
News
The Newsletter of the R Project Volume 4/2, September 2004

Editorial
by Thomas Lumley

This edition of R News accompanies the release of R
2.0.0. Comparing the length of the pre-1.0.0 and post-
1.0.0 NEWS files shows that R has certainly changed
enough since 1.0.0 for a new major version. The
base R language has added formal classes, names-
paces, exception handling, connections, and many
packaging and QA tools, and done away with the
underscore as an assignment operator. A Macin-
tosh version has been added and the Windows GUI
extended. Even more dramatic is the change in
the number of contributed packages, some of which
(lattice, nlme, gam) were on the wishlist back at
1.0.0, but many more that show how the range of
R users has expanded. Version 2.0.0 does not intro-
duce many radical changes, but Brian Ripley’s article
describes one important and long planned improve-
ment to R’s memory usage and Paul Murrell’s article
explains new graphics features that give users more
control over details of rendering.

Since the last release, R has also moved (for se-
curity reasons) from a CVS archive to one based
on the Subversion system and hosted by Martin
Mächler at ETH Zurich. To download an up-to-the-
minute snapshot of R you just need a Subversion
client, which are available for many operating sys-
tems. You can also browse individual files at https:

//svn.r-project.org/R. (Yes, the website uses a
self-signed certificate that your browser doesn’t rec-
ognize. If this bothers you, you may not understand
what https is for).

Reminding people again that Bioconductor is not
just about RNA we have an article using some of
the graph packages. It is usual at this point to com-
ment that ‘graph’ here means the mathematical ab-
straction, not the picture, except that in this case the
article is actually about pictures (graphs of graphs)
showing the structure of biological pathways.

Tools for reproducible research have been an im-
portant feature of the R project. Previous issues of
this newsletter have described Sweave and the use of
vignettes. In this issue Roger Peng and Leah Welty
write about the use of R to distribute data and re-
producible analyses from a major epidemiologic re-
search project, the National Morbidity and Mortality
Air Pollution Study.

In other articles Paul Gilbert writes about au-
tomating maintenance and testing of sets of pack-
ages, and Jun Yan describes using BUGS and R to-
gether.

Thomas Lumley
Department of Biostatistics
University of Washington, Seattle

thomas.lumley@R-project.org

Contents of this issue:

Editorial . 1
Lazy Loading and Packages in R 2.0.0 2
Fonts, Lines, and Transparency

in R Graphics 5

The NMMAPSdata Package 10
Laying Out Pathways With Rgraphviz 14
Fusing R and BUGS through Wine 19
R Package Maintenance 21
Changes in R . 24
Changes on CRAN 32

https://svn.r-project.org/R
https://svn.r-project.org/R
mailto:thomas.lumley@R-project.org

Vol. 4/2, September 2004 2

Lazy Loading and Packages in R 2.0.0
by Brian D. Ripley

Lazy Loading

One of the basic differences between R and S is how
objects are stored. S stores its objects as files on the
file system, whereas R stores objects in memory, and
uses garbage collection from time to time to clear out
unused objects. This led to some practical differ-
ences:

1. R can access objects faster, particularly on first
use (although the difference is not as large as
one might think, as both S and the file system
will do caching).

2. R slows down the more objects that there are in
memory.

3. R’s performance is more sensitive to the num-
ber and size of packages that are loaded.

These differences are blurred considerably by the
advent of lazy loading in R 2.0.0. This is optional, but
is used by all the standard and recommended pack-
ages, and by default when a package with more than
25Kb of R code is installed (about 45% of those cur-
rently on CRAN). This is ‘lazy’ in the same sense
as lazy evaluation, that is objects are not loaded into
memory until they are actually used. This leads to
some immediate differences:

1. R uses much less memory on startup: on my
32-bit system, 4.2Mb rather than 12.5Mb. Such
a gain would have been very valuable in the
early days of R, but nowadays most of us have
far more RAM than those numbers.

2. The start-up time is much shorter: 0.4s on my
system. This is almost entirely because many
fewer objects have been loaded into memory,
and loading them takes time.

3. Tasks run a little faster, as garbage collection
takes much less time (again, because there are
many fewer objects to deal with).

4. There is much less penalty in loading up lots of
packages at the beginning of a session. (There
is some, and loading R with just the base pack-
age takes under 0.1s.)

For data, too

Another R/S difference has been the use of data()
in R. As I understand it this arose because data ob-
jects are usually large and not used very often. How-
ever, we can apply lazy-loading to datasets as well as
to other R objects, and the MASS package has done

so since early 2003. This is optional when installing
packages in 2.0.0 (and not the default), but applies
to all standard and most recommended packages. So
for example to make use of the dataset heart in pack-
age survival, just refer to it by name in your code.

There is one difference to watch out for:
data(heart) loaded a copy of heart into the
workspace, from the package highest on the search
path offering such a dataset. If you subsequently
altered heart, you got the altered copy, but using
data(heart) again gave you the original version. It
still does, and is probably the only reason to continue
to use data with an argument.

For packages with namespaces there is a subtle
difference: data objects are in package:foo but not in
namespace:foo. This means that data set fig cannot
be accessed as foo::fig. The reason is again subtle:
if the objects were in the namespace then functions in
foo would find fig from the namespace rather than
the object of that name first on the search path, and
modifications to fig would be ignored by some func-
tions but by not others.

Under the bonnet (or ‘hood’)

The implementation of lazy loading makes use of
promises, which are user-visible through the use of
the delay function. When R wants to find an ob-
ject, it looks along a search path determined by the
scope rules through a series of environments until it
encounters one with a pointer to an object matching
the name. So when the name heart is encountered in
R code, R searches until it finds a matching variable,
probably in package:survival. The pointer it would
find there is to an object of type PROMSXP which con-
tains instructions on how to get the real object, and
evaluating it follows those instructions. The follow-
ing shows the pattern

> library(survival)

> dump("heart", "", evaluate = FALSE)

heart <- delay(lazyLoadDBfetch(key, datafile,

compressed, envhook), <environment>)

Warning message: deparse may be incomplete

The actual objects are stored in a simple database,
in a format akin to the .rda objects produced
by save(compress = TRUE, ascii = FALSE). Func-
tion lazyLoadDBfetch fetches objects from such
databases, which are stored as two files with exten-
sions .rdb and .rdx (an index file). Readers nay be
puzzled as to how lazyLoadDBfetch knows which
object to fetch, as key seems to be unspecified. The
answer lies (literally) in the environment shown as
<environment> which was not dumped. The code in
function lazyLoad contains essentially

R News ISSN 1609-3631

Vol. 4/2, September 2004 3

wrap <- function(key) {

key <- key

mkpromise(expr, environment())

}

for (i in along(vars))

set(vars[i], wrap(map$variables[[i]]), envir)

so key is found from the immediate environment and
the remaining arguments from the enclosing envi-
ronment of that environment, the body of lazyLoad.

This happens from normal R code completely
transparently, perhaps with a very small delay when
an object is first used. We can see how much by a
rather unrealistic test:

> all.objects <-

unlist(lapply(search(), ls, all.names=TRUE))

> system.time(sapply(all.objects,

function(x) get(x); TRUE),

gcFirst = TRUE)

[1] 0.66 0.06 0.71 0.00 0.00

> system.time(sapply(all.objects,

function(x) get(x); TRUE),

gcFirst = TRUE)

[1] 0.03 0.00 0.03 0.00 0.00

Note the use of the new gcFirst argument to
system.time. This tells us that the time saved in start
up would be lost if you were to load all 2176 objects
on the search path (and there are still hidden objects
in namespaces that have not been accessed).

People writing C code to manipulate R objects
may need to be aware of this, although we have only
encountered a handful of examples where promises
need to be evaluated explicitly, all in R’s graphical
packages.

Note that when we said that there were many
fewer objects to garbage collect, that does not mean
fewer named objects, since each named object is still
there, perhaps as a promise. It is rather that we do
not have in memory the components of a list, the el-
ements of a character vector and the components of
the parse tree of a function, each of which are R ob-
jects. We can see this via

> gc()
used (Mb) gc trigger (Mb)

Ncells 140236 3.8 350000 9.4
Vcells 52911 0.5 786432 6.0
> memory.profile()

NILSXP SYMSXP LISTSXP CLOSXP
1 4565 70606 959

ENVSXP PROMSXP LANGSXP SPECIALSXP
2416 2724 27886 143

BUILTINSXP CHARSXP LGLSXP
912 13788 1080 0

INTSXP REALSXP CPLXSXP
0 2303 2986 0

STRSXP DOTSXP ANYSXP VECSXP
8759 0 0 1313

EXPRSXP BCODESXP EXTPTRSXP WEAKREFSXP
0 0 10 0

> sapply(all.objects,
function(x) get(x); TRUE) -> junk

> gc()
used (Mb) gc trigger (Mb)

Ncells 429189 11.5 531268 14.2
Vcells 245039 1.9 786432 6.0
> memory.profile()

NILSXP SYMSXP LISTSXP CLOSXP
1 7405 222887 3640

ENVSXP PROMSXP LANGSXP SPECIALSXP
822 2906 101110 208

BUILTINSXP CHARSXP LGLSXP
1176 44308 4403 0

INTSXP REALSXP CPLXSXP
0 824 11710 9

STRSXP DOTSXP ANYSXP VECSXP
24877 0 0 2825

EXPRSXP BCODESXP EXTPTRSXP WEAKREFSXP
0 0 106 0

Notice the increase in the number of LISTSXP and
LANGSXP (principally storing parsed functions)
and STRSXP and CHARSXP (character vectors and
their elements), and in the sum (the number of ob-
jects has trebled to over 400,000). Occasionally peo-
ple say on R-help that they ‘have no objects in mem-
ory’, but R starts out with hundreds of thousands of
objects.

Installing packages

We have taken the opportunity of starting the 2.x.y
series of R to require all packages to be reinstalled,
and to do more computation when they are installed.
Some of this is related to the move to lazy loading.

• The ‘DESCRIPTION’ and ‘NAMESPACE’ files
are read and parsed, and stored in a binary for-
mat in the installed package’s ‘Meta’ subdirec-
tory.

• If either lazy loading of R code or a saved image
has been requested, we need to load the code
into memory and dump the objects created to
a database or a single file ‘all.rda’. This means
the code has to parse correctly (not normally
checked during installation), and all the pack-
ages needed to load the code have to be already
installed.

This is simplified by accurate use of the
‘Describe’, ‘Suggests’ and ‘Import’ fields in
the ‘DESCRIPTION’ file: see below.

• We find out just what data() can do. Pre-
viously there was no means of finding out
what, say, data(sunspot) did without try-
ing it (and in the base system it created ob-
jects sunspot.months and sunspot.years but
not sunspot, but not after package lattice was

R News ISSN 1609-3631

Vol. 4/2, September 2004 4

loaded). So we do try loading all the possible
datasets—this not only tests that they work but
gives us an index of datasets which is stored in
binary format and used by data() (with no ar-
gument).

We have always said any R code used to make
datasets has to be self-sufficient, and now this
is checked.

• If lazy loading of data is requested, the datasets
found in the previous step are dumped into a
database in the package directory data.

If we need to have one package installed to in-
stall another we have a dependency graph amongst
packages. Fortuitously, installing CRAN packages in
alphabetical order has worked (and still did at the
time of writing), even though for example RMySQL
required DBI. However, this is not true of BioCon-
ductor packages and may not remain true for CRAN,
but install.packages is able to work out a feasible
install order and use that. (It is also now capable of
finding all the packages which need already to be in-
stalled and installing those first: just ask for its help!)

One problem with package A require()ing
package B in .First.lib/.onLoad was that package
B would get loaded after package A and so precede
it on the search path. This was particularly problem-
atic if A made a function in B into an S4 generic, and
the file ‘install.R’ was used to circumvent this (but
this only worked because it did not work as docu-
mented!).

We now have a much cleaner mechanism. All
packages mentioned in the ‘Depends’ field of the
‘DESCRIPTION’ file of a package are loaded in the
order they are mentioned, both before the package
is prepared for lazy-loading/save image and before
it is loaded by library. Many packages currently
have unneeded entries in their ‘Depends’ field (often
to packages that no longer exist) and will hopefully
be revised soon. The current description from ‘Writ-
ing R Extensions’ is

• Packages whose namespace only is needed to

load the package using library(pkgname)
must be listed in the ‘Imports’ field.

• Packages that need to attached to successfully
load the package using library(pkgname)
must be listed in the ‘Depends’ field.

• All packages that are needed to successfully
run R CMD check on the package must be listed
in one of ‘Depends’ or ‘Suggests’ or ‘Imports’.

For Package Writers

The previous section ended with a plea for accu-
rate ‘DESCRIPTION’ files. The ‘DESCRIPTION’ file is
where a package writer can specify if lazy loading of
code is to be allowed or mandated or disallowed (via
the ‘LazyLoad’ field), and similarly for lazy loading
of datasets (via the ‘LazyData’ field). Please make use
of these, as otherwise a package can be installed with
options to R CMD INSTALL that may override your in-
tentions and make your documentation inaccurate.

Large packages that make use of saved images
would benefit from being converted to lazy loading.
It is possible to first save an image then convert the
saved image to lazy-loading, but this is almost never
necessary. The normal conversion route is to get the
right ‘Depends’ and ‘Imports’ fields, add ‘LazyLoad:
yes’ then remove the ‘install.R’ file.

For a few packages lazy loading will be of little
benefit. One is John Fox’s Rcmdr, which accesses vir-
tually all its functions on startup to build its menus.

Acknowledgement

Lazy loading was (yet another) idea from Luke Tier-
ney, who wrote the first implementation as a package
lazyload.

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

R News ISSN 1609-3631

mailto:ripley@stats.ox.ac.uk

Vol. 4/2, September 2004 5

Fonts, Lines, and Transparency
in R Graphics
by Paul Murrell

Introduction

For R version 2.0.0, a number of basic graphics fa-
cilities have been added to allow finer control of
fonts, line styles, and transparency in R graphics.
At the user level, these changes involve the addi-
tion of graphical parameters in the graphics and
grid (Murrell, 2002) packages for specifying fonts
and line styles, and, in the grDevices package, some
new functions for controlling font specifications and
changes to some existing functions for specifying
semitransparent colours. Summaries of the changes
to the user interface and the availability of the
changes on the standard devices are given in Tables
2 and 3 at the end of the article.

Now you can choose your family

The specification of a particular font can be
a complex task and it is very platform de-
pendent. For example, the X11 specifi-
cation for a Courier font is of the form
"-*-courier-%s-%s-*-*-%d-*-*-*-*-*-*-*" while
for Windows the specification is something like
"TT Courier".

To make things simpler and more standardised, R
graphics has adopted a device-independent mecha-
nism for specifying fonts which is loosely modelled
on the specification of fonts in the Cascading Style
Sheets specification (CSS, 1998).

User interface

R graphics provides three basic parameters for spec-
ifying a font: the font family, the font face, and the
font size.

The specification of font size and face have not
changed. The font size is controlled both by an abso-
lute pointsize, via par(ps) in the graphics packages
or gpar(fontsize) in the grid package, and a rela-
tive multiplier, par(cex) or gpar(cex). The font face
is specified in the graphics package via par(face)
as an integer between 1 and 5 and in the grid
package via gpar(fontface) as a string: "plain",
"bold", "italic" (or "oblique"), "bold.italic", or
"symbol".

The specification of font families is where the
changes have been made. All graphics devices de-
fine an initial or default font family when the de-
vice is created. This is typically a sans-serif font
such as Helvetica or Arial. A new font family is
specified via par(family) in the graphics package
or gpar(fontfamily) in the grid package using a
device-independent family name.

Four standard families, "serif", "sans", "mono",
and "symbol" are provided by default and more may
be defined. Devices with support for font families
provide a font database which is used to map the
device-independent font family to a device-specific
font family specification. For example, the standard
mappings for the Quartz device are shown below.

> quartzFonts()

$serif
[1] "Times-Roman"
[2] "Times-Bold"
[3] "Times-Italic"
[4] "Times-BoldItalic"

$sans
[1] "Helvetica"
[2] "Helvetica-Bold"
[3] "Helvetica-Italic"
[4] "Helvetica-BoldOblique"

$mono
[1] "Courier"
[2] "Courier-Bold"
[3] "Courier-Oblique"
[4] "Courier-BoldOblique"

$symbol
[1] "Symbol" "Symbol" "Symbol"
[4] "Symbol"

For each of the standard devices there is a new func-
tion of the form <dev>Font() for defining new map-
pings and a new function of the form <dev>Fonts()
for querying and modifying font family mappings
and for assigning new mappings to the font database
for the device (see Table 2).

This approach means that it is now possible to mod-
ify the graphics font family on all of the core graph-
ics devices (it was only previously possible on Win-
dows), and the font family specification is now con-
sistent across all devices (it is device-independent

R News ISSN 1609-3631

Vol. 4/2, September 2004 6

and the interface for modifying the font family
and/or specifying new font families is consistent).

Hershey fonts

It is possible to specify a Hershey vector font (Her-
shey, 1969) as the font family. These fonts are device-
independent and are drawn by R so they are avail-
able on all devices. Table 1 lists the Hershey font
families that are provided.

Not all families support the standard font faces and
there are three non-standard font faces supported by
the "HersheySerif" family: face 5 is a Cyrillic font,
face 6 is an oblique Cyrillic font, and face 7 provides
a set of Japanese characters (for more information,
see help(Hershey)).

Device support

All of the standard graphics devices provide device-
independent font family mappings, however there
are some limitations. For a start, the user is respon-
sible for ensuring that all fonts are available and in-
stalled correctly on the relevant system.

The PostScript device also requires that you specify
font metric files for the font you are mapping to. Fur-
thermore, all fonts that are to be used on a PostScript
device must be “declared” when the device is cre-
ated (see the new fonts argument to postscript()).
Finally, it is not possible to modify a PostScript font
family mapping while the mapping is being used on
a device.

The PDF device uses the PostScript font database
(there is neither a pdfFont() nor a pdfFonts() func-
tion). Also, the PDF device does not embed fonts in
the PDF file, which means that the only font families
that can be mapped to are the “base 14” fonts that are
assumed to be available in a PDF viewer: "Times"
or "Times New Roman", "Helvetica" or "Arial",
"Courier", "Symbol", and "ZapfDingbats".1

On the Windows graphics device, the font family
mapping will override the mapping in the Rdevga file
when the font family is not "" and the font face is be-
tween 1 ("plain") and 4 ("bold.italic").

An example

The following code produces output demonstrating
a mathematical annotation (see Figure 1). The text
that shows the code used to produce the annota-
tion is is drawn in a "mono" font and the text that
shows what the annotation looks like is drawn with

a "serif" font. This example runs unaltered on all
of the core graphics devices.

> expr <- "z[i] == sqrt(x[i]^2 + y[i]^2)"

> grid.text(paste("expression(",

+ expr, ")", sep = ""),

+ y = 0.66, gp = gpar(fontfamily = "mono",

+ cex = 0.7))

> grid.text(parse(text = expr),

+ y = 0.33, gp = gpar(fontfamily = "serif"))

expression(z[i] == sqrt(x[i]^2 + y[i]^2))

zi = xi
2 + yi

2

Figure 1: Simple R graphics output using "mono"
and "serif" font families.

The end of the line

The concepts of line ending style and line join style
have been added to R graphics.

All lines are drawn using a particular style for line
ends and joins, though the difference only becomes
obvious when lines become thick. Figure 2 shows an
extreme example, where three very wide lines (one
black, one dark grey, and one light grey) have been
drawn through exactly the same three locations. The
locations are shown as black dots.

●

●

●

Figure 2: The different line end and line join styles.
1The “14” comes from the fact that there are four different faces for each of the Times, Helevetica/Arial, and Courier font families.

R News ISSN 1609-3631

Vol. 4/2, September 2004 7

Table 1: The Hershey vector fonts available in R.

Family Description Supported faces
"HersheySerif" Serif font family 1 to 7
"HersheySans" Sans serif font family 1 to 4
"HersheyScript" Script (handwriting) font family 1 and 2
"HersheyGothicEnglish" Various gothic font families 1
"HersheyGothicGerman"
"HersheyGothicItalian"
"HersheySymbol" Serif symbol font family 1 to 4
"HersheySansSymbol" Sans serif symbol font family 1 and 3

The black line is drawn with "square" ends and a
"mitre" join style, the dark grey line is drawn with
"round" ends and a "round" join style, and the light
grey line is drawn with "butt" ends and a "bevel"
join style.

When the line join style is "mitre", the join style
will automatically be converted to "bevel" if the an-
gle at the join is too small. This is to avoid ridicu-
lously pointy joins. The point at which the auto-
matic conversion occurs is controlled by a mitre limit
parameter, which is the ratio of the length of the
mitre divided by the line width. The default value is
10 which means that the conversion occurs for joins
where the angle is less than 11 degrees. Other stan-
dard values are 2, which means that conversion oc-
curs at angles less than 60 degrees, and 1.414 which
means that conversion occurs for angles less than 90
degrees. The minimum mitre limit value is 1.

It is important to remember that line join styles influ-
ence the corners on rectangles and polygons as well
as joins in lines.

User interface

The current line end style, line join style, and line
mitre limit can be queried and set in the graphics
package via new par() settings: lend, ljoin, and
lmitre respectively.

In the grid package, the parameters are "lineend",
"linejoin", and "linemitre", and they are settable
via the gp argument of any viewport or graphics
function using the gpar() function.

Device support

Line end styles and line join styles are not available
on the Windows graphics device and it is not possi-
ble to control the line mitre limit on the X11 device (it
is fixed at 10).

Fine tuning the alpha channel

It is now possible to define colours with a full alpha
channel in R.

The alpha channel controls the transparency level of
a colour; a colour with an alpha value of 0 is fully
transparent and an alpha value of 1 (or 255, depend-
ing on the scale being used) means the colour is fully
opaque. Anything in between is semitransparent.

User interface

Colours may be specified with an alpha channel us-
ing the new alpha argument to the rgb() and hsv()
functions. By default opaque colours are created.

It is also possible to specify a colour using a string of
the form "#RRGGBBAA" where each pair of characters
gives a hexadecimal value in the range 0 to 255 and
the AA pair specify the alpha channel.

The function col2rgb()will report the alpha channel
for colours if the new alpha argument is TRUE (even
if the colour is opaque). Conversely, it will not print
the alpha channel, even for semitransparent colours,
if the alpha argument is FALSE.

When colours are printed, anything with an alpha
channel of 0 is printed as "transparent". Known
(opaque) colours are printed using their R colour
name, e.g., rgb(1, 0, 0) is printed as "red". Oth-
erwise, opaque colours are printed in the form
"#RRGGBB" and semitransparent colours are printed
as "#RRGGBBAA".

In the grid package, there is also an alpha graphi-
cal parameter (specified via gpar()), which controls
a general alpha channel setting. This setting is com-
bined with the alpha channel of individual colours
by multiplying the two alpha values together (on the
[0, 1] scale). For example, if a viewport is pushed
with alpha=0.5 then everything drawn within that
viewport will be semitransparent.

R News ISSN 1609-3631

Vol. 4/2, September 2004 8

Device support

Most graphics devices produce no output whatso-
ever for any colour that is not fully opaque. Only the
PDF and Quartz devices will render semitransparent
colour (and, for the PDF device, only when the new
version argument to pdf() is set to "1.4" or higher).

An example

A simple example of the application of transparency
in a statistical graphic is to provide a representation
of the density of data when points overlap. The fol-
lowing code plots 500 random values where each
data symbol is drawn with a semitransparent blue
colour. Where more points overlap, the blue becomes
more saturated (see Figure 3).

> pdf("alpha.pdf", version = "1.4",

+ width = 4, height = 4)

> par(mar = c(5, 4, 2, 2))

> plot(rnorm(500), rnorm(500),

+ col = rgb(0, 0, 1, 0.2),

+ pch = 16)

> dev.off()

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

rnorm(500)

rn
or

m
(5

00
)

Figure 3: An application of alpha transparency.

Bibliography

CSS2 specification. Technical re-
port, World Wide Web Consortium,
http://www.w3.org/TR/1998/REC-CSS2-
19980512, May 1998. The latest version of CSS2 is
available at http://www.w3.org/TR/REC-CSS2.
5

A. V. Hershey. Fortran IV programming for cartogra-
phy and typography. Technical Report TR-2339, U.
S. Naval Weapons Laboratory, Dahlgren, Virginia,
1969. 6

P. Murrell. The grid graphics package. R News, 2(2):
14–19, June 2002. URL http://CRAN.R-project.
org/doc/Rnews/. 5

R News ISSN 1609-3631

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Vol. 4/2, September 2004 9

Table 2: Summary of the availability of new features on the standard graphics devices. A dot (•) means that
the feature is supported on the device.

Feature PostScript PDF X11 Windows Quartz
Font family • • • • •
Line end style • • • •
Line join style • • • •
Line mitre limit • • •
Alpha channel • •

Table 3: Summary of the new and changed functions in R 2.0.0 relating to fonts, line styles, and transparency.

Package Function Description
grDevices rgb() New alpha argument for specifying alpha channel.

hsv() New alpha argument for specifying alpha channel.
col2rgb() New alpha argument for reporting alpha channel.
postscriptFont() Generates a PostScript-specific font family description.
postscriptFonts() Defines and reports font mappings used by the PostScript

and PDF devices.
windowsFont() Generates a Windows-specific font family description.
windowsFonts() Defines and reports font mappings used by the Windows

device.
quartzFont() Generates a Quartz-specific font family description.
quartzFonts() Defines and reports font mappings used by the Quartz

device.
X11Font() Generates an X11-specific font family description.
X11Fonts() Defines and reports font mappings used by the X11

device.

graphics par() New parameters lend, ljoin, and lmitre for controlling
line style. New family parameter for controlling font
family.

grid gpar() New graphical parameters, lineend, linejoin, and
linemitre for controlling line style. The alpha parame-
ter now affects the alpha channel of colours. The family
parameter now affects graphical devices.

R News ISSN 1609-3631

Vol. 4/2, September 2004 10

The NMMAPSdata Package
by Roger D. Peng, Leah J. Welty

The NMMAPSdata package for R contains daily
mortality, air pollution, and weather data that were
originally assembled for the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS).
NMMAPS was a large multi-city time series study
of the short-term effects of ambient air pollution on
daily mortality and morbidity in the United States.
The analyses of the original 90 city, 8 year database
can be found in Samet et al. (2000a), Samet et al.
(2000b), Dominici et al. (2003), and Daniels et al.
(2004). The database has since been updated to con-
tain data on 108 U.S. cities for 14 years (1987–2000).
While the original study examined morbidity out-
comes such as hospital admissions, the NMMAPS-
data package does not include those data.

The NMMAPSdata package can be downloaded
from the iHAPSS website.1 The package does not
currently reside on CRAN, although it passes all R
CMD check quality control tests. A source package as
well as a Windows binary package are available for
download. All comments that follow pertain to ver-
sion 0.3-4 of the package.

In this article we provide a very brief introduc-
tion to the data and to the R functions provided in
the NMMAPSdata package. As an example of how
one may use the package, we present a a small multi-
city time series analysis of daily non-accidental mor-
tality and PM10. A more detailed description of the
NMMAPSdata package and additional examples of
time series models for air pollution and mortality are
available in a technical report (Peng et al., 2004).

A Brief Summary of the Data

The data are divided into 108 separate dataframes,
one per city. Each dataframe has 15,342 rows and
291 columns. Although there are only 14 years of
daily observations (5,114 days), the mortality data
are split into three age categories, resulting in each of
the weather and pollution variables being repeated
three times. The dataframes are set up in this manner
so that they can be used immediately in a regression
analysis function such as lm or glm to fit models sim-
ilar to those used in NMMAPS. Those not interested
in using the separate age categories can collapse the
outcome counts with the collapseEndpoints pre-
processing function included in the package (see the
next section for how to do this).

The measured pollutants in NMMAPSdata are
PM10, PM2.5, SO2, O3, NO2, and CO. These are the
six “criteria pollutants” defined by the U.S. Environ-
mental Protection Agency. Most cities have measure-

ments for the gases (SO2, O3, NO2, CO) every day
and measurements for PM10 once every six days.
Only a handful of cities have daily measurements
of PM10. Beginning in 1999, most cities have daily
PM2.5 measurements.

The meteorological variables included in the
database are temperature, relative humidity, and
dew point temperature. We also include as separate
variables in the dataframes three day running means
of temperature and dew point temperature.

General information about the data and how
they were assembled can be found in Samet
et al. (2000a). Interested readers are also en-
couraged to visit the Internet-based Health and
Air Pollution Surveillance System (IHAPSS) website
at http://www.ihapss.jhsph.edu/ which contains
more details about how the data were originally pro-
cessed.

Overview of NMMAPSdata

The NMMAPSdata package can be loaded into R in
the usual way.

> library(NMMAPSdata)

NMMAPS Data (version 0.3-4)
Type '?NMMAPS' for a brief
introduction to the NMMAPS
database. Type 'NMMAPScite()'
for information on how to cite
'NMMAPSdata' in publications.
A short tutorial vignette is
available and can be viewed by
typing
'vignette("NMMAPSdata")'

Some introductory material regarding the database
can be found by typing ?NMMAPS at the command
line.

The primary function in NMMAPSdata is
buildDB, which can be used to build custom ver-
sions of the full NMMAPS database. In particular,
most users will not need to use the entire database
(291 variables for each of 108 cities) at any given
time. The custom versions of the database may also
contain transformations of variables or newly cre-
ated/derived variables. Possible new variables in-
clude:

• Exclusions: Remove days with extreme pollu-
tion, mortality, or temperature

• Fill in occasional/sporadic missing data

• Create seasonal indicators
1http://www.ihapss.jhsph.edu/data/NMMAPS/R/

R News ISSN 1609-3631

Vol. 4/2, September 2004 11

• Compute running means of variables

There are, of course, many other possibilities.
The function buildDB has one required argument,

procFunc, a processing function (or function name)
which will be applied to the city dataframes. By de-
fault, buildDB applies the processing function to all
cities in the NMMAPS package. However, if a char-
acter vector with abbreviated city names is supplied
to argument cityList, the processing function will
be applied only to the cities in that list.

> args(buildDB)

function (procFunc, dbName,
path = system.file("db",

package = "NMMAPSdata"),
cityList = NULL, compress = FALSE,
verbose = TRUE, ...)

NULL

By default, buildDB builds a new database in the
package installation directory. If installing the new
database in this location is not desirable, one can
specify another directory via the path argument.

The function specified in the procFunc argument
should return a (possibly modified) dataframe or
NULL. If procFunc returns NULL when it is applied to
a particular city, buildDB will skip that city and not
include the dataframe in the new database. This is
useful for excluding cities that do not contain obser-
vations for a particular pollutant without having to
directly specify a list of cities to include.

Once a database is constructed using buildDB, it
is registered via call to registerDB. When registerDB
is called with no arguments it sets the full (unpro-
cessed) NMMAPS database as the currently regis-
tered database. The argument dbName can be used
to register other previously built databases, however,
only one database can be registered at a time. The
processing function used to create the new database
is always stored with the newly created database, en-
suring that all of the transformations to the original
data are documented with code.

> registerDB()

> showDB()

Currently using full NMMAPS database

Each of the city dataframes can be loaded,
read, or attached using loadCity, readCity, or
attachCity, respectively. For example we can load,
read, or attach the full New York City dataframe.

> loadCity("ny")

> ny[1:5, 2:6]

date dow agecat accident copd
1 19870101 5 1 10 3
2 19870102 6 1 4 4
3 19870103 7 1 5 0
4 19870104 1 1 5 1
5 19870105 2 1 2 2

> dframe <- readCity("ny")

> identical(dframe, ny)

[1] TRUE

> attachCity("ny")

> search()

[1] ".GlobalEnv"
[2] "ny"
[3] "package:NMMAPSdata"
[4] "package:tools"
[5] "package:methods"
[6] "package:stats"
[7] "package:graphics"
[8] "package:utils"
[9] "Autoloads"
[10] "package:base"

We can print the first 10 days of death counts from
cardiovascular disease and non-accidental deaths for
people < 65 years old:

> cvd[1:10]

[1] 22 20 17 18 14 18 17 16 25 20

> death[1:10]

[1] 73 68 56 55 60 80 64 63 64 65

The function attachCity will mostly likely only be
useful for interactive work. Furthermore, only one
city dataframe can be usefully attached at a time
since all of the variables in the most recently attached
dataframe will mask the variables in previously at-
tached dataframes.

Example: Analysis of PM10 and
Mortality

In this section we illustrate how to fit models similar
to those used in Dominici et al. (2002a,b, 2003). The
basic NMMAPS model for a single city is an overdis-
persed Poisson model of the following form

Yt ∼ Poisson(µt)
log µt = DOWt + AgeCat

+ns(tempt, df = 6)
+ns(tempt,1−3, df = 6)
+ns(dewptt, df = 3)
+ns(dewptt,1−3, df = 3)
+ns(t, df = 7× # years)
+ns(t, df = 1× # years)×AgeCat
+βPMt

Var(Yt) = φµt
(1)

R News ISSN 1609-3631

Vol. 4/2, September 2004 12

where Yt is the number of non-accidental deaths on
day t for a particular age category, AgeCat is an in-
dicator for the age category, tempt is the average
temperature on day t, tempt,1−3 is a running mean
of temperature for the previous 3 days, and PMt is
the PM10 level for day t. The variables dewptt and
dewptt,1−3 are current day and running mean of dew
point temperature. The age categories used here are
≥ 75 years old, 65–74, and < 65. Each of the tem-
perature and dewpoint temperature variables are re-
lated to mortality in a flexible manner via the smooth
function ns(·, df), which indicates a natural spline
with df degrees of freedom.

To process the data in preparation for fitting
model (1) to PM10 and mortality data, one can use
the built-in basicNMMAPS function as the argument
to procFunc in buildDB. The function first checks
the dataframe to see if it contains any PM10 data.
If there is no PM10 data, then NULL is returned and
buildDB skips the city. For cities with PM10 data,
days with extreme mortality counts are set to NA
(missing) using an indicator variable included in the
dataframe. Then the function coerces the day-of-
week and age category variables to factor type and
creates some age category indicators. Finally, a sub-
set of the pollution (seven lags of PM10), weather
(temperature and dewpoint), and mortality (total
non-accidental deaths, deaths from cardiovascular
disease, and deaths from respiratory diseases) vari-
ables are retained and the reduced dataframe is re-
turned.

In order to illustrate how basicNMMAPS works,
we use it outside buildDB to build a customized
dataframe for New York. After looking at the
body of basicNMMAPS, we register the full NMMAPS
database, load the database for New York specifi-
cally, then using basicNMMAPS create the customized
dataframe called ny2.

> body(basicNMMAPS)

{
if (all(is.na(dataframe[,"pm10tmean"])))

return(NULL)
is.na(dataframe[, "death"]) <-
as.logical(dataframe[, "markdeath"])

is.na(dataframe[, "cvd"]) <-
as.logical(dataframe[, "markcvd"])

is.na(dataframe[, "resp"]) <-
as.logical(dataframe[, "markresp"])

Age2Ind <-
as.numeric(dataframe[,"agecat"] == 2)

Age3Ind <-
as.numeric(dataframe[,"agecat"] == 3)

dataframe[, "dow"] <-
as.factor(dataframe[, "dow"])

dataframe[, "agecat"] <-
as.factor(dataframe[, "agecat"])

varList <- c("cvd", "death", "resp",
"tmpd", "rmtmpd", "dptp",

"rmdptp", "time", "agecat",
"dow", "pm10tmean",
paste("l", 1:7,"pm10tmean",

sep = ""))
data.frame(dataframe[, varList],

Age2Ind = Age2Ind,
Age3Ind = Age3Ind)

}

> registerDB(NULL)

> loadCity("ny")

> ny2 <- basicNMMAPS(ny)

> str(ny2)

`data.frame': 15342 obs. of
20 variables:

$ cvd : num 22 20 17 18 14 ...
$ death : num 73 68 56 55 60 ...
$ resp : num 6 5 3 3 4 3 5 2 ...
$ tmpd : num 34.5 36.5 35.8 ...
$ rmtmpd : num NA NA NA ...
$ dptp : num 33.2 29.8 23.3 ...
$ rmdptp : num NA NA NA 9.70 ...
$ time : num -2556 -2556 <...>
$ agecat : Factor w/ 3 levels

"1","2","3": 1 1 1 ...
$ dow : Factor w/ 7 levels

"1","2","3","4",..: 5 6 ...
$ pm10tmean : num NA NA -17.1 ...
$ l1pm10tmean: num NA NA ...
$ l2pm10tmean: num NA NA ...
$ l3pm10tmean: num NA NA NA NA NA ...
$ l4pm10tmean: num NA NA NA NA NA ...
$ l5pm10tmean: num NA NA NA NA NA ...
$ l6pm10tmean: num NA NA NA NA NA ...
$ l7pm10tmean: num NA NA NA NA NA ...
$ Age2Ind : num 0 0 0 0 0 0 0 0 0 0 ...
$ Age3Ind : num 0 0 0 0 0 0 0 0 0 0 ...

For building a multi-city database, the steps
above may be avoided by directly using buildDB.

As an example, we use buildDB with process-
ing function basicNMMAPS to build a small four city
database that includes New York City, Los Angeles,
Chicago, and Seattle. Each of the city dataframes are
processed with the basicNMMAPS function.

> buildDB(procFunc = basicNMMAPS,

+ cityList = c("ny", "la", "chic",

+ "seat"))

Creating directory
/home/rpeng/R-local/lib/NMMAPSdata/<...>

Creating database: basicNMMAPS
Processing cities...
+ ny ---> /home/rpeng/R-local/lib/<...>
+ la ---> /home/rpeng/R-local/lib/<...>
+ chic ---> /home/rpeng/R-local/lib/<...>
+ seat ---> /home/rpeng/R-local/lib/<...>
Saving city information
Registering database location:

/home/rpeng/R-local/lib/NMMAPSdata/<...>

R News ISSN 1609-3631

Vol. 4/2, September 2004 13

> showDB()

basicNMMAPS in
/home/rpeng/R-local/lib/NMMAPSdata/db

The database created with a given processing func-
tion need only be built once for each city. When
buildDB is finished building the database it auto-
matically calls registerDB to make the newly built
database the currently registered one and therefore
ready for analysis. To use a database for subsequent
analyses not immediately following its creation, the
database need only be registered using registerDB.

buildDB returns (invisibly) an object of class
NMMAPSdbInfo which has a show method. This object
is also stored with the database and can be retrieved
with the getDBInfo function.

> getDBInfo()

NMMAPS Database with cities:
ny la chic seat

Call:
buildDB(procFunc = basicNMMAPS,

cityList = c("ny", "la", "chic",
"seat"))

The NMMAPSdbInfo object currently contains slots for
the processing function, the list of cities included in
the database, the full path to the database, the en-
vironment of the processing function, and the origi-
nal call to buildDB. A character vector containing the
abbreviated names of the cities included in the new
database can be retrieved with the listDBCities
function. listDBCities always lists the names of the
cities in the currently registered database.

> listDBCities()

[1] "chic" "la" "ny" "seat"

The file simple.R contains the code for fitting
model (1) and can be downloaded from the IHAPSS
website or sourced directly:

> source("http://www.ihapss.jhsph.edu/data/

NMMAPS/R/scripts/simple.R")

It contains a function fitSingleCity which can be
used for fitting NMMAPS-style time series models to
air pollution and mortality data. There are number
of arguments to fitSingleCity; the default values
fit model (1) to a city dataframe.

> registerDB("basicNMMAPS")

> loadCity("la")

> fit <- fitSingleCity(data = la,

+ pollutant = "l1pm10tmean",

+ cause = "death")

One can examine the formula for fit to see the exact
model fit to the data by fitSingleCity.

> formula(fit)

death ~ dow + agecat + ns(time, 98) +
I(ns(time, 15) * Age2Ind) +
I(ns(time, 15) * Age3Ind) +
ns(tmpd, 6) + ns(rmtmpd, 6) +
ns(dptp, 3) + ns(rmdptp, 3) +
l1pm10tmean

The primary difference between using fitSingleCity
and calling glm directly is that fitSingleCity will
adjust the number of degrees of freedom for the
smooth function of time if there are large contigu-
ous blocks of missing data

The full summary output from the model fit is
lengthy, but we can examine the estimate of the pol-
lution effect (and its standard error) via:

> summary(fit)$coefficients["l1pm10tmean",

+]

Estimate Std. Error t value
0.0003722357 0.0001874975 1.9852832959

Pr(>|t|)
0.0472094754

The estimated effect is 0.0003722, which can be inter-
preted as approximately a 0.37% increase in mortal-
ity with a 10 µg/m3 increase in PM10.

For a single city analysis, returning the entire
glm object from fitSingleCity is not too burden-
some with respect to memory usage. However, in
a multi-city analysis, with possibly up to 100 cities, it
may not be desirable to store 100 glm objects at once,
each of which can be 10–20 MB large. The function
fitSingleCity has an argument extractors, which
by default is NULL. One can pass a list of hook func-
tions via the extractors argument and these func-
tions will be applied to the object returned from the
call to glm. This way, one can obtain relevant quan-
tities (coefficients, standard errors, etc.) from the
model fit and discard the rest.

> extractFun <-

+ list(coef = function(x)

+ summary(x)$coeff["l1pm10tmean",1],

+ std = function(x)

+ summary(x)$coeff["l1pm10tmean",2])

> fit <- fitSingleCity(data = la,

+ pollutant = "l1pm10tmean",

+ cause = "death",

+ extractors = extractFun)

> fit

$coef
[1] 0.0003722357

$std
[1] 0.0001874975

R News ISSN 1609-3631

Vol. 4/2, September 2004 14

We can now run our multi-city analysis by calling
cityApplywith fitSingleCity and the list of extrac-
tor functions in extractFun.

> results <- cityApply(fitSingleCity,

+ extractors = extractFun)

By default, cityApply applies the function specified
in the FUN argument on all of the city dataframes in
the currently registered database.

The effect estimates from the 4 cities can be
pooled using a simple fixed effects model:

> beta <- sapply(results, "[[", "coef")

> std <- sapply(results, "[[", "std")

> weighted.mean(beta, 1/std^2) *

+ 1000

[1] 0.2005406

> sqrt(1/sum(1/std^2)) * 1000

[1] 0.07230552

Future Directions

The NMMAPSdata package is a data package and
we purposely omit any code for time series model-
ing. We are currently developing a separate package
specifically designed for fitting time series models to
air pollution and health data. For now, we hope that
users will find the NMMAPSdata package useful for
either reproducing results from previous studies or
for implementing their own methods. Comments
and suggestions are welcome.

Bibliography

M. J. Daniels, F. Dominici, S. L. Zeger, and J. M.
Samet. The National Morbidity, Mortality, and

Air Pollution Study, Part III: Concentration-Response
Curves and Thresholds for the 20 Largest US Cities.
Health Effects Institute, Cambridge MA, 2004. 10

F. Dominici, M. Daniels, S. L. Zeger, and J. M. Samet.
Air pollution and mortality: Estimating regional
and national dose-response relationships. Journal
of the American Statistical Association, 97:100–111,
2002a. 11

F. Dominici, A. McDermott, M. Daniels, S. L. Zeger,
and J. M. Samet. Mortality among residents of 90
cities. In Revised Analyses of Time-Series Studies of
Air Pollution and Health, pages 9–24. The Health Ef-
fects Institute, Cambridge MA, 2003. 10, 11

F. Dominici, A. McDermott, S. L. Zeger, and J. M.
Samet. On the use of generalized additive models
in time-series studies of air pollution and health.
American Journal of Epidemiology, 156(3):193–203,
2002b. 11

R. D. Peng, L. J. Welty, and A. McDer-
mott. The National Morbidity, Mortality,
and Air Pollution Study database in R.
Technical Report 44, Johns Hopkins Uni-
versity Department of Biostatistics, 2004.
http://www.bepress.com/jhubiostat/paper44/.
10

J. M. Samet, F. Dominici, S. L. Zeger, J. Schwartz, and
D. W. Dockery. The National Morbidity, Mortality,
and Air Pollution Study, Part I: Methods and Method-
ological Issues. Health Effects Institute, Cambridge
MA, 2000a. 10

J. M. Samet, S. L. Zeger, F. Dominici, F. Cur-
riero, I. Coursac, D. W. Dockery, J. Schwartz, and
A. Zanobetti. The National Morbidity, Mortality, and
Air Pollution Study, Part II: Morbidity and Mortality
from Air Pollution in the United States. Health Effects
Institute, Cambridge MA., 2000b. 10

Laying Out Pathways With Rgraphviz
by Jeff Gentry, Vincent Carey, Emden Gansner and Robert
Gentleman

Overview

Graphviz http://www.graphviz.org is a flexible
tool for laying out and rendering graphs. We have
developed an R interface to the Graphviz function-
ality. In this article we demonstrate the use of
Rgraphviz to layout molecular pathways, but note
that the tool is much more general and can be used
to layout any graph.

In this article, we will use the hsa041510

pathway from KEGG (http://www.genome.ad.jp/
kegg/pathway/hsa/hsa04510.html), which is avail-
able as a graph object from the graph package
as the integrinMediatedCellAdhesion dataset. This
dataset contains the graph as well as a list of at-
tributes that can be used for plotting. The path-
way graph as rendered by KEGG is seen here:

R News ISSN 1609-3631

http://www.graphviz.org
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html

Vol. 4/2, September 2004 15

Obtaining the initial graph

At this time, there is no automated way to extract
the appropriate information from KEGG (or other
sites) and construct a graph. If one wishes to layout
their own pathways, it requires manual construction
of a graph, creating each node and then recording
the edges. Likewise, for any basic attributes (such as
the green/white coloration in the hsa041510 graph),
they too must be collected by hand. For instance,
this would be a good time to take advantage of edge
weights by putting in desired values (which can be
changed later, if necessary) while constructing the
edges of the graph. We have manipulated some of
the weights, such as the weight between the p85 and
p110 nodes, as they are intended to be directly next
to each other. Once constructed, the graph can be
saved with the save command and stored for later
use (which has been done already as part of the inte-
grinMediatedCellAdhesion dataset).

> library("Rgraphviz")

Loading required package: graph
Loading required package: cluster
Loading required package: Ruuid
Creating a new generic function for "print" in
"Ruuid"
Loading required package: Biobase
Welcome to Bioconductor

Vignettes contain introductory material.
To view, simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.

> data("integrinMediatedCellAdhesion")

> IMCAGraph

A graph with directed edges
Number of Nodes = 55
Number of Edges = 62

Laying out the graph

Laying out a pathway graph is much like dealing
with any other graph, except that typically we want
to as closely emulate the officially laid out graph (or

at least make it look like an actual pathway - the
Graphviz layout methods were not designed with
this task in mind). A lot of experimentation comes
into play, in order to find the right combination of
attributes, although there are some general tips that
can help out. The first thing to know is that we will
almost always want to use the dot layout, as that will
provide the closest base to work off. Likewise, the
rankdir attribute should be set to LR, to give us the left
to right look of the graph. To see our starting point,
here is the IMCAGraph with just those settings.

> plot(IMCAGraph,

+ attrs = list(graph =

+ list(rankdir = "LR")))

ITGB

ITGA

ACTN

JNK

MYO

MYO−P

PI5K

SOS

ILK

TLN

ZYX

VCL

PXN

TNS

SH3D5

VASP

CAPN

CAPNS

FAK

SRC

SRC2
BCAR1 CSK

GIT2

p85

p110

RHO
ROCK

VAV

PDPK1

AKT

RACCDC42

PAK

CRK DOCK1

GRF2

RAP1

CM2

FAK1

MEK

SHC FYN

GRB2

Ha−Ras ERK MYLK

F−actin

CAV

Raf

Note that IMCAAttrs$defAttrs is simply the
rankdir attribute for graph, so we will be using that
in place of the list call from now on.

This plot is not terrible, it does convey the proper
information, but the layout is quite different from
the layout at KEGG, and can be difficult to interpret.
Furthermore, smaller things like the coloration of the
nodes and the shape of the phosphatidylinositol sig-
naling system are not handled.

Using other attributes can have a positive effect.
We can set the color of each node (this must be en-
tered manually) and change the shape of the phos-
phyatidylinositol signaling system node to be an el-
lipse. We have done this for this graph in the IM-
CAAttrs$nodeAttrs data:

> IMCAAttrs$nodeAttrs$shape

Phosphatidylinositol signaling system
"ellipse"

> IMCAAttrs$nodeAttrs$fillcolor[1:10]

R News ISSN 1609-3631

Vol. 4/2, September 2004 16

ITGB ITGA
"white" "white"
ACTN JNK
"white" "white"
MYO MYOP
"white" "white"
PI5K Phosphatidylinositol signaling system
"white" "white"
cell maintenance CM2
"white" "white"

We have set up a few other attributes. You’ll no-
tice on the original plot that there are some nodes
that have the same label, there are two cell mainte-
nance nodes, 2 FAK nodes, and 2 SRC nodes. In the
internal structure of the graph we have given these
nodes different names but we set their labels to be
the same as the original. Also, we have defined some
edges that do not exist in the original graph for struc-
tural reasons and make their color transparent so that
they are not displayed. We also change some of the
arrowheads:

> IMCAAttrs$nodeAttrs$label

CM2 FAK1
"cell maintenance" "FAK"

SRC2
"SRC"

> IMCAAttrs$edgeAttrs$color

ITGB~SOS ACTN~VCL TLN~PXN
"transparent" "transparent" "transparent"

> IMCAAttrs$edgeAttrs$arrowhead

ITGB~ACTN ITGB~TLN ACTN~ZYX VCL~TNS
"none" "none" "none" "none"

VCL~SH3D5 TLN~CAPN TLN~FAK PAK~ARGHEF
"none" "none" "none" "none"

PXN~FAK ITGB~CAV ITGB~SHC MYO~F-actin
"none" "none" "none" "none"

Using these attributes to plot the graph will get
us a bit closer to our goal:

> plot(IMCAGraph, attrs = IMCAAttrs$defAttrs,

+ nodeAttrs = IMCAAttrs$nodeAttrs,

+ edgeAttrs = IMCAAttrs$edgeAttrs)

ITGB

ITGA

ACTN

JNK

MYO

MYO−P

PI5K

SOS

ILK

TLN

ZYX

VCL

PXN

TNS

SH3D5

VASP

CAPN

CAPNS

FAK

SRC

SRCBCAR1 CSK

ARHGEF
GIT2

p85
p110

RHO
ROCK

VAV

PDPK1

AKT

RACCDC42

PAK

CRK DOCK1

GRF2

RAP1

FAK

MEK

SHC FYN

GRB2

Ha−Ras ERK MYLK

F−actin

CAV

Raf

Now the color scheme is the same as KEGG and
using an ellipse helps with the rendering of the phos-
phatidylinositol signaling system node. However,
we’re still left with the issue that the layout itself
is not the same as the original and is harder to in-
terpret. The output nodes are scattered, there is no
clear sense of where the membrane nodes are, and
many nodes that are intended to be close to each
other are not. This is where the use of subgraphs
and clusters can help. In Graphviz, a subgraph is
an organizational method to note that a set of nodes
and edges belong in the same conceptual space, and
share attributes. Subgraphs have no impact on lay-
outs themselves, but are used to group elements of
the graph for assigning attributes. A Graphviz clus-
ter is a subgraph which is laid out as a separate graph
and then introduced into the main graph. This pro-
vides a mechanism for clustering the nodes in the
layout. For a description of how to specify subgraphs
in Rgraphviz, please see the vignette HowTo Render
A Graph Using Rgraphviz from the Rgraphviz pack-
age.

Here we define four subgraphs: One will be the
membrane nodes, one will be the output nodes, one
will be the F-actin block and the last will be the com-
bination of the PAK, JNK and ARHGEF nodes to get
the verticle stacking. It would be possible to spec-
ify more subgraphs to try to help keep things more
blocked together like the original graph, but for the
purposes of this document, these are what will be
used.

> sg1 <- subGraph(c("ILK", "ITGA",

"ITGB"), IMCAGraph)

> sg2 <- subGraph(c("cell maintenance",

+ "cell motility",

+ "cell proliferation",

+ "F-actin"), IMCAGraph)

> sg3 <- subGraph(c("ACTN", "VCL", "TLN",

+ "PXN"), IMCAGraph)

R News ISSN 1609-3631

Vol. 4/2, September 2004 17

> sg4 <- subGraph(c("PAK", "JNK", "ARHGEF"),

+ IMCAGraph)

We have defined the subgraphs. We can use these
as subgraphs or clusters in Graphviz. Ideally, we
would like to use clusters, as that guarantees that
the nodes will be laid out close together. However,
we want to use the rank attribute for the membrane,
output nodes and the ARHGEF block, specifically us-
ing the values min and max and same, respectively.
That will help with the verticle alignment that we
see in the KEGG graph and create more of the left to
right orientation. The problem is that rank currently
only works with subgraphs and not clusters. So for
these three subgraphs, we will be defining them as
Graphviz subgraphs, and the F-actin block will be
defined as a cluster. We have already prepared all
of this as IMCAAttrs$subGList:

> IMCAAttrs$subGList

[[1]]
[[1]]$graph
A graph with undirected edges
Number of Nodes = 3
Number of Edges = 0

[[1]]$cluster
[1] FALSE

[[1]]$attrs
[[1]]$attrs$rank
[1] "min"

[[2]]
[[2]]$graph
A graph with undirected edges
Number of Nodes = 4
Number of Edges = 0

[[2]]$cluster
[1] FALSE

[[2]]$attrs
[[2]]$attrs$rank
[1] "max"

[[3]]
[[3]]$graph
A graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

[[4]]
[[4]]$graph
A graph with undirected edges
Number of Nodes = 3
Number of Edges = 1

[[4]]$cluster

[1] FALSE

[[4]]$attrs
[[4]]$attrs$rank
[1] "same"

You can see that we have set the rank attribute on
the three subgraphs and that the F-actin subgraph
has been defined as a cluster. Using this subgraph
list, we now get:

> plot(IMCAGraph, attrs = IMCAAttrs$defAttrs,

+ nodeAttrs = IMCAAttrs$nodeAttrs,

+ edgeAttrs = IMCAAttrs$edgeAttrs,

+ subGList = IMCAAttrs$subGList)

ITGB

ITGA

ACTN

JNK

MYO

MYO−P

PI5K

SOS

ILK

TLN

ZYX

VCL

PXN
TNS

SH3D5

VASP

CAPN

CAPNS

FAK

SRC

SRC

BCAR1

CSK
ARHGEF

GIT2

p85 p110

RHO

ROCK
VAV

PDPK1

AKT

RAC

CDC42 PAK

CRK

DOCK1

GRF2

RAP1

FAK

MEK

SHC FYN

GRB2
Ha−Ras

ERK MYLK

F−actin

CAV Raf

While this is still not identical to the image on
KEGG (and for most graphs, it will be hard to do so),
this layout is now easier to interpret. We can see the
output nodes are now to the right side of the graph,
and the membrane nodes are stacked on the left of
the graph. We can also see the F-actin group in the
upper left portion of the graph, representing the clus-
ter.

Working with the layout

One of the benefits of using Rgraphviz to perform
your layout as opposed to using the static layouts
provided by sites like KEGG, is the ability to work
with outside data and visualize it using your graph.
The plotExpressionGraph function in geneplotter
can be used to take expression data and then color
nodes based on the level of expression. By default,
this function will color nodes blue, green or red, cor-
responding to expression levels of 0-100, 101-500,
and 501+ respectively. Here we will use this function
along with the fibroEset and hgu95av2 data packages
and the IMCAAttrs$IMCALocuLink data which maps
the nodes to their LocusLink ID values.

R News ISSN 1609-3631

Vol. 4/2, September 2004 18

> require("geneplotter")

Loading required package: geneplotter
Loading required package: annotate
Loading required package: reposTools
[1] TRUE

> require("fibroEset")

Loading required package: fibroEset
[1] TRUE

> require("hgu95av2")

Loading required package: hgu95av2
[1] TRUE

> data("fibroEset")

> plotExpressionGraph(IMCAGraph,

+ IMCAAttrs$LocusLink,

+ exprs(fibroEset)[,1],

+ hgu95av2LOCUSID,

+ attrs =

+ IMCAAttrs$defAttrs,

+ subGList =

+ IMCAAttrs$subGList,

+ nodeAttrs =

+ IMCAAttrs$nodeAttrs,

+ edgeAttrs =

+ IMCAAttrs$edgeAttrs)

ITGB

ITGA

ACTN

JNK

MYO

MYO−P

PI5K

SOS

ILK

TLN

ZYX

VCL

PXN
TNS

SH3D5

VASP

CAPN

CAPNS

FAK

SRC

SRC

BCAR1

CSK
ARHGEF

GIT2

p85 p110

RHO

ROCK
VAV

PDPK1

AKT

RAC

CDC42 PAK

CRK

DOCK1

GRF2

RAP1

FAK

MEK

SHC FYN

GRB2
Ha−Ras

ERK MYLK

F−actin

CAV Raf

One can also simply choose to layout the path-
way based on the needs and desires of a particular
situation. For instance, the following layout could
be used in situations where the node names are the
important visual cue, as opposed to the previous ex-
ample where the nodes themselves are being used to
demonstrate values:

> z <- IMCAGraph

> nodes(z)[39] <- c("phosphati.\nsign. sys.")

> nag <- agopen(z, name = "nag",

+ attrs = list(node =

+ list(color = "white", fontcolor =

+ "white"), edge =

+ list(arrowsize = 2.8, minlen = 3)))

> nagxy <- getNodeXY(nag)

> plot(nag)

> text(nagxy, label = nodes(z), cex = 0.8)

ITGB ITGA

ACTN

JNK

MYO

MYO−P

PI5K

SOS

ILK

TLN

ZYX VCL PXN

TNS SH3D5VASP

CAPN

CAPNSFAK

SRC

SRC2

BCAR1

CSK

ARHGEF

GIT2
p85

p110

Phosphatidylinositol signaling system

RHO

ROCK

VAV PDPK1

AKTRAC

CDC42

PAKcell motility

CRK

phosphati.
sign. sys.GRF2

RAP1

cell maintenance

CM2

FAK1

MEK

SHC

FYNGRB2

Ha−Ras

ERK

cell proliferation

MYLK

F−actin

CAV

Raf

Conclusions

Rgraphviz provides a flexible interface to Graphviz
to obtain layout information. Rendering the graph is
handled in R, using R graphics. There are still a few
rough edges but the package is quite flexible and can
be used to layout and render any graph. Graph lay-
out is still very much an art. You will seldom get a
good layout without doing some tweaking and ad-
justing. We have demonstrated a few of the very
many tools that Graphviz offers.

Jeff Gentry
DFCI
jgentry@jimmy.harvard.edu

Vincent Carey
Channing Lab
stvjc@channing.harvard.edu

Emden Gansner
AT&T Labs
erg@research.att.com

Robert Gentleman
DFCI
rgentlem@jimmy.harvard.edu

R News ISSN 1609-3631

mailto:jgentry@jimmy.harvard.edu
mailto:stvjc@channing.harvard.edu
mailto:erg@research.att.com
mailto:rgentlem@jimmy.harvard.edu

Vol. 4/2, September 2004 19

Fusing R and BUGS through Wine
An Introduction to Package rbugs

by Jun Yan

Historical Review

BUGS (Spiegelhalter et al., 1996) has been a very
successful statistical software project. It is widely
used by researchers in many disciplines as a conve-
nient tool for doing Bayesian statistical analysis. The
BUGS developers have shifted developmental efforts
to WinBUGS, and the classic BUGS is not being de-
veloped further. The current release WinBUGS 1.4
comes with a scripting facility which permits batch
running, and also therefore the ability to run Win-
BUGS from other programs.

Fusing R and BUGS has been available from sev-
eral sources. On Windows systems, it dates back
to Kennith Rice’s package EmBedBUGS (Rice, 2002).
EmBedBUGS is available in an Windows self-extracting
archive and is not in the standard format of an R
package. First version adapted from EmBedBUGS, An-
drew Gelman’s collection of functions bugs.R (Gel-
man, 2004) has evolved into a comprehensive tool,
which can run WinBUGS 1.4 from R, collect the
MCMC samples, and perform basic output analy-
sis. This collection was recently packaged by Sturtz
and Ligges (2004) as R2WinBUGS, with some tools (in-
cluding print and plot methods) for output analy-
sis slightly changed from Andrew Gelman’s original
function.

On Linux/Unix systems, however, less work has
appeared since the pause of the support for clas-
sic BUGS. Plummer (2003) reported experience and
some known problems of running WinBUGS under
Wine, “an Open Source implementation of the Win-
dows API on top of X and Unix” (Wine, 2004). With
Wine, it is possible to provide a facility of fusing R
and BUGS on a Linux system similar to what’s avail-
able on a Windows system. This is what package
rbugs aims at.

Design

The powerfulness of BUGS (In the sequel, I use
BUGS instead of WinBUGS when there is no confu-
sion in the context, hoping some day classic BUGS
will be supported.) lies in that, with a straightfor-
ward syntax for model specification, it provides a
universal MCMC sampler of posterior distributions
for rather complicated problems. Users do not need
to worry about how the MCMC samples are actu-
ally drawn. The design philosophy of rbugs, there-
fore, is to take the advantage of the universal MCMC
sampler of BUGS through an interface as simple as

possible, and return the MCMC samples in a format
which can be fed into other R packages specializ-
ing in Bayesian output analysis, such as boa (Smith,
2004) and coda (Plummer et al., 1996). In addition,
users (particularly those who are uncomfortable with
point-and-click) enjoy accesses to various files gen-
erated during the preparation of running BUGS in
batch-mode.

Compared to package R2WinBUGS, rbugs is differ-
ent in the following sense: 1) It does not provide
Bayesian output analysis and only serves as a fuse
to connect R and BUGS; 2) It provides access to au-
tomating the preparation of script file, model file,
data file, and initial value file, which are needed by
running BUGS in batch-mode; and 3) Its main target
users are Linux users having access to Wine.

Configuration

Package rbugs has been tested on both Linux and
Windows. After installation, it’s worth setting two
environment variables in the ‘.Renviron’ file to save
some typing: BUGS and WINE. These two variables
store the full name of the executables of BUGS and
Wine, respectively. They are used as the default val-
ues in function rbugs. The following is an example
on my machine:

BUGS="c:/program files/winbugs14/winbugs14.exe"
WINE="/var/scratch/jyan/wine-20040408/wine"

The definition of WINE is only necessary if BUGS is
to be used via Wine. In that case, the wine config-
uration in ‘./wine/config’ in the home directory will
be processed by an internal function to create a map
from the Windows drives to the native directories.
Further discussion about the usage via wine is pre-
sented next.

Run BUGS in a Single Call

To run BUGS in batch-mode, a minimum of four files
are needed as input: a script file, a model file, a data
file, and an initial value file for each chain to be run.
Except the model file, other three types of files can
be generated. The model file would need to be writ-
ten by a user outside of R. The output from BUGS
are saved in files specified in the script file, and can
be read into R and used for convergence and out-
put analysis. From sufficient information collected
from its arguments, such as the data list, parame-
ters to be monitored, number of chains, etc., func-
tion rbugs generates the data file, initial value files,
and script file that are needed, calls BUGS through
an OS-specific system call, and returns the MCMC
output as a list of matrix. The returned object can be

R News ISSN 1609-3631

Vol. 4/2, September 2004 20

further processed by packages boa and coda, taking
the advantage of various native analysis available in
R. An example is provided with the pumps data in the
Example Volume I of BUGS:

> ? pumps

Experience with Wine

On a RedHat 3.0 workstation, I experimented run-
ning WinBUGS via Wine 20040408. As reported by
Plummer (2003), buttons still don’t respond to clicks.
One would have to use the return key after pointing
to a button. This may not be a problem for people
who do not like using a mouse anyway. Fortunately,
the batch-mode works fine and the results from some
examples I tried are the same as those obtained from
a Windows system.

Installation guide for Wine can be found from its
website. For people who don’t have root access, it’s
sufficient to just compile it and set WINE as the full
name of the Wine executable in the compiling direc-
tory. The compiling is straightforward.

When using rbugs, one needs to pay attention to
the difference in two of its arguments: workingDir
and bugsWorkingDir. On a Windows system, they
should be the same. But on a Linux system,
workingDir refers to the directory that’s recognizable
by native operations, while bugsWorkingDir refers to
the same directory as workingDir but translated to
a Windows directory recognizable by WinBUGS via
Wine. For example, on my system, drive C is defined
in the Wine configuration:

[Drive C]
"Path" = "/var/scratch/jyan/c"

If I would like to use

bugsWorkingDir="c:/tmp",

then I would need to have

workingDir="/var/scratch/jyan/c/tmp".

With these straightened out, the pumps example
can be run on a Linux system. Same as on a Win-
dows system, rbugs will launch BUGS. In the current
release of rbugs, the debug information from Wine is
redirected to a temporary file and deleted on exit.

The configuration information of wine is usually
stored in ‘.wine/config’ in the home directory. An in-
ternal function processes this config file and stores
the drive mapping between Windows and the native
Linux system in a internal data frame .DriveTable.
When using rbugs, if workingDir is the default,
NULL, then bugsWorkingDir is translated using the
drive mapping table.

Preparing Files for BUGS Batch-
mode

Often times, one would like to use a call of rbugs
to do some exploration, checking if the model and
the data compile fine in BUGS. It would be useful
to have the generated script file, data file, and initial
value files available for using BUGS directly in other
circumstances. There is no difficulty in generating
the script files. But for the data file and the initial
value files, the format of the data becomes an impor-
tant issue. In the WinBUGS 1.4 manual, under the
section of Model Specification, formatting of data is
discussed. It reads that BUGS can take read files cre-
ated from the S-Plus dput function. Unfortunately,
this is not (or no longer) true for both the most recent
versions of S-Plus and R. Let’s look at R-1.9.0 only:

> a <- matrix(c(314159265358979, 0.0001,
-0.0001, 0.05), 2, 2)

> dput(list(a = a), "tmp")
> file.show("tmp")
structure(list(a = structure(c(314159265358979,
1e-04, -1e-04, 0.05), .Dim =
as.integer(c(2, 2)))), .Names = "a")

A BUGS user immediately sees that BUGS will com-
plain when it reads this! Besides the extra characters
of “as.integer” and “.Names”, there are less docu-
mented subtle issues: 1) “e” should be “E”; 2) “1e”
should be “1.0E”; and 3) the first number exceeded
14 digits.

In not necessarily the most efficient way, the func-
tion format4Bugs converts the data to characters
with formatC and then uses a modification of a for-
mat data function by Kennith Rice to return hope-
fully the right format for BUGS.

Using format4Bugs, functions genDataFile and
genInitsFile prepare data file and initial value files.
Function genBugsScript generate a script file. All
these files are accessible by users and hence ease the
usage of BUGS in other circumstances.

Remarks

Since Wine is built upon X windows, WinBUGS
would not run from an ssh terminal without X win-
dows support. Many people had wished the classic
BUGS were supported. That not happening soon, it
would be desirable to have a better supported com-
mand line interface of WinBUGS, so that launching
the GUI becomes an options.

As an infrequent Windows user, I am more ori-
ented to experimenting and supporting fusing R and
BUGS through Wine on Linux systems. Windows
users are referred to package R2WinBUGS. A forthcom-
ing paper by the package authors will provide de-
tailed demonstration and become a standard refer-
ence.

R News ISSN 1609-3631

Vol. 4/2, September 2004 21

Plummer (2004) just released 0.50 of JAGS. Quote
from Martyn Plummer: “JAGS is Just Another Gibbs
Sampler - an alternative engine for the BUGS lan-
guage that aims for the same functionality as classic
BUGS. JAGS is written in C++ and licensed under the
GNU GPL. It was developed on Linux and also runs
on Windows.” The functions in package rbugs can
also be used to prepare files for JAGS. I am looking
forward to seeing the growth of JAGS.

I also tried using R for Windows through Wine. It
worked last winter with Wine 20031016, but is not
working with Wine 20040408 now. Unfortunately,
since my Wine 20040408 was compiled after my sys-
tem has been recently upgraded to Red Hat Worksta-
tion 3.0, I cannot tell which change has caused it.

Bibliography

Gelman, A. (2004), “bugs.R: func-
tions for running WinBugs from R,”
http://www.stat.columbia.edu/∼gelman/bugsR/.
19

Plummer, M. (2003), “Using WinBUGS under Wine,”
http://calvin.iarc.fr/bugs/wine/. 19, 20

Plummer, M. (2004), “JAGS ver-
sion 0.50 manual,” http://www-
fis.iarc.fr/∼martyn/software/jags/. 20

Plummer, M., Best, N., Cowles, K., and Vines, K.
(1996), “coda: Output analysis and diagnostics for
MCMC,” http://www-fis.iarc.fr/coda/. 19

Rice, K. (2002), “EmBedBUGS: An R pack-
age and S library,” http://www.mrc-
bsu.cam.ac.uk/personal/ken/embed.html. 19

Smith, B. (2004), “boa: Bayesian Output Anal-
ysis Program for MCMC,” http://www.public-
health.uiowa.edu/boa. 19

Spiegelhalter, D. J., Thomas, A., Best, N. G.,
and Gilks, W. (1996), BUGS: Bayesian inference
Using Gibbs Sampling, Version 0.5, (version ii)
http://www.mrc-bsu.cam.ac.uk/bugs. 19

Sturtz, S. and Ligges, U. (2004), “R2WinBUGS:
Running WinBUGS from R,” http://cran.r-
project.org/src/contrib/Descriptions/R2WinBUGS.html.
19

Wine (2004), “Wine,” http://www.winehq.org. 19

Jun Yan
University of Iowa, U.S.A.
jyan@stat.uiowa.edu

R Package Maintenance
Paul Gilbert

Introduction

Quality control (QC) for R packages was the feature
that finally convinced me to maintain R packages
and also run them in S, rather than the reverse. A
good QC system is essential in order to contain the
time demands of maintaining many packages with
interdependencies. It is necessary to have quick,
easy, reliable ways to catch problems. This article
explains how to use the R package QC features (in
the "tools" package by Kurt Hornik and Friedrich
Leisch) for ongoing maintenance and development,
not just as a final check before submitting a package
to CRAN. This should be of interest to individuals or
organizations that maintain a fairly large code base,
for their own use or the use of others.

The main QC features for an R package check
that:

• code in package directory R/ is syntactically
correct

• code in package directory tests/ runs and does

not crash or stop()

• documentation is complete and accurate in sev-
eral respects

• examples in the documentation actually run

• code in package directory demo/ runs

• vignettes in package directory inst/doc/ run

These provide several important features for
package maintenance. Developers like to improve
code, but documentation updates are often ne-
glected. A simple method to identify necessary doc-
umentation changes means documentation mainte-
nance is (almost) painless. The QC tools can be used
to help flag when documentation changes are nec-
essary. They also ensure that packaged code can be
quickly tested to ensure it works with a new version
of R (or a new compiler, or a new operating system,
or a new computer). The system explained below
also helps check dependencies among functions in
different packages, easing development by quickly
identifying changes that break code in other pack-
ages.

R News ISSN 1609-3631

mailto:jyan@stat.uiowa.edu

Vol. 4/2, September 2004 22

The system described here uses the QC features
in R in conjunction with the make utility. It checks
code and documentation of multiple packages, au-
tomatically when changes to source files imply that
these checks need to be done. The key is a good
‘Makefile’ with interdependencies properly identi-
fied. It should be possible to run this system with
a relatively small investment in "local setup" for a
different set of packages, perhaps only a couple of
hours. This presumes a certain familiarity with make.
For a complicated set of package, a somewhat larger
amount of time may be necessary in order to under-
stand interdependencies among packages. If your
packages are not well organized then a much larger
time investment will be necessary, but well worth-
while.

Make

This is not a tutorial about make, but a rudimentary
explanation is given in order to make the remainder
of the artical accessible to a wider audience. Briefly,
the make utility uses targets (rules) which may have
prerequisites (other targets or files). These are indi-
cated in a file typically called ‘Makefile’. This works
most easily when a target is the name of a file gener-
ated from another file, for example, a compiled tar-
get file called foo generated from a C code prereq-
uisite file called foo.c. Make determines that a tar-
get is out of date and must be re-generated if the file
timestamp for the target is older than the timestamp
of any prerequisite. This is recursive, so a target must
be re-generated (or "re-made") if it depends on a tar-
get, that depends on a target, ..., that depends on a
file that is newer. Properly mapping out the depen-
dencies in a ‘Makefile’ eventually saves an enormous
amount of time, because a change in a source file only
necessitates re-generating dependent targets. To un-
derstand correctly how this is used in the context
of R package maintenance, it is important to recog-
nize that "re-made" does not mean simply that code
(or documentation) is checked to be syntactically cor-
rect, it also means a number of tests are completed to
insure it works correctly.

Make and R Package QC

In order to implement the system for R package
maintenance, one critical simplifying assumption is
that code testing does not depend on documenta-
tion testing. This may seem obvious, but it has the
implication that examples in the documentation are
not the most important way to catch mistakes in the
code. That is, there should be files in the tests/ direc-
tory of a package that will generate errors if mistakes

are introduced into the code. These would typically
run functions, check results against known values,
and stop() if an error is indicated.

With this simplifying assumption it is possible
to distinguish two main targets for each package:
"code" and "doc." These are each aliases for several
"sub-targets." The code target tests the code in a pack-
age. It may be a prerequisite for code in other pack-
ages, but the doc target in a package is never a pre-
requisite in other packages. This means that a change
to .Rd files in the man directory, or to .R files in the
demo directory, or to vignette files, will signal re-
making only for the package itself, and not for other
packages. Changes to code files in the R directory or
files in the tests directory will signal re-making for
the package, and this may imply re-making of other
packages that depend on it.

As an example, I have package dse2, which de-
pends on dse1, which depends on packages tframe
and setRNG. Changes in files in tframe/R should
provoke a remake of dse1 and dse2, but changes in
tframe/man or tframe/inst/doc should not provoke
a remake of dse1 and dse2.

The ‘Makefile’ line for some targets uses "R CMD
check", but in most cases the targets directly use
functions in library("tools"). Shell variables, doc tar-
gets, and many code targets, are common to all
packages and can be specified in common files,
‘Makevars’ and ‘Makerules’, which are included into
the ‘Makefile’ for each package. (For technical reasons
it is best to have these in two files rather than one.)
The key code sub-target (Rcode) has different prereq-
uisites for each package and must thus be specified in
the specific ‘Makefile’ for each package.

As an example, Figure 1 shows the critical part 1

of the ‘Makefile’ for my dse1 package, which has the
packages tframe and setRNG as a prerequisites:

After first including the common variables from
../Makevars, this specifies the default target prereq-
uisites. (Left of the colon is a target name, right of the
colon is the list of prerequisites, backslash indicates
line continuation.)

Packages are each in a subdirectory below a com-
mon directory, so ../tframe refers to the relative path
from the package dse1 directory to the directory for
the package tframe. Some targets, like Rcode, are not
naturally files, so to take advantage of the timestamp
mechanism used by make it is necessary to create an
artificial file (placed in a subdirectory referred to by
the variable FLAGS). The critical part of the macro2

RchkCodeMacro is specified in ‘Makevars’ in Figure 2
This checks the code using any necessary pack-

ages from the location indicated by CHKLIBS, which
is where packages that have already been checked
are installed.

As another example, some of the documentation
targets are specified in ‘Makerules’ (in Figure 3) by

1The complete generic makefiles should be available in the contributed section of CRAN.
2The define feature and some other aspects of these files may be specific to GNU make.

R News ISSN 1609-3631

Vol. 4/2, September 2004 23

include ../Makevars

default: undoc checkDocFiles codoc examples latex demos \
checkDocStyle checkFF checkMethods checkReplaceFuns \
Rcode checkVignettes pdfVignettes tar

Rcode: R/*.R tests/*.R LICENSE DESCRIPTION INDEX \
../tframe/$(FLAGS)/Rcode ../setRNG/$(FLAGS)/Rcode

${RchkCodeMacro}

include ../Makerules

Figure 1: Makefile for dse1

define RchkCodeMacro
...
R_LIBS=$(CHKLIBS) $(RENV) R CMD check \

--outdir=$(CURDIR)/$(TMP) --library=$(CURDIR)/$(TMP) \
--no-vignettes --no-codoc --no-examples \
--no-latex $(CURDIR)

...
@touch $(FLAGS)/$@

endef

Figure 2: RchkCodeMacro is specified in ‘Makevars’

undoc checkDocFiles checkDocStyle: man R/*.R
@$(MKDIR) $(TMP)
@echo "library(tools); $@(dir=’$(CURDIR)’)" | R --vanilla -q >$(TMP)/$@
@test -z "‘grep ’Error’ $(TMP)/$@‘" || (cat $(TMP)/$@ ; exit 1)

check errors from undoc and checkDocFiles
@test -z "‘grep ’Undocumented’ $(TMP)/$@‘" || (cat $(TMP)/$@ ; exit 1)
@$(MKDIR) $(FLAGS)
@mv $(TMP)/$@ $(FLAGS)/$@

Figure 3: Documentation targets in ‘Makerules’

R News ISSN 1609-3631

Vol. 4/2, September 2004 24

This specifies the targets undoc, checkDocFiles,
and checkDocStyle, which all depend on any files in
the man directory, as well as any code files R/*.R.
The output from the R sessions that runs undoc() and
checkDocFiles() print errors and warnings, but these
do not automatically produce a shell error signal as a
flag that make recognizes. It is possible to do this us-
ing R code that determines if the result should indi-
cate an error, and sets q(status=1) but that is not done
in this example. Instead, a test on a grep of the out-
put is used to determine the shell error status. (This
may change in the future.) If the signal does not in-
dicate a failure (exit 1) then the output is moved to
the FLAGS directory to indicate that the target has
completed successfully.

Summary

There are trade-offs in the way R code is organized
into packages. If all code is in one package then there
are no package inter-dependencies, but everything
must be tested after any change. Faster computers
make it possible to consider this, and the make/QC
system described here would be extra overhead and
of limited value in that situation. However, more
documentation and examples, along with more ex-
tensive test suites, take longer to run, and so en-
courage a finer breakdown into packages. In addi-
tion to this, there are two complementary reasons for
organizing functions into packages. One is to limit
dependencies, as much as reasonably possible, be-
tween groups of functions that are not closely re-
lated and may not often be used together. The sec-
ond is to group together "kernel" functions which are

tools used by several other packages. The dependen-
cies among packages must be carefully mapped out,
which forces one to think carefully about what is ker-
nel code and what is not. These reasons for organiz-
ing code into packages may be even more important
in a situation where multiple programmers or users
are maintaining packages.

It is important to see that the savings in this
make/QC system come from a few different aspects.
The first is that packages of kernel code used by other
packages tend to be more stable and less frequently
changed than the packages that use them. If ker-
nel packages are not changed, they do not need to
be re-made. The second aspect is that dependencies
among packages are in the code, not in the docu-
mentation. Thus documentaion changes imply only
that the documentation for that particular package
needs to be checked. The aspect that results in the
most important savings, however, is that the need for
many documentation changes are flagged immedi-
ately, while you still remember what that marvelous
change in the code really did.

Acknowledgments

I am grateful to Kurt Hornik for many helpful expla-
nations and comments.

Paul Gilbert,
Department of Monetary and Financial Analysis,
Bank of Canada,
234 Wellington St.,
Ottawa, Canada, K1A 0G9
pgilbert@bank-banque-canada.ca

Changes in R
by the R Core Team

User-visible changes in 2.0.0

• The stub packages from 1.9.x have been re-
moved: the library() function selects the new
home for their code.

• ‘Lazy loading’ of R code has been imple-
mented, and is used for the standard and rec-
ommended packages by default. Rather than
keep R objects in memory, they are kept in
a database on disc and only loaded on first
use. This accelerates startup (down to 40% of
the time for 1.9.x) and reduces memory usage
– the latter is probably unimportant of itself,
but reduces commensurately the time spent in
garbage collection.

Packages are by default installed using lazy
loading if they have more than 25Kb of R code
and did not use a saved image. This can be
overridden by INSTALL --[no-]lazy or via a
field in the DESCRIPTION file. Note that as with
--save, any other packages which are required
must be already installed.

As the lazy-loading databases will be consulted
often, R will be slower if run from a slow
network-mounted disc.

• All the datasets formerly in packages ’base’
and ’stats’ have been moved to a new package
’datasets’. data() does the appropriate sub-
stitution, with a warning. However, calls to
data() are not normally needed as the data ob-
jects are visible in the ’datasets’ package.

Packages can be installed to make their data ob-

R News ISSN 1609-3631

mailto:pgilbert@bank-banque-canada.ca

Vol. 4/2, September 2004 25

jects visible via R CMD INSTALL --lazy-data
or via a field in the DESCRIPTION file.

• Package ’graphics’ has been split into ’grDe-
vices’ (the graphics devices shared between
base and grid graphics) and ’graphics’ (base
graphics). Each of the ’graphics’ and ’grid’
packages load ’grDevices’ when they are at-
tached. Note that ps.options() has been
moved to grDevices and user hooks may need
to be updated.

• The semantics of data() have changed (and
were incorrectly documented in recent re-
leases) and the function has been moved to
package ’utils’. Please read the help page care-
fully if you use the ’package’ or ’lib.loc’ argu-
ments.

data() now lists datasets, and not just names
which data() accepts.

• Dataset ’phones’ has been renamed to ’World-
Phones’.

• Datasets ’sunspot.month’ and ’sunspot.year’
are available separately but not via
data(sunspot) (which was used by package
lattice to retrieve a dataset ’sunspot’).

• Packages must have been re-installed for this
version, and library() will enforce this.

• Package names must now be given exactly
in library() and require(), regardless of
whether the underlying file system is case-
sensitive or not. So library(mass) will not
work, even on Windows.

• R no longer accepts associative use of relational
operators. That is, 3 < 2 < 1 (which used to
evalute as TRUE!) now causes a syntax error. If
this breaks existing code, just add parentheses
— or braces in the case of plotmath.

• The R parser now allows multiline strings,
without escaping the newlines with back-
slashes (the old method still works). Patch by
Mark Bravington.

New features

• There is a new atomic vector type, class "raw".
See ?raw for full details including the operators
and utility functions provided.

• The default barplot() method by default uses
a gamma-corrected grey palette (rather than
the heat color palette) for coloring its output
when given a matrix.

• The ’formula’ method for boxplot() has a
’na.action’ argument, defaulting to NULL. This
is mainly useful if the response is a matrix
when the previous default of ’na.omit’ would
omit entire rows. (Related to PR#6846.)

boxplot() and bxp() now obey global ’par’
settings and also allow the specification of
graphical options in more detail, compatibly
with S-PLUS (fulfilling wishlist entry PR#6832)
thanks to contributions from Arni Magnusson.
For consistency, ’boxwex’ is not an explicit ar-
gument anymore.

• chull() has been moved to package ’graphics’
(as it uses xy.coords).

• There is now a coef() method for summaries
of "nls" objects.

• compareVersion(), packageDescription()
and read.00Index() have been moved to
package ’utils’.

• convolve(), fft(), mvfft() and nextn()
have been moved to package ’stats’.

• coplot() now makes use of ’cex.lab’ and
’font.lab’ par() settings.

• cumsum/prod/max/min() now preserve names.

• data(), .path.packages() and .find.packages()
now interpret package = NULL to mean all
loaded packages.

• data.frame() and its replacement methods re-
move the names from vector columns. Using
I() will ensure that names are preserved.

• data.frame(check.names = TRUE) (the de-
fault) enforces unique names, as S does.

• .Defunct() now has ’new’ and ’package’ argu-
ments like those of .Deprecated().

• The plot() method for "dendrogram" objects
now respects many more nodePar and edgePar
settings and for edge labeling computes the ex-
tents of the diamond more correctly.

• deparse(), dput() and dump() have a new
’control’ argument to control the level of de-
tail when deparsing. dump() defaults to the
most detail, the others default to less. See
?.deparseOpts for the details.

They now evaluate promises by default: see
?dump for details.

• dir.create() now expands ~ in filenames.

• download.file() has a new progress meter
(under Unix) if the length of the file is known
— it uses 50 equals signs.

R News ISSN 1609-3631

Vol. 4/2, September 2004 26

• dyn.load() and library.dynam() return an ob-
ject describing the DLL that was loaded. For
packages with namespaces, the DLL objects are
stored in a list within the namespace.

• New function eapply(): apply for environ-
ments. The supplied function is applied to each
element of the environment; the order of appli-
cation and the order of the results are not spec-
ified.

• edit() and fix() use the object name in the
window caption on some platforms (e.g. Win-
dows).

• Function file.edit() function added: like
file.show(), but allows editing.

• Function file.info() can return file sizes >
2Gb if the underlying OS supports such.

• fisher.test(*, conf.int=FALSE) allows the
confidence interval computation to be skipped.

• formula() methods for classes "lm" and "glm"
used the expanded formula (with ’.’ expanded)
from the terms component.

• The ‘formula’ method for ftable() now looks
for variables in the environment of the formula
before the usual search path.

• A new function getDLLRegisteredRoutines()
returns information about the routines avail-
able from a DLL that were explicitly registered
with R’s dynamic loading facilities.

• A new function getLoadedDLLs() returns in-
formation about the DLLs that are currently
loaded within this session.

• The package element returned by
getNativeSymbolInfo() contains reference to
both the internal object used to resolve symbols
with the DLL, and the internal DllInfo structure
used to represent the DLL within R.

• help() now returns information about avail-
able documentation for a given topic, and no-
tifies about multiple matches. It has a separate
print() method.

If the latex help files were not installed, help()
will offer to create a latex file on-the-fly from
the installed .Rd file.

• heatmap() has a new argument ’reorderfun’.

• Most versions of install.packages() have a
new optional argument dependencies = TRUE
which will not only fetch the packages but also
their uninstalled dependencies and their de-
pendencies.

The Unix version of install.packages() at-
tempts to install packages in an order that re-
flects their dependencies. (This is not needed
for binary installs as used under Windows.)

• interaction() has new argument ’sep’.

• interaction.plot() allows type = "b" and
doesn’t give spurious warnings when passed a
matplot()-only argument such as ’main’.

• is.integer() and is.numeric() always re-
turn FALSE for a factor. (Previously they were
true and false respectively for well-formed fac-
tors, but it is possible to create factors with non-
integer codes by underhand means.)

• New functions is.leaf(), dendrapply() and
a labels() method for dendrogram objects.

• legend() has an argument ’pt.lwd’ and set-
ting ’density’ now works because ’angle’ now
defaults to 45 (mostly contributed by Uwe
Ligges).

• library() now checks the version dependence
(if any) of required packages mentioned in the
Depends: field of the DESCRIPTION file.

• load() now detects and gives a warning
(rather than an error) for empty input, and tries
to detect (but not correct) files which have had
LF replaced by CR.

• ls.str() and lsf.str() now return an object
of class ls_str which has a print method.

• make.names() has a new argument allow_,
which if false allows its behaviour in R 1.8.1 to
be reproduced.

• The ’formula’ method for mosaicplot() has a
’na.action’ argument defaulting to ’na.omit’.

• model.frame() now warns if it is given data
= newdata and it creates a model frame with a
different number of rows from that implied by
the size of ’newdata’.

Time series attributes are never copied to vari-
ables in the model frame unless na.action =
NULL. (This was always the intention, but they
sometimes were as the result of an earlier bug
fix.)

• There is a new ’padj’ argument to mtext() and
axis(). Code patch provided by Uwe Ligges
(fixes PR#1659 and PR#7188).

• Function package.dependencies() has been
moved to package ’tools’.

• The ’formula’ method for pairs() has
a ’na.action’ argument, defaulting to
’na.pass’, rather than the value of
getOption("na.action").

R News ISSN 1609-3631

Vol. 4/2, September 2004 27

• There are five new par() settings:

’family’ can be used to specify a font family
for graphics text. This is a device-independent
family specification which gets mapped by the
graphics device to a device-specific font specifi-
cation (see, for example, postscriptFonts()).
Currently, only PostScript, PDF, X11, Quartz,
and Windows respond to this setting.

’lend’, ’ljoin’, and ’lmitre’ control the cap style
and join style for drawing lines (only notice-
able on thick lines or borders). Currently, only
PostScript, PDF, X11, and Quartz respond to
these settings.

’lheight’ is a multiplier used in determining the
vertical spacing of multi-line text.

All of these settings are currently only avail-
able via par() (i.e., not in-line as arguments to
plot(), lines(), ...)

• PCRE (as used by grep etc) has been updated
to version 5.0.

• A ’version’ argument has been added to pdf()
device. If this is set to "1.4", the device will sup-
port transparent colours.

• plot.xy(), the workhorse function of points,
lines and plot.default now has ’lwd’ as explicit
argument instead of implicitly in "...", and
now recycles ’lwd’ where it makes sense, i.e.
for line based plot symbols.

• The png() and jpeg() devices (and the bmp()
device under Windows) now allow a nominal
resolution to be recorded in the file.

• New functions to control mapping from
device-independent graphics font family to
device-specific family: postscriptFont()
and postscriptFonts() (for postscript()
and pdf()); X11Font() and X11Fonts();
windowsFont() and windowsFonts();
quartzFont() and quartzFonts().

• power (x^y) has optimised code for y = 2.

• prcomp() is now generic, with a formula
method (based on an idea of Jari Oksanen).

prcomp() now has a simple predict()method.

• printCoefmat() has a new logical argument
’signif.legend’.

• quantile() has the option of several methods
described in Hyndman and Fan (1996). (Con-
tributed by Rob Hyndman.)

• rank() has two new ’ties.method’s, "min" and
"max".

• New function read.fortran() reads Fortran-
style fixed-format specifications.

• read.fwf() reads multiline records, is faster
for large files.

• read.table() now accepts "NULL", "factor",
"Date" and "POSIXct" as possible values of
colClasses, and colClasses can be a named
character vector.

• readChar() can now read strings with embed-
ded nuls.

• The "dendrogram" method for reorder() now
has a ’agglo.FUN’ argument for specification of
a weights agglomeration function.

• New reorder() method for factors, slightly ex-
tending that in lattice. Contributed by Deep-
ayan Sarkar.

• Replaying a plot (with replayPlot() or via au-
toprinting) now automagically opens a device
if none is open.

• replayPlot() issues a warning if an attempt is
made to replay a plot that was recorded using
a different R version (the format for recorded
plots is not guaranteed to be stable across dif-
ferent R versions). The Windows-menu equiv-
alent (History...Get from variable) issues a similar
warning.

• reshape() can handle multiple ’id’ variables.

• It is now possible to specify colours with a full
alpha transparency channel via the new ’alpha’
argument to the rgb() and hsv() functions, or
as a string of the form "#RRGGBBAA".

NOTE: most devices draw nothing if a colour
is not opaque, but PDF and Quartz devices will
render semitransparent colours.

A new argument ’alpha’ to the function
col2rgb() provides the ability to return the al-
pha component of colours (as well as the red,
green, and blue components).

• save() now checks that a binary connection is
used.

• seek() on connections now accepts and re-
turns a double for the file position. This allows
>2Gb files to be handled on a 64-bit platform.

• source() with echo = TRUE uses the function
source attribute when displaying commands as
they are parsed.

• setClass() and its utilities now warn if either
superclasses or classes for slots are undefined.
(Use setOldClass to register S3 classes for use
as slots)

R News ISSN 1609-3631

Vol. 4/2, September 2004 28

• str(obj) now displays more reasonably the
STRucture of S4 objects. It is also improved for
language objects and lists with promise compo-
nents.

The method for class "dendrogram" has a
new argument ’stem’ and indicates when it’s
not printing all levels (as typically when e.g.,
max.level = 2).

Specifying max.level = 0 now allows to sup-
press all but the top level for hierarchical ob-
jects such as lists. This is different to previ-
ous behavior which was the default behavior
of giving all levels is unchanged. The default
behavior is unchanged but now specified by
max.level = NA.

• system.time() has a new argument ’gcFirst’
which, when TRUE, forces a garbage collection
before timing begins.

• tail() of a matrix now displays the original
row numbers.

• The default method for text() now coerces a
factor to character and not to its internal codes.
This is incompatible with S but seems what
users would expect.

It now also recycles (x,y) to the length of ’la-
bels’ if that is longer. This is now compatible
with grid.text() and S. (See also PR#7084.)

• TukeyHSD() now labels comparisons when ap-
plied to an interaction in an aov() fit. It detects
non-factor terms in ’which’ and drops them if
sensible to do so.

• There is now a replacement method for
window(), to allow a range of values of time se-
ries to be replaced by specifying the start and
end times (and optionally a frequency).

• If writeLines() is given a connection that
is not open, it now attempts to open it in
mode = "wt" rather than the default mode
specified when creating the connection.

• The screen devices x11(), windows() and
quartz() have a new argument ’bg’ to set the
default background colour.

• Subassignments involving NAs and with a re-
placement value of length > 0 are now disal-
lowed. (They were handled inconsistently in R
< 2.0.0, see PR#7210.) For data frames they are
disallowed altogether, even for logical matrix
indices (the only case which used to work).

• The way the comparison operators handle a list
argument has been rationalized so a few more
cases will now work – see ?Comparison.

• Indexing a vector by a character vector was
slow if both the vector and index were long
(say 10,000). Now hashing is used and the time
should be linear in the longer of the lengths
(but more memory is used).

• Printing a character string with embedded nuls
now prints the whole string, and non-printable
characters are represented by octal escape se-
quences.

• Objects created from a formally defined class
now include the name of the corresponding
package as an attribute in the object’s class.
This allows packages with namespaces to have
private (non-exported) classes.

• Changes to package ’grid’:

– Calculation of number of circles to draw
in circleGrob now looks at length of y
and r as well as length of x.

– Calculation of number of rectangles to
draw in rectGrob now looks at length of
y, w, and h as well as length of x.

– All primitives (rectangles, lines, text, ...)
now handle non-finite values (NA, Inf,
-Inf, NaN) for locations and sizes. Non-
finite values for locations, sizes, and scales
of viewports result in error messages.
There is a new vignette(nonfinite) which
describes this new behaviour.

– Fixed (unreported) bug in drawing circles.
Now checks that radius is non-negative.

– downViewport() now reports the depth it
went down to find a viewport. Handy for
"going back" to where you started.

– The "alpha" gpar() is now multiplied
by the alpha channel of colours when
creating a gcontext. This means that
gpar(alpha=) settings now affect inter-
nal colours so grid alpha transparency set-
tings now are sent to graphics devices.
The alpha setting is also cumulative.

– Editing a gp slot in a grob is now incre-
mental.

– The "cex" gpar is now cumulative. For ex-
ample ...

– New childNames() function to list the
names of children of a gTree.

– The "grep" and "global" argu-
ments have been implemented for
grid.[add|edit|get|remove]Grob()
functions.
The "grep" argument has also been
implemented for the grid.set() and
setGrob().

R News ISSN 1609-3631

Vol. 4/2, September 2004 29

– New function grid.grab() which creates
a gTree from the current display list (i.e.,
the current page of output can be con-
verted into a single gTree object with all
grobs on the current page as children
of the gTree and all the viewports used
in drawing the current page in the chil-
drenvp slot of the gTree).

– New "lineend", "linejoin", and "linemitre"
gpar()s: line end can be "round", "butt",
or "square"; line join can be "round",
"mitre", or "bevel"; line mitre can be any
number larger than 1 (controls when a
mitre join gets turned into a bevel join;
proportional to angle between lines at
join; very big number means that conver-
sion only happens for lines that are almost
parallel at join).

– New grid.prompt() function for control-
ling whether the user is prompted before
starting a new page of output.
Grid no longer responds to the par(ask)
setting in the "graphics" package.

• The tcltk package has had the tkcmd() func-
tion renamed as tcl() since it could be used
to invoke commands that had nothing to
do with Tk. The old name is retained, but
will be deprecated in a future release. Simi-
larly, we now have tclopen(), tclclose(),
tclread(), tclputs(), tclfile.tail(),
and tclfile.dir() replacing counterparts
starting with "tk", with old names retained for
now.

New and changed utilities

• R CMD check now checks for file names in a di-
rectory that differ only by case.

• R CMD check now checks Rd files using R code
from package tools, and gives refined diagnos-
tics about "likely" Rd problems (stray top-level
text which is silently discarded by Rdconv).

• R CMD INSTALL now fails for packages with in-
complete/invalid DESCRIPTION metadata, us-
ing new code from package tools which is also
used by R CMD check.

• list_files_with_exts (package ’tools’) now
handles zipped directories.

• Package ’tools’ now provides Rd_parse(), a
simple top-level parser/analyzer for R docu-
mentation format.

• tools::codoc() (and hence R CMD check)
now checks any documentation for registered

S3 methods and unexported objects in pack-
ages with namespaces.

• Package ’utils’ contains several new functions:

- Generics toBibtex() and toLatex() for con-
verting R objects to BibTeX and LATEX (but al-
most no methods yet).

- A much improved citation() function
which also has a package argument. By default
the citation is auto-generated from the pack-
age DESCRIPTION, the file inst/CITATION can
be used to override this, see help(citation)
and help(citEntry).

- sessionInfo() can be used to include version
information about R and R packages in text or
LATEX documents.

Documentation changes

• The DVI and PDF manuals are now all made
on the paper specified by R_PAPERSIZE (de-
fault ’a4’), even the .texi manuals which were
made on US letter paper in previous versions.

• The reference manual now omits ’internal’ help
pages.

• There is a new help page shown by
help("Memory-limits") which documents the
current design limitations on large objects.

• The format of the LATEX version of the doc-
umentation has changed. The old format is
still accepted, but only the new resolves cross-
references to object names containing _, for ex-
ample.

• HTML help pages now contain a reference to
the package and version in the footer, and
HTML package index pages give their name
and version at the top.

• All manuals in the 2.x series have new ISBN
numbers.

• The R Data Import/Export manual has been re-
vised and has a new chapter on Reading Excel
spreadsheets.

Changes in C-level facilities

• The PACKAGE argument for .C/.Call/.Fortran/
.External can (and should) be omitted if the
call is within code within a package with a
namespace. This ensures that the native rou-
tine being called is found in the DLL of the
correct version of the package if multiple ver-
sions of a package are loaded in the R session.
Using a namespace and omitting the PACKAGE

R News ISSN 1609-3631

Vol. 4/2, September 2004 30

argument is currently the only way to ensure
that the correct version is used.

• The header Rmath.h contains a definition for
R_VERSION_STRING which can be used to track
different versions of R and libRmath.

• The Makefile in src/nmath/standalone now
has ’install’ and ’uninstall’ targets – see the
README file in that directory.

• More of the header files, including
Rinternals.h, Rdefines.h and Rversion.h,
are now suitable for calling directly from C++.

Newly deprecated and defunct

• Direct use of R INSTALL|REMOVE|BATCH|COMPILE|
SHLIB has been removed: use R CMD instead.

• La.eigen(), tetragamma(), pentagamma(),
package.contents() and package.description()
are defunct.

• The undocumented function newestVersion()
is no longer exported from package utils.
(Mainly because it was not completely gen-
eral.)

• C-level entry point ptr_R_GetX11Image
has been removed, as it was replaced by
R_GetX11Image at 1.7.0.

• The undocumented C-level entry point
R_IsNaNorNA has been removed. It was used in
a couple of packages, and should be replaced
by a call to the documented macro ISNAN.

• The gnome/GNOME graphics device is now
defunct.

Installation changes

• Arithmetic supporting +/-Inf, NaNs and the
IEC 60559 (aka IEEE 754) standard is now re-
quired — the partial and often untested sup-
port for more limited arithmetic has been re-
moved.

The C99 macro isfinite is used in preference
to finite if available (and its correct function-
ing is checked at configure time).

Where isfinite or finite is available and
works, it is used as the substitution value for
R_FINITE. On some platforms this leads to a
performance gain. (This applies to compiled
code in packages only for isfinite.)

• The dynamic libraries libR and libRlapack
are now installed in R_HOME/lib rather than
R_HOME/bin.

• When --enable-R-shlib is specified, the R
executable is now a small executable linked
against libR: see the R-admin manual for fur-
ther discussion. The ’extra’ libraries bzip2,
pcre, xdr and zlib are now compiled in a way
that allows the code to be included in a shared
library only if this option is specified, which
might improve performance when it is not.

• The main R executable is now R_HOME/exec/R
not R_HOME/R.bin, to ease issues on MacOS X.
(The location is needed when debugging core
dumps, on other platforms.)

• Configure now tests for inline and alterna-
tives, and the src/extra/bzip2 code now (po-
tentially) uses inlining where available and not
just under gcc.

• The XPG4 sed is used on Solaris for forming
dependencies, which should now be done cor-
rectly.

• Makeinfo 4.5 or later is now required for build-
ing the HTML and Info versions of the manu-
als. However, binary distributions need to be
made with 4.7 or later to ensure some of the
links are correct.

• f2c is not allowed on 64-bit platforms, as it uses
longs for Fortran integers.

• There are new options on how to make the PDF
version of the reference manual — see the R Ad-
ministration and Installation Manual section 2.2.

• The concatenated Rd files in the installed ’man’
directory are now compressed and the R CMD
check routines can read the compressed files.

• There is a new configure option --enable-lfs
that will build R with support for > 2Gb files
on suitable 32-bit Linux systems.

Package installation changes

• The DESCRIPTION file of packages may contain
a Imports: field for packages whose names-
paces are used but do not need to be attached.
Such packages should no longer be listed in
Depends:.

• There are new optional fields SaveImage,
LazyLoad and LazyData in the DESCRIPTION
file. Using SaveImage is preferred to using an
empty file install.R.

• A package can contain a file R/sysdata.rda to
contain system datasets to be lazy-loaded into
the namespace/package environment.

R News ISSN 1609-3631

Vol. 4/2, September 2004 31

• The packages listed in Depends: are now
loaded before a package is loaded (or its image
is saved or it is prepared for lazy loading). This
means that almost all uses of R_PROFILE.R and
install.R are now unnecessary.

• If installation of any package in a bundle fails,
R CMD INSTALL will back out the installation of
all of the bundle, not just the failed package (on
both Unix and Windows).

Bug fixes

• Complex superassignments were wrong when
a variable with the same name existed locally,
and were not documented in R-lang.

• rbind.data.frame() dropped names/rownames
from columns in all but the first data frame.

• The dimnames<- method for data.frames was
not checking the validity of the row names.

• Various memory leaks reported by valgrind
have been plugged.

• gzcon() connections would sometimes read
the crc bytes from the wrong place, possibly
uninitialized memory.

• Rd.sty contained a length \middle that was not
needed after a revision in July 2000. It caused
problems with LATEX systems based on e-TeX
which are starting to appear.

• save() to a connection did not check that the
connection was open for writing, nor that non-
ascii saves cannot be made to a text-mode con-
nection.

• phyper() uses a new algorithm based on
Morten Welinder’s bug report (PR#6772). This
leads to faster code for large arguments and
more precise code, e.g. for phyper(59,
150,150, 60, lower=FALSE). This also fixes
bug (PR#7064) about fisher.test().

• {print.default(*, gap = <n>) now in prin-
ciple accepts all non-negative values <n>.

• smooth.spline(...)$pen.crit had a typo in
its computation; note this was printed in
print.smooth.spline() but not used in other
"smooth.spline" methods.

• write.table() handles zero-row and zero-
column inputs correctly.

• debug() works on trivial functions instead of
crashing (PR#6804)

• eval() could alter a data.frame/list second ar-
gument, so with(trees, Girth[1] <- NA) al-
tered trees (and any copy of trees too).

• cor() could corrupt memory when the stan-
dard deviation was zero. (PR#7037)

• inverse.gaussian() always printed 1/mu^2 as
the link function.

• constrOptim now passes ... arguments
through optim to the objective function.

• object.size() now has a better estimate for
character vectors: it was in general too low (but
only significantly so for very short character
strings) but over-estimated NA and duplicated
elements.

• quantile() now interpolates correctly be-
tween finite and infinite values (giving +/-Inf
rather than NaN).

• library() now gives more informative er-
ror messages mentioning the package being
loaded.

• Building the reference manual no longer uses
roman upright quotes in typewriter output.

• model.frame() no longer builds invalid data
frames if the data contains time series and rows
are omitted by na.action.

• write.table() did not escape quotes in col-
umn names. (PR#7171)

• Range checks missing in recursive assignments
using [[]]. (PR#7196)

• packageStatus() reported partially-installed
bundles as installed.

• apply() failed on an array of dimension ≥ 3
when for each iteration the function returns a
named vector of length ≥ 2 (PR#7205)

• The GNOME interface was in some circum-
stances failing if run from a menu — it needed
to always specify that R be interactive.

• depMtrxToStrings (part of pkgDepends) ap-
plied nrow() to a non-matrix and aborted on
the result.

• Fix some issues with nonsyntactical names in
modelling code (PR#7202), relating to back-
quoting. There are likely more.

• Support for S4 classes that extend basic classes
has been fixed in several ways. as() methods
and x@.Data should work better.

• hist() and pretty() accept (and ignore) infi-
nite values. (PR#7220)

• It is no longer possible to call gzcon() more
than once on a connection.

R News ISSN 1609-3631

Vol. 4/2, September 2004 32

• t.test() now detects nearly-constant input
data. (PR#7225)

• mle() had problems if ndeps or parscale was
supplied in the control arguments for optim().
Also, the profiler is now more careful to reeval-
uate modified mle() calls in its parent environ-
ment.

• Fix to rendering of accented superscripts and
subscripts e.g., expression((b[dot(a)])).
(Patch from Uwe Ligges.)

• attach(*, pos=1) now gives a warning (and
will give an error).

• power.*test() now gives an error when
’sig.level’ is outside [0,1]. (PR#7245)

• Fitting a binomial glm with a matrix response
lost the names of the response, which should
have been transferred to the residuals and fit-
ted values.

• print.ts() could get the year wrong because
rounding issue (PR#7255)

Changes on CRAN
by Kurt Hornik

New contributed packages

Malmig The Malmig package provides an imple-
mentation of Malecot migration model in R to-
gether with a number of related functions. By
Federico C. F. Calboli and Vincente Canto Cas-
sola together with Martin Maechler authored
the function mtx.exp.

PBSmapping This software has evolved from fish-
eries research conducted at the Pacific Bi-
ological Station (PBS) in Nanaimo, British
Columbia, Canada. It extends the R language
to include two-dimensional plotting features
similar to those commonly available in a Geo-
graphic Information System (GIS). Embedded
C code speeds algorithms from computational
geometry, such as finding polygons that con-
tain specified point events or converting be-
tween longitude-latitude and Universal Trans-
verse Mercator (UTM) coordinates. It includes
data for a global shoreline and other data sets
in the public domain. By Nicholas Boers, Jon
Schnute, Rowan Haigh, and others.

RCurl The package allows one to compose HTTP
requests to fetch URIs, post forms, etc., and
process the results returned by the Web server.
This provides a great deal of control over the
HTTP connection and the form of the request
while providing a higher-level interface than is
available just using R socket connections. Ad-
ditionally, the underlying implementation is
robust and extensive, supporting SSL/HTTPS,
cookies, redirects, authentication, etc. By Dun-
can Temple Lang.

RNetCDF This package provides an interface to
Unidata’s NetCDF library functions (version 3)
and furthermore access to Unidata’s udunits

calendar conversions. The routines and
the documentation follow the NetCDF and
udunits C interface, so the corresponding man-
uals can be consulted for more detailed infor-
mation. By Pavel Michna.

Rstem An R interface to the C code that implements
Porter’s word stemming algorithm for collaps-
ing words to a common root to aid compari-
son of texts. There is code to for different lan-
guages (i.e., Danish, Dutch, English, Finnish,
French, German, Norwegian, Portuguese, Rus-
sian, Spanish, Swedish). However, these may
not be applicable if the words require UTF en-
coding. This is extensible by allowing different
routines to be specified to create the C routines
used in the stemming, permitting debugging,
profiling, pool management, caching, etc. By
Duncan Temple Lang.

UNF Computes a universal numeric fingerprint of
the data. By Micah Altman.

accuracy This is a suite of tools designed to test and
improve the accuracy of statistical computa-
tion, including: Summarization of the sensitiv-
ity of linear and non-linear models (lm, glm,
mle, nls) to measurement and numerical error;
A generalized Cholesky method for correcting
non-invertible Hessians; Tests for the global
optimality of non-linear regression and max-
imum likelihood results; Tools for obtaining
true random numbers using entropy collected
from the system and/or entropy servers on
the internet; A method for converting floating
point numbers to normalized fractions; Bench-
mark data for checking the accuracy of basic
distribution functions. By Micah Altman, Jeff
Gill, and Michael P. McDonald.

adehabitat A collection of tools for the analysis
of habitat selection by animals. By Clément
Calenge, contributions from Mathieu Basille.

R News ISSN 1609-3631

Vol. 4/2, September 2004 33

bayesSurv Bayesian survival regression with flexi-
ble error and (later on also random effects) dis-
tributions. By Arnost Komarek.

catspec ‘sqtab’ contains a set of functions for esti-
mating loglinear models for square tables such
as quasi-independence, symmetry, uniform as-
sociation. ‘mclgen’ restructures a dataframe
to enable the estimation of a multinomial lo-
gistic model using the conditional logit pro-
gram ‘clogit’. This allows greater flexibility in
imposing constraints on the response variable.
One application is to specify aforementioned
models for square tables as multinomial logis-
tic models with covariates at the respondent
level. ‘ctab’ simplifies the production of (mul-
tiway) percentage tables. By John Hendrickx.

chplot Informative and nice plots for grouped bi-
variate data. By Maja Pohar and Gaj Vidmar.

drfit drfit provides basic functions for accessing the
dose-response data of the UFT Bremen, De-
partment of Bioorganic Chemistry, fitting dose-
response curves to this and similar data, calcu-
lating some (eco)toxicological parameters and
plotting the results. Functions that are fitted are
the cumulative density function of the lognor-
mal distribution, of the logistic distribution and
a linear-logistic model, derived from the latter,
which is used to describe data showing stim-
ulation at low doses (hormesis). The author
would be delighted if anyone would join in this
effort of creating useful and useable tools for
dealing with dose-response data from biologi-
cal testing. By Johannes Ranke.

eba Fitting and testing probabilistic choice mod-
els, especially the BTL model (Bradley &
Terry, 1952; Luce, 1959), elimination-by-aspects
(EBA) models (Tversky, 1972), and preference
tree (Pretree) models (Tversky & Sattath, 1979).
By Florian Wickelmaier.

ebayesthresh Carries out Empirical Bayes thresh-
olding using the methods developed by John-
stone and Silverman. The basic problem is to
estimate a mean vector given a vector of ob-
servations of the mean vector plus white noise,
taking advantage of possible sparsity in the
mean vector. Within a Bayesian formulation,
the elements of the mean vector are modelled
as having, independently, a distribution that is
a mixture of an atom of probability at zero and
a suitable heavy-tailed distribution. The mix-
ing parameter can be estimated by a marginal
maximum likelihood approach. This leads to
an adaptive thresholding approach on the orig-
inal data. Extensions of the basic method, in
particular to wavelet thresholding, are also im-
plemented within the package. By Bernard Sil-

verman (with major intellectual input from Iain
Johnstone).

faraway Functions and datasets for books by Ju-
lian Faraway. Books are “Practical Regression
and ANOVA in R” on CRAN, “Linear Mod-
els with R” appearing in August 2004 pub-
lished by CRC press and “Extending the Linear
Model with R” a book in preparation. By Julian
Faraway.

gam Functions for fitting and working with gener-
alized additive models, as described in chap-
ter 7 of “Statistical Models in S” (Chambers
and Hastie (eds), 1991), and “Generalized Ad-
ditive Models” (Hastie and Tibshirani, 1990).
By Trevor Hastie.

hierfstat This R package allows the estimation of hi-
erarchical F-statistics from haploid or diploid
genetic data with any numbers of levels in
the hierarchy, following the algorithm of Yang
(Evolution, 1998, 52(4):950–956). Functions are
also given to test via randomisations the signif-
icance of each F and variance components, us-
ing the likelihood-ratio statistics G, see Goudet
et.al. (Genetics, 1996, 144(4): 1933–1940). By
Jerome Goudet.

kinship coxme: general mixed-effects Cox models;
kinship: routines to create and manipulate n
by n matrices that describe the genetic rela-
tionships between n persons; pedigree: cre-
ate and plot pedigrees; bdsmatrix: a class
of objects for sparse block-diagonal matrices
(which is how kinship matrices are stored);
gchol: generalized cholesky decompositions.
By Beth Atkinson (atkinson@mayo.edu) for
pedigree functions, and Terry Therneau (th-
erneau@mayo.edu) for all other functions.

limma Data analysis, linear models and differential
expression for microarray data. By Gordon
Smyth with contributions from Matt Ritchie,
James Wettenhall and Natalie Thorne.

locfdr Computation of local false discovery rates.
By Bradley Efron and Balasubramanian
Narasimhan.

mfp Fractional polynomials are used to represent
curvature in regression models. A key refer-
ence is Royston and Altman, 1994. By Gareth
Ambler, with contributions from Axel Benner.

mitools Tools to perform analyses and combine re-
sults from multiple-imputation datasets. By
Thomas Lumley.

ncvar This package provides a high-level R inter-
face to Unidata’s NetCDF data files. Using this
package, netCDF datasets, and all their associ-
ated metadata, can be read and written in one

R News ISSN 1609-3631

Vol. 4/2, September 2004 34

go. It is also easy to create datasets includ-
ing lots of metadata. This package supports
both the CF and default NetCDF metadata con-
ventions. It supports more general NetCDF
files and conventions than the ncdf package
by David Pierce, using the low-level NetCDF
package RNetCDF by Pavel Michna. By Juerg
Schmidli.

plotrix Various useful functions for enhancing plots.
By Jim Lemon.

pwt The Penn World Table provides purchasing
power parity and national income accounts
converted to international prices for 168 coun-
tries for some or all of the years 1950–2000. By
Guan Yang.

reldist R functions for the comparison of distribu-
tions. This includes nonparametric estimation
of the relative distribution PDF and CDF and
numerical summaries as described in “Relative
Distribution Methods in the Social Sciences”
by Mark S. Handcock and Martina Morris,
Springer-Verlag, 1999, Springer-Verlag, ISBN
0387987789. By Mark S. Handcock.

rmetasim An interface between R and the metasim
simulation engine. Facilitates the use of the
metasim engine to build and run individual
based population genetics simulations. The
simulation environment is documented in: Al-
lan Strand. Metasim 1.0: an individual-

based environment for simulating popula-
tion genetics of complex population dynamics.
Mol. Ecol. Notes, 2:373–376, 2002. (Please con-
tact Allan Strand with comments, bug reports,
etc). By Allan Strand and James Niehaus.

snowFT Extension of the snow package supporting
fault tolerant and reproducible applications. It
is written for the PVM communication layer.
By Hana Sevcikova and A. J. Rossini.

taskPR The Task-Parallel R (‘task-pR’) system,
repackaged as an R package. By Nagiza F. Sam-
atova, David Bauer, and Srikanth Yoginath.

tuneR Collection of tools to analyze music, handling
wave files, transcription, etc. By Uwe Ligges
with contributions from Andrea Preusser and
Claus Weihs.

vioplot A violin plot is a combination of a box plot
and a kernel density plot. By Daniel Adler.

Other changes

• Package RmSQL was moved from the main
CRAN section to the Archive.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Editor-in-Chief:
Thomas Lumley
Department of Biostatistics
University of Washington
Seattle, WA 98195-7232
USA

Editorial Board:
Douglas Bates and Paul Murrell.

Editor Programmer’s Niche:
Bill Venables

Editor Help Desk:
Uwe Ligges

Email of editors and editorial board:
firstname.lastname @R-project.org

R News is a publication of the R Foundation for Sta-
tistical Computing, communications regarding this
publication should be addressed to the editors. All
articles are copyrighted by the respective authors.
Please send submissions to regular columns to the
respective column editor, all other submissions to
the editor-in-chief or another member of the edi-
torial board (more detailed submission instructions
can be found on the R homepage).

R Project Homepage:
http://www.R-project.org/

This newsletter is available online at
http://CRAN.R-project.org/doc/Rnews/

R News ISSN 1609-3631

mailto:Kurt.Hornik@R-project.org
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/

	Editorial
	Lazy Loading and Packages in R 2.0.0
	Installing packages
	For Package Writers
	Acknowledgement

	Fonts, Lines, and Transparency in R Graphics
	The NMMAPSdata Package
	Laying Out Pathways With Rgraphviz
	Overview
	Obtaining the initial graph
	Laying out the graph
	Working with the layout
	Conclusions

	Fusing R and BUGS through Wine
	Historical Review
	Design
	Run BUGS in a Single Call
	Experience with Wine
	Preparing Files for BUGS Batch-mode
	Remarks

	R Package Maintenance
	Make
	Make and R Package QC
	Summary
	Acknowledgments

	Changes in R
	User-visible changes in 2.0.0
	New features
	New and changed utilities
	Documentation changes
	Changes in C-level facilities
	Newly deprecated and defunct
	Installation changes
	Package installation changes
	Bug fixes

	Changes on CRAN
	New contributed packages
	Other changes

