecular structure files and associated numerical data in
tabular format

Table 1: A summary of the functions available in the rcdk package.

rcdk package functions this can be easily achieved in
a few lines of code:

> fnames <- list.files(pattern=’.*.sdf’)
> molecules <- load.molecules(fnames)
> fprinter <- .JNew(’Fingerprinter’)
> fplist <- lapply(molecules,
+ function(mol,fpr) {
+ .Java(fpr, ’getFingerprint’, mol)
+ }, fpr=fprinter)
>

To convert the fingerprint returned by the CDK to a
form usable by R we can use the following code:

> s <- gsub(’[{}]’,’’,
fplist[[1]]$toString())

> s <- strsplit(s, split=’,’)[[1]]
> s <- as.numeric(s)

The load.molecule function encapsulates a number
of calls to the CDK API via SJava to load a molecu-
lar structure file. Since the CDK API provide a sin-
gle static method to obtain fingerprints, the call us-
ing SJava is simple enough that a wrapper function
is not required. The rcdk package provides a conve-
nience function, get.fingerprint, that encapsulates
the above call to the CDK library and parsing of the
return value to a numeric.

The code snippet above converts the fingerprint
to a numeric object and multiple fingerprints can be
aggregated into a list object and then manipulated
using the binary fingerprint package (Guha, 2005a).
This package allows one to obtain a distance matrix
for the set of fingerprints using the Tanimoto met-
ric which can then be used as input to the numerous
clustering routines available in R. For a more detailed
discussion of this application the reader is referred to
Guha (2005c).

Another important task in the field of cheminfor-
matics is QSAR modeling. In statistical terms this
is simply the development of predictive models us-
ing feature vectors obtained from molecular struc-

ture information. Clearly, the R environment is well
suited for the development of QSAR models. To
build QSAR models one needs a set of feature vectors
characterizing various aspects of molecular struc-
ture. These features are generally termed molecular
descriptors and one can find references to a huge va-
riety of descriptors in the cheminformatics literature
(Todeschini and Consonni, 2002) and a number of
packages are available to perform descriptor calcu-
lation (Jurs et al., 1979; Chemical Computing Group
Inc., 2004; Todeschini et al., 2005). The CDK contains
a number of classes implementing a variety of de-
scriptor routines, including constitutional (atom and
bond counts), topological (Zagreb index, χ indices),
geometrical (moments of inertia, gravitational index)
and whole molecule (BCUT) descriptors. The design
of the CDK descriptor package allows the user to
automatically evaluate all the available descriptors,
though this is still a work in progress. Let us consider
an example in which a specific descriptor is to be
evaluated, such as the BCUT (Pearlman and Smith,
1999) descriptor. By default the descriptor routine
will return the highest and lowest eigenvalues of the
property weighted Burden matrices. Thus the sim-
plest way to use this descriptor is:

> desc <- .JavaConstructor(’BCUTDescriptor’)
> dval <- desc$calculate(molecule)

Here molecule is an object of class Molecule that
has been previously obtained from a disk file or
from the structure editor (see below). The return
value of the calculate() method is an object of class
DescriptorValue which contains both the numerical
values of the descriptor as well as extra information
regarding implementation and literature references.
Though it is simple enough to extract the numerical
values from this object, the design of the CDK de-
scriptor package can make such extraction a tedious
process in the R environment. The rcdk package pro-
vides a convenience function to extract the descrip-
tor value from the object returned by calculate()

R News ISSN 1609-3631

Vol. 6/3, August 2006 31

as follows:

> dnum <- get.desc.values(dval)

The return value of this function is a numeric ob-
ject which can contain one or more elements depend-
ing on how many values were calculated by the de-
scriptor routine. A more detailed description of this
application, including parameter specification, can
be found in Guha (2005c). Once a set of descrip-
tors have been calculated, they can be converted to
a data.frame and used as input to feature selection
and model development functionality provided by
R.

Molecular editing

In many cheminformatics problems we start out with
a set of molecular structures. In general we use a
structure editor to make modifications to the struc-
tures. Models based on structural information must
now be updated. Since, in general, structure editors
are external programs it would useful to be able to
access a structure editor from within the R environ-
ment. Another situation is when one would like to
predict a property of a new molecule using a QSAR
model built in R. In both cases, being able to access
a structure editor from within R leads to a more con-
sistent and efficient workflow. This can be achieved
by using the JChemPaint (Krause et al., 2000) mod-
ule of the CDK project. JChemPaint can be used as
a standalone 2D structure diagram editor. However,
being part of the CDK project, it can also be embed-
ded in other programs and can be queried to obtain
the structures being drawn. These features allow it to
be used from within R. The rcdk package provides a
convenience function to bring up the structure editor
and return the structure that was drawn. Its usage is
simply

> molecule <- edit.molecule()

In addition, it is also possible to supply a structure
to the editor and modify it. The return value is a
Java object of class Molecule. This is not meant to be
used directly in R but can be passed to other meth-
ods in the CDK libraries. It is important to note that
the structure returned will only have 2D coordinates.
For many cases, in which only connectivity informa-
tion is required, such as QSAR models built from
topological descriptors, this is sufficient. However
this approach will not be useful for cases where 3D
geometries are required. The CDK has recently been
enhanced with the development of a 3D coordinate
generation package. We are currently extending the
rcdk package to make use of this functionality and
thus allow the user to generate reasonable 3D struc-
tures from within the R environment.

Molecular visualization

The previous section has discussed how one can
draw and edit molecular structures using the
JChemPaint application from within the R environ-
ment. However another important task in a chemin-
formatics workflow is the visualization of 3D molec-
ular structures. This can be achieved by using Jmol
which is an open source program for visualizing a
wide variety of molecular structures. This project
also utilizes a number of CDK classes. As a result
it can read a wide variety of molecular structure file
formats as well as handle data structures returned by
CDK classes.

As in the case of structure editing, the rcdk
project provides Java classes that handle the details
of instantiating a Jmol window and loading structure
files. The associated R source file provides R func-
tions that wrap these Java classes.

Currently the rcdk package provides two meth-
ods to view 3D structures. The first method takes in a
single character variable containing the path to the
file to view. It can also optionally take a command
string which is passed onto Jmol which evaluates it
as a script. Thus, to view a structure one could sim-
ply write

> view.molecule(’data/dan001.xyz’)

A screenshot of the resultant viewer is shown in
Fig. 7.

Figure 1: A screenshot of the single molecule viewer.

For tasks such as QSAR modeling one is usu-
ally working with a collection of molecules. In this
case it would be useful to be able to view molec-
ular structures and associated information (such as
molecular descriptor values) in a table. This can be
easily achieved by creating a table containing Jmol
instances. The rcdk package provides a Java class

R News ISSN 1609-3631

Vol. 6/3, August 2006 32

and associated R function wrapper that performs this
task. Thus to view the structures and associated in-
formation for a set of molecules one could write:

> fnames <- c(’data/dan001.xyz’,
+ ’data/dan002.xyz’, ’data/dan003.xyz’,
+ ’data/dan004.xyz’)
>
> cnames <- c(’Structure’, ’Label1’,
+ ’Label2’, ’Label3’, ’Label4’)
>
> moldata <- data.frame(matrix(
+ runif(4*4), nrow=4))
>
> view.molecule.table(fnames, cnames, moldata)

The resultant table is shown in Fig. 7. How-
ever, since each Jmol instance is a full fledged
molecular viewer this can be a strain on re-
sources. A future extension to the rcdk pack-
age will allow the use of the 2D structure dia-
gram generator class present in the CDK, which
would result in a much more light weight table.

Figure 2: A screenshot of the table view.

Accessing R from the CDK

This article has focused on accessing the cheminfor-
matics functionality of the CDK from within the R
environment. In many cases it is advantageous to be
able to access the statistical functionality of R from
within a CDK based program. To facilitate this, the
CDK contains a set of modeling classes which al-
low the user to access a number of R routines. The
classes are based on SJava and a detailed description
of the design of these classes can be found in Guha
(2005b). An example of an application using these
classes can be found in Guha and Jurs (2005). Cur-
rently, the CDK modeling package provides access
to linear regression (lm), neural networks (nnet) and
PLS (pls.pcr). Future work on these classes will in-
clude other modeling routines (randomForest, lda,

etc.). A downside of the use of the SJava package
is that the modeling functionality is effectively re-
stricted to the Linux platform. Though SJava can be
used on Windows, installation can be problematic.
In addition, the SJava package is not multi-threaded
and as a result all instances of the CDK modeling
classes share the same R session. Currently, the de-
sign of the classes takes this into account, but this
adds an extra layer of complexity. Finally, extending
the CDK modeling classes to include other R routines
is quite tedious since it essentially involves the de-
sign of Java classes which are one-to-one mappings
of R objects. One approach that is being considered is
the use of the Rserve package (Urbanek, 2005). This
package would allow for a much simpler design of
the CDK modeling classes and avoids a number of
problems associated with the SJava package. The
downside is that it requires that the user manually
run the Rserve daemon, either remotely or locally.
As a result, unless the Rserve daemon is running, the
CDK modeling classes will not be of any use.

Conclusions

This article has attempted to highlight the use of the
CDK within the R environment for the purposes of
cheminformatics tasks. Using the SJava package, the
user has access to the wide array of cheminformat-
ics functionality present in the CDK as well as al-
lied projects such as JChemPaint and Jmol. The in-
tegration of the CDK project with R results in a very
useful workflow for chemical data mining problems.
As shown above, one can calculate fingerprints or
molecular descriptors and then perform a variety of
modeling tasks using the statistical functionality of
R. Coupled with Jmol and JChemPaint, one can vi-
sualize both statistical results as well as molecular
structures. Furthermore, the use of the SJava pack-
age allows the CDK project to utilize the statistical
functionality of R from within CDK based programs.

Though the user can directly access CDK classes
and methods, this can become cumbersome. As a
result the rcdk package was designed to alleviate
the tedium of some common tasks such as loading
molecular structure files and visualizing 3D struc-
tures. The package consists of a set of Java classes in
the form of a jar file and R wrapper functions. Future
work involves the addition of a number of helper
functions for common cheminformatics tasks as well
making the various functions more robust in terms
of error handling as well as what objects can be ac-
cepted.

Bibliography

Chemical Computing Group Inc. Molecular Operat-
ing Environment (MOE 2004.03), 2004. 30

R News ISSN 1609-3631

Vol. 6/3, August 2006 33

R. Guha. http://cheminfo.informatics.indiana.
edu/~rguha/code/R/index.html#bfp, September
2005a. 30

R. Guha. Using R to Provide Statistical Functionality
for QSAR Modeling in CDK. CDK News, 2:7–13,
2005b. 32

R. Guha. Using the CDK as a Backend to R. CDK
News, 2:2–6, 2005c. 30, 31

R. Guha and P. Jurs. Integrating R with the CDK for
QSAR modeling. In 230th American Chemical Society
Meeting & Conference, Washington D.C., 2005. 32

M. Howard. http://www.jmol.org, September 2005.
29

P. Jurs, J. Chou, and M. Yuan. Computer Assisted Drug
Design, chapter Studies of Chemical Structure Bi-
ological Activity Relations Using Pattern Recog-
nition. American Chemical Society, Washington
D.C., 1979. 30

S. Krause, E. Willighagen, and C. Steinbeck.
JChemPaint - Using the Collaborative Forces of the
Internet to Develop a Free Editor for 2D Chemical
Structures. Molecules, 5:93–98, 2000. 29, 31

R. Pearlman and K. Smith. Metric Validation
and the Receptor-Relevant Subspace Concept.
J. Chem. Inf. Comput. Sci., 39:28–35, 1999. 30

C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher,
E. Luttmann, , and E. Willighagen. The Chem-
istry Development Kit (CDK): An Open-Source
Java Library for Chemo- and Bioinformatics.
J. Chem. Inf. Comput. Sci., 43:493–500, 2003. 29

C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha,
and E. Willighagen. Recent Developments of the
Chemistry Development Kit (CDK) - An Open-
Source Java Library for Chemo- and Bioinformat-
ics. Curr. Pharm. Des., in press, 2006. 29

D. Temple-Lang. http://www.omegahat.org/
RSJava, September 2005. 29

R. Todeschini and V. Consonni. Handbook of Molecular
Descriptors. Wiley-VCH, Berlin, 2002. 30

R. Todeschini, V. Consonni, and M. Pavan. Dragon,
2005. 30

S. Urbanek. http://stats.math.uni-augsburg.de/
Rserve, September 2005. 32

Rajarshi Guha
Pennsylvania State University
rxg218@psu.edu

R News ISSN 1609-3631

http://cheminfo.informatics.indiana.edu/~rguha/code/R/index.html#bfp
http://cheminfo.informatics.indiana.edu/~rguha/code/R/index.html#bfp
http://www.jmol.org
http://www.omegahat.org/RSJava
http://www.omegahat.org/RSJava
http://stats.math.uni-augsburg.de/Rserve
http://stats.math.uni-augsburg.de/Rserve
mailto:rxg218@psu.edu

Vol. 6/3, August 2006 34

Editor-in-Chief:
Paul Murrell
Department of Statistics
The University of Auckland
Private Bag 92019
Auckland

Editorial Board:
Torsten Hothorn and John Fox.

Editor Programmer’s Niche:
Bill Venables

Editor Help Desk:
Uwe Ligges

Email of editors and editorial board:
firstname.lastname @R-project.org

R News is a publication of the R Foundation for Sta-
tistical Computing. Communications regarding this
publication should be addressed to the editors. All
articles are copyrighted by the respective authors.
Please send submissions to regular columns to the
respective column editor and all other submissions
to the editor-in-chief or another member of the edi-
torial board. More detailed submission instructions
can be found on the R homepage.

R Project Homepage:
http://www.R-project.org/

This newsletter is available online at
http://CRAN.R-project.org/doc/Rnews/

R News ISSN 1609-3631

http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/

	Editorial
	Non-linear regression for optimising the separation of carboxylic acids
	The working example
	Initial values
	Partially linear models
	Self-starting non-linear regressions
	Comparison with published values
	Diagnostics
	Further presentation of results
	Final remarks

	Appendix

	Fitting dose-response curves from bioassays and toxicity testing
	The pls package
	Introduction
	Typical usage
	Multi-response models
	Flexible cross-validation
	Internals and Extensions

	Some Applications of Model-Based Clustering in Chemistry
	Mapping databases of X-ray powder patterns
	Generating, Using and Visualizing Molecular Information in R

