Rapid detection of spatiotemporal clusters

Markus Loecher, Berlin School of Economics and Law

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

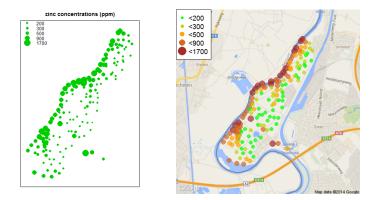
July 2nd, 2015

Table of contents

Motivation

Spatial Plots in R RgoogleMaps

Spatial cluster detection

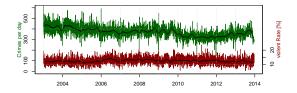

Spatiotemporal Clusters Hot spot analysis Unsupervised as Supervised Learning

TreeHotspots

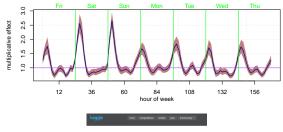
Data Rotation Leaves as HotSpots Likelihood Ratio

Outlook

Motivation I


The meuse data set gives locations and topsoil heavy metal concentrations, along with a number of soil and landscape variables at the observation locations, collected in a flood plain of the river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite samples of an area of approximately 15 m \times 15 m.

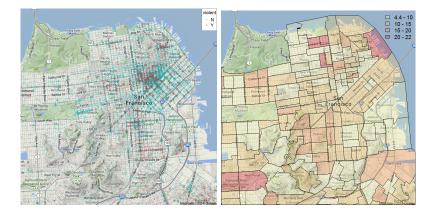
San Francisco Crime Data


https://data.sfgov.org/Public-Safety/Map-Crime-Incidents-from-1-Jan-2003/gxxq-x39z

M							
Ba		Crime Incidents - from 1 Jar on SFPD Incidents - from 1 January 20					
Inc	cident	s are derived from SFPD Crime Incident	Reporting system. Updated on a daily basi:	s;data available from	1 Jan 2003 up until two 🕨		
	1	Category 🚯 🗄	Descript 🔀 🗄	DayOfWeek ∷≣	Date	Time	
1	=	Click to sort	BATTERY	Wednesday	04/20/2005 12:00:00 AM	04:00	N
2		Click to sort EFT	GRAND THEFT FROM A BUILDING	Sunday	01/13/2008 12:00:00 AM	18:00	F
3	≣	ASSAULT	AGGRAVATED ASSAULT WITH A KNIF	Sunday	05/05/2013 12:00:00 AM	04:10	I
4	=	DRIVING UNDER THE INFLUENCE	DRIVING WHILE UNDER THE INFLUEN	Tuesday	07/08/2003 12:00:00 AM	01:00	5
5	=	OTHER OFFENSES	TRAFFIC VIOLATION ARREST	Friday	10/04/2013 12:00:00 AM	20:53	1
6	=	BURGLARY	BURGLARY OF APARTMENT HOUSE, U	Tuesday	08/14/2007 12:00:00 AM	07:00	1
7	=	DRUG/NARCOTIC	POSSESSION OF MARIJUANA	Tuesday	03/04/2008 12:00:00 AM	14:23	1
8	≣	OTHER OFFENSES	DRIVERS LICENSE, SUSPENDED OR R	Wednesday	07/05/2006 12:00:00 AM	15:50	I
9	≣	LARCENY/THEFT	GRAND THEFT FROM A BUILDING	Wednesday	12/10/2003 12:00:00 AM	09:30	1
10	=	NON-CRIMINAL	STAY AWAY OR COURT ORDER, NON-I	Monday	01/17/2011 12:00:00 AM	15:35	1
11	=	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Saturday	01/07/2006 12:00:00 AM	22:00	1
12	=	LARCENY/THEFT	PETTY THEFT BICYCLE	Sunday	11/13/2011 12:00:00 AM	18:00	1
13	=	SEX OFFENSES, FORCIBLE	ASSAULT TO RAPE WITH BODILY FOR	Monday	02/17/2014 12:00:00 AM	14:30	1
14	=	SUSPICIOUS OCC	INVESTIGATIVE DETENTION	Wednesday	04/11/2012 12:00:00 AM	15:10	1
15	=	VEHICLE THEFT	STOLEN TRUCK	Saturday	08/30/2003 12:00:00 AM	11:00	•
16	=	NON-CRIMINAL	LOST PROPERTY	Monday	04/08/2013 12:00:00 AM	15:15	
17		LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO		06/16/2009 12:00:00 AM		

Temporal Analysis

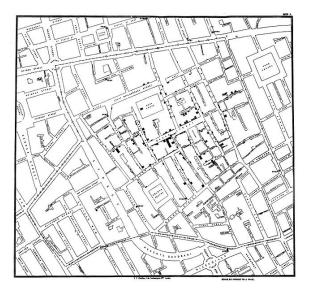
violence, hour of week dependency


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

SF Open Data

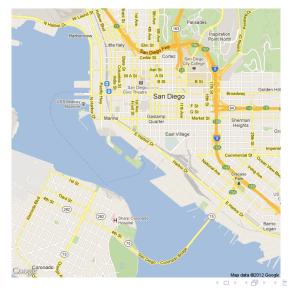
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

One Environment



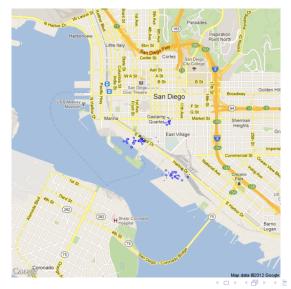
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э


Not having to leave R is priceless

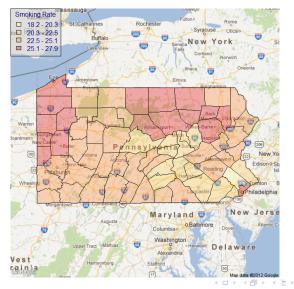
Back to 1854

RgoogleMaps


mapSD = GetMap(center=c(32.7073, -117.162), zoom=10, destfile='SDconv.png')

Sac

PlotOnStaticMap


PlotOnStaticMap(mapSD, lat=myTrails\$lon, lon=myTrails\$lon, col=myTrails\$col, cex = myTrails\$cex)

Sac

PlotPolysOnStaticMap

PlotPolysOnStaticMap(map, shp, lwd=.5, col = shp[,'col']); shp=importShapefile(shpFile,projection='LL');

Spatiotemporal Clusters

Scoring unusual events in space and time has been an active and important field of research for decades: How do we

- distinguish normal fluctuations in a stochastic count process from real additive events ?
- identify spatiotemporal clusters where the event is most strongly pronounced ?
- efficiently graph these clusters in a map overlay ?

Supervised learning algorithms are proposed as an alternative to the computationally expensive scan statistic.

The task can be reduced to detecting over-densities in space relative to a background density.

NYC cab data

< ≣⇒

Hot spots

- Relatively compact areas of "high intensity"
- What is baseline ?

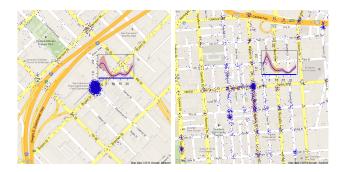
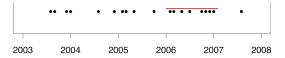



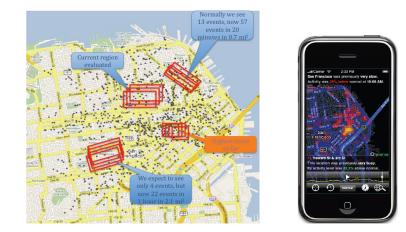
Figure: (left) One "hot spot" found where the contextual information provided by the map is invaluable. (right) Another cluster of crime activity spread along the street grid.

Unusual Clusters

- "Over a 5 year period there were 19 cases of a particular type of cancer reported in a town. A physician notes that there is a 1 year period that contains eight cases."
- "On Aug 17, the U.S. Army suspended all operations of the Black Hawk helicopter after the third crash in 25 days. The 3 crashes were about seven times the expected rate based on the previous 5 years. (S₂₅ = 3)"

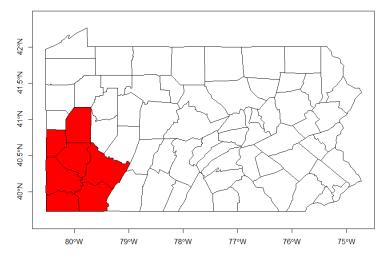
Unusual Clusters

- "Over a 5 year period there were 19 cases of a particular type of cancer reported in a town. A physician notes that there is a 1 year period that contains eight cases."
- "On Aug 17, the U.S. Army suspended all operations of the Black Hawk helicopter after the third crash in 25 days. The 3 crashes were about seven times the expected rate based on the previous 5 years. (S₂₅ = 3)"


"Alarming number of inmate deaths in Harris County: In a 10 month period, 11 inmates died at the troubled Harris County Jail, which is about twice the expected rate. The U.S. Department of Justice ordered the city of Houston to pay a fine of \$1000 a day until the cause was found. (S₁₀ = 11)"

Unusual Clusters

- "Over a 5 year period there were 19 cases of a particular type of cancer reported in a town. A physician notes that there is a 1 year period that contains eight cases."
- "On Aug 17, the U.S. Army suspended all operations of the Black Hawk helicopter after the third crash in 25 days. The 3 crashes were about seven times the expected rate based on the previous 5 years. (S₂₅ = 3)"
- "Alarming number of inmate deaths in Harris County: In a 10 month period, 11 inmates died at the troubled Harris County Jail, which is about twice the expected rate. The U.S. Department of Justice ordered the city of Houston to pay a fine of \$1000 a day until the cause was found. $(S_{10} = 11)$ "


Scan Statistic

This type of spatial surveillance is computationally expensive: $O(R \cdot N^4)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pennsylvania Lung Cancer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Most Likely Cluster

Package SpatialEpi: kulldorff() function

Unsupervised as Supervised Learning

Introduced in Hastie *et al* for density estimation or association rule generalizations. Problem must be enlarged with a simulated data set generated by Monte Carlo techniques

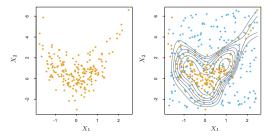


FIGURE 14.3. Density estimation via classification. (Left panel:) Training set of 200 data points. (Right panel:) Training set plus 200 reference data points, generated uniformly over the rectangle containing the training data. The training sample was labeled as class 1, and the reference sample class 0, and a semiparametric logistic regression model was fit to the data. Some contours for $\hat{g}(x)$ are shown.

In epidemiology cases and population naturally provide two classes, for anomaly detection the background "population" is taken to be some sort of average.

CART

A cluster found by a classification tree visualized on a Google map tile. The numeric labels indicate the fraction of the positive class labels.

- ${\sf R}$ package with new functionalities
 - Rotation of Data
 - Visualization of selected leaves

- ${\sf R}$ package with new functionalities
 - Rotation of Data
 - Visualization of selected leaves
 - Overlay on maps (Google and OSM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 ${\sf R}$ package with new functionalities

- Rotation of Data
- Visualization of selected leaves
- Overlay on maps (Google and OSM)

• User written splitting functions for *rpart*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

R package with new functionalities

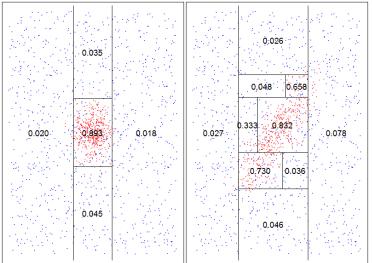
- Rotation of Data
- Visualization of selected leaves
- Overlay on maps (Google and OSM)
- User written splitting functions for *rpart*:
 - Baseline Distributions eliminate need for point augmentation
 - SatScan Poisson and Binomial Likelihood, e.g.

$$\left(\frac{c}{E[c]}\right)^{c} \cdot \left(\frac{C-c}{C-E[c]}\right)^{C-c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

R package with new functionalities

- Rotation of Data
- Visualization of selected leaves
- Overlay on maps (Google and OSM)
- User written splitting functions for *rpart*:
 - Baseline Distributions eliminate need for point augmentation
 - SatScan Poisson and Binomial Likelihood, e.g.

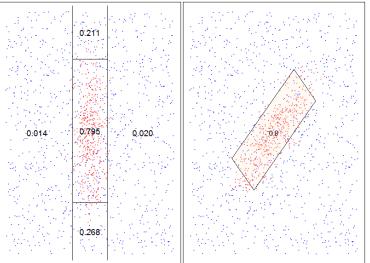

$$\left(\frac{c}{E[c]}\right)^{c} \cdot \left(\frac{C-c}{C-E[c]}\right)^{C-c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Simulations

Symmetric Cluster

Oblique Cluster



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Simulations

Rotated Cluster

Hotspot

SF crime data, on map

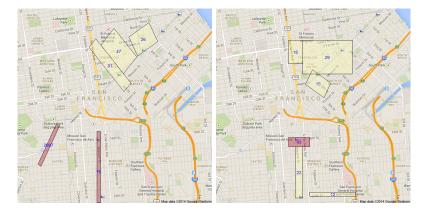


Figure: positive class is given by (left) drug crimes and (right) robbery related incidents.

ъ

Power Study

► R library *partykit*

- Power Study
- R library partykit
- Iat lon distortion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Power Study
- R library partykit
- Iat lon distortion
- CRAN or github release

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Power Study
- R library partykit
- Iat lon distortion
- CRAN or github release

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?