The most popular random forest uses univariate decision trees (CART or C4.5). Separate feature space by hyperplanes that are orthogonal to single feature axes. When the data are collinear with correlated features, hyperplanes that are oblique to the axis maybe do better to separate the feature space.
Crab data

Measurements on rock crabs, 200 observations. 4 classes species-sex.

1. FL the size of the frontal lobe length, in mm
2. RW rear width, in mm
3. CL length of mid-line of the carapace, in mm
4. CW maximum width of carapace, in mm
5. BD depth of the body; for females, measured after displacement of the abdomen, in mm
Decision boundaries from rpart

Decision boundaries form PPtree
Previous work and objective

1 Previous work

2 Objective
 - PPforest implements a projection pursuit classification random forest
 - Adapts random forest to utilize combinations of variables in the tree construction
 - Projection pursuit classification trees are used to build the forest, (from `PPtreeViz` package)
Projection pursuit

Find interesting low-dimensional linear projections of high-dimensional data optimizing some specified function called the projection pursuit index. Advantages:

- Able to bypass the curse of dimensionality, because work in low-dimensional linear projections.
- Relevant projection pursuit indexes are able to ignore irrelevant variables.

We use LDA and PDA index in our PPforest.
PPtree

Combines tree structure methods with projection pursuit dimension reduction. PPtree projection pursuit classification tree:

1. In each node a PP index is maximized to find the optimal $1-D$ projection, α^*, for separating all classes in the current data.

2. Reduce the number of classes to two, by comparing means and assign new labels, G_1 or G_2 (y^*_i) to each observation.

3. Re-do PP with these new group labels finding the $1-D$ projection, α using (x_i, y^*_i).

4. Calculate the decision boundary c, keep α and c.

5. Separate data into two groups using new group labels G_1 and G_2.

6. For each group, stop if there is only one class else repeat the procedure, the splitting steps are iterated until the last two classes are separated.
rpart vs PPtree

Figure: rpart tree using crab data

Figure: PPtree using crab data
Features of PPtree

- Produces a simple tree.
- Uses association between variables to find separation.
- If a linear separation exists, PPtree produces a tree without misclassification.
- One class is assigned only to one final node, depth of the tree is at most the number of classes.
- The projection coefficients used to obtain the dimension reduction at each node can be used to determine the variable importance (variables are standardized).
A random forest is an ensemble learning method, built on bagged trees. PPforest conducts a supervised classification using projection pursuit trees and random forest ideas. Using this combination we are take into account the association between variables to find separation that is not considered in a classic random forest.
PPforest algorithm

1. Input: \(L = \{(x_i, y_i), i = 1, \ldots n\}, \quad y_i \in \{1, \ldots g\} \) where \(y_i \) is the class information.
2. Draw \(b = 1 \ldots B \) bootstrap samples, \(L^* b \) of size \(n \) from \(L \).
3. For each bootstrap sample grow a PPtree classifier \(T^* b \) and for every node a sample of \(m \) variables without replacement is drawn.
4. Predict the classes of each case not included in \(L^* \) and compute the oob error.
5. Based on majority vote predict the class in a new data set.
PPforest package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPforest:</td>
<td>Run a Projection pursuit random forest</td>
</tr>
<tr>
<td>predict.PPforest:</td>
<td>Vector with predicted values from a PPforest object</td>
</tr>
<tr>
<td>ppf_importance:</td>
<td>Plot a global measure of variable importance</td>
</tr>
<tr>
<td>pproxy_plot:</td>
<td>Proximity matrix visualization</td>
</tr>
<tr>
<td>ppf_oob_error</td>
<td>OOB error summary and visualization</td>
</tr>
<tr>
<td>var_selec:</td>
<td>Index id for variables set, sample variables without replacement with constant sample proportion.</td>
</tr>
<tr>
<td>train_fn:</td>
<td>Index id for training set, sample in each class with constant sample proportion.</td>
</tr>
<tr>
<td>PPtree_split:</td>
<td>Projection pursuit classification tree with random variable selection in each split</td>
</tr>
<tr>
<td>trees_pp:</td>
<td>Projection pursuit trees for bootstrap samples.</td>
</tr>
<tr>
<td>ppf_bootstrap:</td>
<td>Draws bootstrap samples with strata option.</td>
</tr>
<tr>
<td>print.PPforest:</td>
<td>Print PPforest object</td>
</tr>
</tbody>
</table>
Crab data

```r
pprf.crab <- PPforest::PPforest(data = crab, size.tr = 2/3, m = 500, size.p = .7, 
  PPmethod = 'LDA', strata = TRUE)
str(pprf.crab, max.level = 1)
```

List of 19

- `prediction.training`: chr [1:132] "BlueMale" "BlueMale" "BlueMale" "BlueMale" ...
- `training.error`: num 0.0303
- `prediction.test`: chr [1:68] "BlueFemale" "BlueMale" "BlueMale" "BlueFemale" ...
- `error.test`: num 0.0882
- `oob.error.forest`: num 0.0303
- `oob.error.tree`: num [1:500] 0.1591 0.3265 0.0204 0.1707 0.0536 ...
- `boot.samp`: Classes grouped_df, tbl_df, tbl and 'data.frame': 132 obs. of 6
- `output.trees`: Classes rowwise_df, tbl_df and 'data.frame': 500 obs. of 2 variables:
- `proximity`: 'data.frame': 8778 obs. of 3 variables:
- `votes`: num [1:132, 1:4] 0.428 0.351 0.291 0.358 0.271 ...
- `prediction.oob`: chr [1:132] "BlueMale" "BlueMale" "BlueMale" "BlueMale" ...
- `n.tree`: num 500
- `n.var`: num 3
- `type`: chr "Classification"
- `confusion`: num [1:4, 1:5] 32 1 0 0 1 32 0 0 0 0 ...
- `call`: language PPforest::PPforest(data = crab, size.tr = 2/3, m = 500, PPmethod = "LDA"
- `train`: 'data.frame': 132 obs. of 6 variables:
- `test`: 'data.frame': 68 obs. of 5 variables:
- `vote.mat`: chr [1:500, 1:132] "BlueFemale" "BlueFemale" "BlueMale" "BlueMale" ...

- attr(*, "class")= chr "PPforest"
Comparison to randomForest

rf.crab
Call:
randomForest(formula = Type ~ ., data = crab, proximity = TRUE)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2
OOB estimate of error rate: 20.5%
Confusion matrix:

 BF BM OF OM class.error
BF 41 3 6 0 0.18
BM 3 39 0 8 0.22
OF 4 0 41 5 0.18
OM 2 5 5 38 0.24

pprf.crab
Call:
PPforest::PPforest(data = crab, size.tr = 1, m = 500, PPmethod = "LDA", size.p = 0.5, strata = TRUE)
Type of random forest: Classification
Number of trees: 500
No. of variables tried at each split: 2
OOB estimate of error rate: 6%
Confusion matrix:

 BF BM OF OM class.error
BF 48 2 0 0 0.04
BM 5 45 0 0 0.10
OF 0 0 45 3 0.10
OM 0 1 0 50 0.00
Motivation

Objective

Projection pursuit

PPtree

Projection pursuit random forest

Final comments

References

PPforest visualization

Iowa State University Natalia da Silva

PPforest package
Importance measure

Weighted mean of the absolute value of the projection coefficients across all nodes in every tree. The weights are the projection pursuit index in each node, and 1-(the out of bag error of each tree).

Figure: PPforest global importance
Motivation
Objective
Projection pursuit
PPtree
Projection pursuit random forest
Final comments
References

Cumulative oob error visualization

Class
- all
- BlueFemale
- BlueMale
- OrangeFemale
- OrangeMale

Iowa State University Natalia da Silva
PPforest package
Table: Comparison of PPtree, CART, random forest and PPforest results with various data sets. The mean of training and test error rates from 200 re-samples is shown.

<table>
<thead>
<tr>
<th></th>
<th>TRAIN</th>
<th></th>
<th></th>
<th></th>
<th>TEST</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPtree</td>
<td>Cart</td>
<td>RF</td>
<td>PPforest</td>
<td>PPtree</td>
<td>Cart</td>
<td>RF</td>
<td>PPforest</td>
</tr>
<tr>
<td>Crab</td>
<td>0.04</td>
<td>0.27</td>
<td>0.21</td>
<td>0.05</td>
<td>0.06</td>
<td>0.45</td>
<td>0.31</td>
<td>0.04</td>
</tr>
<tr>
<td>Leuke.</td>
<td>0.01</td>
<td>0.04</td>
<td>0.06</td>
<td>0.00</td>
<td>0.05</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Lymph.</td>
<td>0.03</td>
<td>0.05</td>
<td>0.09</td>
<td>0.00</td>
<td>0.07</td>
<td>0.17</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>NCI60</td>
<td>0.06</td>
<td>0.46</td>
<td>0.45</td>
<td>0.00</td>
<td>0.48</td>
<td>0.75</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>Wine</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Glass</td>
<td>0.31</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
<td>0.42</td>
<td>0.34</td>
<td>0.18</td>
<td>0.32</td>
</tr>
<tr>
<td>Fish.</td>
<td>0.00</td>
<td>0.14</td>
<td>0.20</td>
<td>0.00</td>
<td>0.02</td>
<td>0.23</td>
<td>0.26</td>
<td>0.02</td>
</tr>
<tr>
<td>Image</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Parki.</td>
<td>0.12</td>
<td>0.08</td>
<td>0.11</td>
<td>0.12</td>
<td>0.18</td>
<td>0.16</td>
<td>0.09</td>
<td>0.18</td>
</tr>
</tbody>
</table>
1. PPforest uses the association between variables to find separation.

2. The strength of each individual tree in the forest increases when classes are linearly separable, smaller error rate in the forest.

3. The predictive performance is better than other classifiers for some of the analyzed data.
Further work

1. Improve the performance of the algorithm.
2. Incorporate additional project pursuit indexes.
3. Improve the visualization.
4. Work in regression PPforest.
References I

