STOR-i

Statistics and Operational Research Doctoral Training Centre Lancaster University

Changepoints for a Range Of PenaltieS using the changepoint R package

Kaylea Haynes Supervised by: Idris Eckley, Paul Fearnhead and Ralph Mansson useR! 2015 Aalborg July 2015

Overview

- changepoint: An R package for changepoint analysis
 - Version: 2.0
 - Author: Rebecca Killick [aut, cre], Kaylea Haynes [aut], Idris Eckley [aut] and Paul Fearnhead [ctb]
- Multiple changepoint search methods
 - Binary Segmentation
 - Pruned Exact Linear Time (PELT)
 - Changepoints for a Range of Penalties (CROPS)

(Killick et al. 2014, Killick and Eckley 2014)

Changepoint Detection

For data $y_1, ..., y_n$, a changepoint is a location τ where the statistical properties of $y_1, ..., y_{\tau}$ differ from those of $y_{\tau+1}, ..., y_n$.

Segment Costs

Common costs

$$\sum_{i=1}^{m+1} [\mathcal{C}y_{(\tau_{i-1}+1):\tau_i}] + \beta m$$

- cpt.mean(data,...)
- cpt.var(data,...)
- cpt.meanvar(data,...)

test.stat: "Normal", "Gamma", "Exponential" and "Poisson".

Optimal Partitioning

Recursion $F(t) = \min_{\tau \in \tau_t} \left\{ \sum_{i=1}^{m+1} [\mathcal{C}(y_{(\tau_{i-1}+1):\tau_i}) + \beta] \right\}$ $= \min_{s \in \{0, \dots, t-1\}} \{F(s) + \mathcal{C}(y_{(s+1):n}) + \beta\}$

Twitter: @storiKaylea

Optimal Partitioning

Optimal Partitioning

PELT

PELT

Pruning

If there exists a constant K such that for all s < t < T

$$\mathcal{C}(y_{(s+1):t}) + \mathcal{C}(y_{(t+1):T}) + K \leq \mathcal{C}(y_{(s+1):T}),$$

and for t > s, if

$$F(s) + C(y_{(s+1):t}) + K \ge F(t),$$

then at a future time T > t, s can never be the optimal last changepoint prior to T.

cpt.var(data, penalty, pen.value, test.stat, method =
"PELT", minseglen)

Twitter: @storiKaylea

Penalty

cpt.var(data, penalty, pen.value, test.stat, method, minseglen)

- "None"
- "SIC" or "BIC"
- "MBIC"
- "AIC"
- "Hannan-Quinn"
- "Asymptotic"
- "Manual": pen.value = ?

Penalty

Changepoints for a Range of PenaltieS (CROPS).

Twitter: @storiKaylea

Slides can be downloaded from: www.khaynes.co.uk

Step 1: Run algorithm* for β_{min} and β_{max}

If both the segmentations have the same number of changepoints: **STOP**.

The optimal number of changepoints decreases as β increases. So all values of $\beta \in [\beta_{\min}, \beta_{\max}]$ will have the same optimal segmentation.

* Optimal Partitioning (Jackson et al 2005) or PELT (Killick et al (2012)).

Twitter: @storiKaylea

CROPS

Step 2: Compare the number of changepoints

If the number of changepoints differs by 1, $m(\beta_{min}) = m(\beta_{max}) + 1$: **STOP**.

STC

Step 2: Compare the number of changepoints

Otherwise calculate the point of intercept $\beta^*,$ and run CPD algorithm with this value.

Step 3: Check if new Optimal Segmentation

If the optimal segmentation for β^* is the same as for β_{min} or β_{max} : **STOP**.

Step 3: Check if new Optimal Segmentation

Otherwise, treat the intervals $[\beta_{\min}, \beta^*]$ and $[\beta^*, \beta_{\max}]$ separately and process using Step 2.

Final Solution


```
cpt.mean(data, penalty, pen.value = c(0,10), test.stat,
method = "PELT", minseglen)
```

```
if (length(pen.value == 2){
return(CROPS(data, pen.value, test.stat, minseglen, func="mean"))
}
```

(Haynes et al. (2014))

CROPS - Example output

> cpt.meanvar(data, penalty = "CROPS", pen.value = c(11,200), class = TRUE)
 "Maximum number of runs of algorithm = 11"
[1] "Completed runs = 2"
[1] "Completed runs = 3"
[1] "Completed runs = 4"
[1] "Completed runs = 6"
[1] "Completed runs = 8"
[1] "Completed runs = 9"
Class 'cot' : Changepoint Object
cots full per value full data set cottype method test stat per type per value minsegler cots nots max param est date
aberrari berraraerrari angaraer aberlbe menjan esseredar berrarae munogish aber uskannan burantese ande
Created on : Fri Jun 26 19:31:26 2015
summary(.) :
Changepoint type : Change in mean and variance
Method of analysis : PELT
Test Statistic : Normal
Type of penalty : CROP5 with value, 11 200
Minimum Segment Length : 2
Maximum no. of cpts : Inf
Changepoint Locations :
Number of segmentations recorded: 6 with between 2 and 11 changepoints.

Penalty value ranges from: 11 to 154.7935

CROPS - Example output


```
cpt.meanvar(data, penalty = "CROPS", pen.value = c(11,200), class = FALSE)
[1] "Maximum number of runs of algorithm = 11"
[1] "Completed runs = 2"
[1] "Completed runs = 3"
[1] "Completed runs = 4"
[1] "Completed runs = 6"
[1] "Completed runs = 8"
[1] "Completed runs = 9"
$cpt.out
                                  [.2]
                                            [,3]
                                                     [,4]
                                                               [,5]
                                                                        [.6]
beta interval
                     11.0000 11.67736 11.94004 12.14062 14.99827 154.7935
numberofchangepoints 12.0000 10.00000 9.00000 6.00000 4.00000 3.0000
penalised_cost
                    654.4173 677.77199 689.71203 726.13388 756.13041 910.9239
$changepoints
$changepoints[[1]]
 [1] 0 27 29 98 100 195 197 199 201 229 231 300
$changepoints[[2]]
[1] 0 <u>98</u> 100 195 197 199 201 229 231 300
$changepoints[[3]]
[1] 0 100 195 197 199 201 229 231 300
$changepoints[[4]]
[1] 0 100 200 229 231 300
$changepoints[[5]]
[1] 0 100 200 300
$changepoints[[6]]
[1] 0 200 300
```

Example

- Changes in nuclear magnetic response as a probe is lowered down a bore-hole into the Earth's surface.
- Change in mean with $\hat{\sigma}^2 =$ median absolute distance

Example

Example

Twitter: @storiKaylea

Slides can be downloaded from: www.khaynes.co.uk

Summary

- changepoint package has been updated to version 2.0.
- Penalty choice
 - Default changed to MBIC
 - Inclusion of CROPS more appropriate to use a range of segmenations rather than just using a single choice
 - Popular choices such as the SIC lack robustness in the presence of model mis-specification

Thank you for listening.

References

- K. Haynes, I.A. Eckley and P. Fearnhead.
 Efficient penalty search for multiple changepoint problems. In Submission, arXiv:1412.3617, (2014)
 B. Jackson and J.D. Sargle.

B. Jackson and J.D. Sargle.
 An Algorithm for optimal partitioning of data on an interval.
 IEEE, Signal Processing Letters, 12(2):105–108, 2005.

 R. Killick, P. Fearnhead and I.A. Eckley.
 Optimal detection of changepoints with a linear computational cost. JASA, 107, 1590-1598, 2012.

R. Killick, and I.A. Eckley. changepoint: An R package for changepoint analysis. Journal of Statistical Software, 58(3):1–19, 2014.

R. Killick, I.A. Eckley and K. Haynes.changepoint: An R package for changepoint analysis.R package version 2.0, 2015 (To appear very soon).