

Epidemiology, Biostatistics and Prevention Institute

Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance

Sebastian Meyer

Epidemic phenomena

Examples:

- Earth quakes
- Riots / crimes
- Infectious diseases

Data: Surveillance systems routinely collect

- time-stamped
- geo-referenced
- case reports

Case study I: Invasive meningococcal disease

library("surveillance"); data("imdepi")

Dot size proportional to the number of cases (residence postcode)

Monthly and cumulative number of cases (by date of specimen sampling)

Cumulative number of cases

```
animate(subset(imdepi, type=="B"),
            time.spacing = 7)
```

Does the force of infection depend on the bacterial finetype?

useR! 2015, Spatial Session 1 July 2015 surveillance: Spatio-Temporal Analysis of Epidemic Phenomena Page 4

Case study II: Measles

library("surveillance"); data("measlesWeserEms")

Publically available surveillance data: time series of counts of newly reported infections by district

useR! 2015, Spatial Session 1 July 2015 surveillance: Spatio-Temporal Analysis of Epidemic Phenomena Page 5

Is local vaccination coverage related to disease dynamics?

Characteristics of epidemic-type data

- Low number of cases
- Seasonality
- Occassional outbreaks ("self-exciting" process)
- Dependence between areas, age groups, etc.
- Underreporting, reporting delays

Characteristics of epidemic-type data

- Low number of cases
- Seasonality
- Occassional outbreaks ("self-exciting" process)
- Dependence between areas, age groups, etc.
- Underreporting, reporting delays

Aims of surveillance

Monitoring (prospective): Outbreak prediction and detection
 (→ "Zombie Preparedness" talk by Michael Höhle)
 Modelling (retrospective): Quantify epidemicity and effects of external covariates on disease dynamics

Place in the world of R packages

surveillance is the first and only software package dedicated to the space-time modelling and monitoring of epidemic phenomena

Related packages:

spacetime: Basic classes and methods for spatio-temporal data
spatstat: THE package for purely spatial point patterns

tscount, EpiEstim, outbreaker, amei: Several packages dealing

with purely temporal epidemic data

stpp: Simulation & visualization of space-time point patterns

For a more complete picture:

 \rightarrow CRAN task view "Handling and Analyzing Spatio-Temporal Data"

Three modelling frameworks in surveillance

Data Resolution	Example	Model	Function
individual events in continuous space-time	cases of invasive meningococcal disease (IMD) Meyer et al., 2012	spatio-temporal point process	twinstim()
event counts aggregated in space & time	week×district counts of measles Meyer et al., 2014	multivariate NegBin time series	hhh4()
individual SIR event history of a fixed population	spread of classi- cal swine fever among domes- tic pig farms Höhle, 2009	multivariate temporal point process	twinSIR()

Basic modelling concept

Stochastic branching process with immigration

- Decomposed disease risk:
 Endemic: seasonality, population, socio-demography, ...
 Epidemic: force of previously infected individuals
- Ebola: R_0 of about 1.5 2.5
- Force of infection may depend on age and spatial/temporal distance to infective

Spatial interaction

Tobler's First Law of Geography:

Everything is related to everything else, but near things are more related than distant things.

Brockmann et al., 2006 (dollar bill tracking):

The distribution of travelling distances decays as a power law.

Case study I: Invasive meningococcal disease Regression framework for the conditional intensity function

 $\lambda(\mathbf{s}, t) = \rho_{[\mathbf{s}][t]} \nu_{[\mathbf{s}][t]}$

Endemic component

- Piecewise constant on a suitable space-time grid
- Explanatory variables in a log-linear predictor ν_{[s][t]}
- Equivalent to Poisson-GLM for aggregated counts

Case study I: Invasive meningococcal disease Regression framework for the conditional intensity function

$$\lambda(\boldsymbol{s}, t) = \rho_{[\boldsymbol{s}][t]} \nu_{[\boldsymbol{s}][t]} + \sum_{j: t_j < t} \eta_j f(\|\boldsymbol{s} - \boldsymbol{s}_j\|) g(t - t_j)$$

Endemic component

- Piecewise constant on a suitable space-time grid
- Explanatory variables in a log-linear predictor ν_{[s][t]}
- Equivalent to Poisson-GLM for aggregated counts

Force of infection

 Depends on event-specific characteristics *m_i* via

 $\log(\eta_j) = \gamma_0 + \boldsymbol{\gamma}^\top \boldsymbol{m}_j$

- Decays over space/time according to parametric interaction function $f(\cdot)/g(\cdot)$

Case study I: Invasive meningococcal disease Regression framework for the conditional intensity function

$$\lambda(\boldsymbol{s}, t) = \rho_{[\boldsymbol{s}][t]} \nu_{[\boldsymbol{s}][t]} + \sum_{j: t_j < t} \eta_j f(\|\boldsymbol{s} - \boldsymbol{s}_j\|) g(t - t_j)$$

Endemic component

- Piecewise constant on a suitable space-time grid
- Explanatory variables in a log-linear predictor ν_{[s][t]}
- Equivalent to Poisson-GLM for aggregated counts

Force of infection

 Depends on event-specific characteristics *m_j* via

 $\log(\eta_j) = \gamma_0 + \boldsymbol{\gamma}^\top \boldsymbol{m}_j$

- Decays over space/time according to parametric interaction function $f(\cdot)/g(\cdot)$

Likelihood inference

- nlminb() with analytical score function and Fisher info
- R package <code>polyCub</code> for cubature of $f(\|\boldsymbol{s}\|)$ over polygons

Case study I: Invasive meningococcal disease Model estimation

```
imdfit <- twinstim(
    endemic = ~offset(log(popdensity)) + I(start/365 - 3.5) +
        sin(2 * pi * start/365) + cos(2 * pi * start/365),
    epidemic = ~type + agegrp,
    siaf = siaf.powerlaw(), tiaf = tiaf.constant(),
    data = imdepi, subset = !is.na(agegrp),
    start = c("e.(Intercept)"=-6.5, "e.siaf.1"=1.5, "e.siaf.2"=0.9),
    optim.args = list(fixed = "e.siaf.1"), model = TRUE, cores = 4)</pre>
```

Case study I: Invasive meningococcal disease Model estimation

```
imdfit <- twinstim(
    endemic = ~offset(log(popdensity)) + I(start/365 - 3.5) +
        sin(2 * pi * start/365) + cos(2 * pi * start/365),
    epidemic = ~type + agegrp,
    siaf = siaf.powerlaw(), tiaf = tiaf.constant(),
    data = imdepi, subset = !is.na(agegrp),
    start = c("e.(Intercept)"=-6.5, "e.siaf.1"=1.5, "e.siaf.2"=0.9),
    optim.args = list(fixed = "e.siaf.1"), model = TRUE, cores = 4)</pre>
```

xtable(imdfit)

	RR	95% CI	p-value
h.l(start/365 - 3.5)	0.959	0.92–1.00	0.071
h.sin(2 * pi * start/365)	1.231	1.08–1.41	0.0022
h.cos(2 * pi * start/365)	1.379	1.21–1.57	<0.0001
e.typeC	0.450	0.27-0.74	0.0017
e.agegrp[3,19)	2.133	1.10–4.12	0.024
e.agegrp[19,Inf)	0.824	0.33–2.05	0.68

Case study I: Invasive meningococcal disease Estimated spatial interaction

```
plot(imdfit, which = "siaf",
    xlim = c(0, 50))
imdfit_fstep <- update(imdfit,
    siaf = siaf.step(
        knots = exp((1:4)*log(100)/5),
        maxRange = 100),
    optim.args = list(fixed = NULL))
plot(imdfit_fstep, which = "siaf",
        add = TRUE, col.estimate = 1)
```


Case study I: Invasive meningococcal disease Estimated spatial interaction

```
plot(imdfit, which = "siaf",
    xlim = c(0, 50))
imdfit_fstep <- update(imdfit,
    siaf = siaf.step(
        knots = exp((1:4)*log(100)/5),
        maxRange = 100),
    optim.args = list(fixed = NULL))
plot(imdfit_fstep, which = "siaf",
    add = TRUE, col.estimate = 1)
```


Predefined interaction functions:

Spatial (siaf.*)	Temporal (tiaf.*)
constant	constant
gaussian	exponential
powerlaw	step
powerlawL	
step	
student	

Case study I: Invasive meningococcal disease Fitted ground intensity $\int \hat{\lambda}(s, t) \, ds$

Case study I: Invasive meningococcal disease

Methods for "twinstim"

Display	Extract	Modify	Other
print summary xtable plot intensityplot iafplot checkResidualProcess	nobs vcov logLik extractAIC profile residuals terms RO	update add1 drop1 stepComponent	simulate coeflist

Case study II: Measles (areal count time series) Regression framework

Number of cases in region r at time t

$$Y_{rt} \mid Y_{\cdot,t-1} \sim \mathsf{NegBin}(\mu_{rt},\psi)$$

Endemic-Epidemic decomposition of disease risk:

$$\mu_{rt} = \mathbf{e}_{rt} \,\nu_{rt} + \lambda_{rt} Y_{r,t-1} + \phi_{rt} \sum_{s \neq r} \mathbf{w}_{sr} \, Y_{s,t-1}$$

 e_{rt} population offset $\nu_{rt}, \lambda_{rt}, \phi_{rt}$ log-linear predictors, e.g., vaccination coverage w_{sr} weight for s to r transmission, e.g., $w_{sr} = o_{sr}^{-d}$

Case study II: Measles (areal count time series) Model estimation

```
(endemic <- addSeason2formula(~log(pSusceptible) + t))
## ~log(pSusceptible) + t + sin(2 * pi * t/52) + cos(2 * pi * t/52)
measlesModel <- list(
    end = list(f = endemic, offset = population(measlesWeserEms)),
    ar = list(f = ~1),
    ne = list(f = ~1, weights = W_powerlaw(maxlag = 5)),
    family = "NegBin1", data = list(pSusceptible = 1 - pVacc))
measlesFit <- hh4(measlesWeserEms, control = measlesModel)</pre>
```

Case study II: Measles (areal count time series) Fitted mean components

plot(measlesFit, type = "fitted", units = c(7,12), hideOs = TRUE)

Case study II: Measles (areal count time series) Association with vaccination coverage v_r

```
Endemic incidence is proportional to (1 - v_r)^{\beta_v}:
```

summary(measlesFit)\$fixef["end.log(pSusceptible)",]

Estimate Std. Error ## 2.054 0.379

Case study II: Measles (areal count time series) Association with vaccination coverage v_r

```
Endemic incidence is proportional to (1 - v_r)^{\beta_v}:
```

```
summary(measlesFit)$fixef["end.log(pSusceptible)", ]
```

Estimate Std. Error ## 2.054 0.379

Other methods:

```
update(), simulate(), oneStepAhead(), ...
```

Conclusion

surveillance offers a comprehensive framework for the spatio-temporal analysis of epidemic phenomena, including visualisation, modelling, inference and simulation of:

- (multivariate) surveillance time series
- spatio-temporal point patterns
- geo-referenced SIR event histories

Key references:

- http://surveillance.r-forge.r-project.org/
- arXiv:1411.0416 (Meyer et al., 2014): a guide to the three presented endemic-epidemic model classes

Acknowledgments

Joint work with:

- Leonhard Held (University of Zurich)
- Michael Höhle (University of Stockholm)

Funding:

- Munich Center of Health Sciences (2007-2010)
- Swiss National Science Foundation (2012–2015)

References

- Brockmann, D., Hufnagel, L., and Geisel, T. (2006). The Scaling Laws of Human Travel. *Nature*, 439(7075):462–465.
- Höhle, M. (2009). Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics. *Biometrical Journal*, 51(6):961–978.
- Meyer, S., Elias, J., and Höhle, M. (2012). A Space-Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence. *Biometrics*, 68(2):607–616.
- Meyer, S. and Held, L. (2014). Power-Law Models for Infectious Disease Spread. The Annals of Applied Statistics, 8(3):1612–1639.
- Meyer, S., Held, L., and Höhle, M. (2014). Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance. arxiv:1411.0416.
- Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. *Economic Geography*, 46:234–240.

Feedback?

sebastian.meyer@uzh.ch