glmmsr: fitting GLMMs with sequential reduction

Helen Ogden

warwick.ac.uk/heogden

2 July 2015

THE UNIVERSITY OF
WARWICK

Part I: approximating the likelihood

Example 1: a two-level model

Have binary observations y_{i} which are clustered: each i belongs to a cluster $c(i)$.

Example 1: a two-level model

Have binary observations y_{i} which are clustered: each i belongs to a cluster $c(i)$.

Model

$$
\operatorname{Pr}\left(Y_{i}=1 \mid \eta_{i}\right)=\operatorname{logit}^{-1}\left(\eta_{i}\right)
$$

Example 1: a two-level model

Have binary observations y_{i} which are clustered: each i belongs to a cluster $c(i)$.

Model

$$
\operatorname{Pr}\left(Y_{i}=1 \mid \eta_{i}\right)=\operatorname{logit}^{-1}\left(\eta_{i}\right)
$$

and

$$
\eta_{i}=\alpha+\beta x_{i}+\sigma u_{c(i)}
$$

where $u_{j} \sim N(0,1)$.

Example 1: a two-level model

Have binary observations y_{i} which are clustered: each i belongs to a cluster $c(i)$.

Model

$$
\operatorname{Pr}\left(Y_{i}=1 \mid \eta_{i}\right)=\operatorname{logit}^{-1}\left(\eta_{i}\right)
$$

and

$$
\eta_{i}=\alpha+\beta x_{i}+\sigma u_{c(i)}
$$

where $u_{j} \sim N(0,1)$.
Want to do inference on $\theta=(\alpha, \beta, \sigma)$.

Example 1: a two-level model

```
library(lme4)
glmer(response ~ covariate + (1 | cluster), data = two_level,
    family = binomial)
```


Example 1: a two-level model

```
library(lme4)
glmer(response ~ covariate + (1 | cluster), data = two_level,
    family = binomial)
```

\#\# Generalized linear mixed model fit by maximum likelihood (Laplace
\#\# Approximation) [glmerMod]
\#\# Family: binomial (logit)
\#\# Formula: response ~ covariate + (1 | cluster)
\#\# Data: two_level
\#\# AIC BIC logLik deviance df.resid
\#\# 137.8656 145.6811 -65.9328 $131.8656 \quad 97$
\#\# Random effects:
\#\# Groups Name Std.Dev.
\#\# cluster (Intercept) 0.7475
\#\# Number of obs: 100, groups: cluster, 50
\#\# Fixed Effects:
\#\# (Intercept) covariate
\#\# $0.6521 \quad-1.1575$

The likelihood

Write

$$
f_{y}\left(y_{i} \mid \theta, u_{c(i)}\right)=\operatorname{Pr}\left(Y_{i}=y_{i} \mid \eta_{i}=\alpha+\beta x_{i}+\sigma u_{c(i)}\right)
$$

Then

$$
L(\theta \mid \mathbf{y})=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{y}\left(y_{i} \mid \theta, u_{c(i)}\right) \prod_{j=1}^{n} \phi\left(u_{j}\right) d \mathbf{u}
$$

An n-dimensional integral.

The likelihood

Write

$$
f_{y}\left(y_{i} \mid \theta, u_{c(i)}\right)=\operatorname{Pr}\left(Y_{i}=y_{i} \mid \eta_{i}=\alpha+\beta x_{i}+\sigma u_{c(i)}\right)
$$

Then

$$
L(\theta \mid \mathbf{y})=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{y}\left(y_{i} \mid \theta, u_{c(i)}\right) \prod_{j=1}^{n} \phi\left(u_{j}\right) d \mathbf{u}
$$

An n-dimensional integral.
But

$$
L(\theta \mid \mathbf{y})=\prod_{j=1}^{n} \int_{-\infty}^{\infty} \prod_{i: c(i)=j} f_{y}\left(y_{i} \mid \theta, u_{j}\right) \phi\left(u_{j}\right) d u_{j}
$$

so only need to compute one-dimensional integrals.

Example 1: a two-level model

```
glmer(response ~ covariate + (1 | cluster), data = two_level,
    family = binomial, nAGQ = 10)
```


Example 1: a two-level model

```
glmer(response ~ covariate + (1 | cluster), data = two_level,
    family = binomial, nAGQ = 10)
```

\#\# Generalized linear mixed model fit by maximum likelihood (Adaptive
\#\# Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
\#\# Family: binomial (logit)
\#\# Formula: response ~ covariate + (1 | cluster)
\#\# Data: two_level
\#\# AIC BIC logLik deviance df.resid
\#\# 137.2254 145.0409 -65.6127 131.2254 97
\#\# Random effects:
\#\# Groups Name Std.Dev.
\#\# cluster (Intercept) 1.041
\#\# Number of obs: 100, groups: cluster, 50
\#\# Fixed Effects:
\#\# (Intercept) covariate
\#\# $0.7167 \quad-1.2734$

Comparing approximations to the loglikelihood

Example 2: a three-level model

Each cluster c is itself contained within larger group $g(c)$.

Example 2: a three-level model

Each cluster c is itself contained within larger group $g(c)$.
Have

$$
\eta_{i}=\alpha+\beta x_{i}+\sigma_{c} u_{c(i)}+\sigma_{g} v_{g(c(i))}
$$

where each $u_{j}, v_{j} \sim N(0,1)$.
Do inference on $\theta=\left(\alpha, \beta, \sigma_{c}, \sigma_{g}\right)$

Example 2: a three-level model

```
glmer(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial)
```


Example 2: a three-level model

```
glmer(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial)
```

\#\# Generalized linear mixed model fit by maximum likelihood (Laplace
\#\# Approximation) [glmerMod]
\#\# Family: binomial (logit)
\#\# Formula: response ~ covariate + (1 | cluster) + (1 | group)
\#\# Data: three_level
\#\# AIC BIC logLik deviance df.resid
\#\# 283.4225 $296.6157-137.7112 \quad 275.4225 \quad 196$
\#\# Random effects:
\#\# Groups Name Std.Dev.
\#\# cluster (Intercept) 0.3576
\#\# group (Intercept) 0.4257
\#\# Number of obs: 200, groups: cluster, 100; group, 50
\#\# Fixed Effects:
\#\# (Intercept) covariate
\#\# -0.1908 0.1198

Example 2: a three-level model

```
glmer(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial, nAGQ = 10)
```


Example 2: a three-level model

```
glmer(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial, nAGQ = 10)
```

\#\# Error in updateGlmerDevfun(devfun, glmod\$reTrms, nAGQ = nAGQ):
\#\# nAGQ > 1 is only available for models with a single, scalar
\#\# random-effects term

The sequential reduction approximation

The integrand of the likelihood factorizes

$$
L(\theta \mid \mathbf{y})=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{y}\left(y_{i} \mid \theta, \mathbf{u}\right) \prod_{j=1}^{n} \phi\left(u_{j}\right) d \mathbf{u} .
$$

The sequential reduction approximation

The integrand of the likelihood factorizes

$$
L(\theta \mid \mathbf{y})=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{y}\left(y_{i} \mid \theta, \mathbf{u}\right) \prod_{j=1}^{n} \phi\left(u_{j}\right) d \mathbf{u} .
$$

Typically, each $f_{y}\left(y_{i} \mid \theta, \mathbf{u}\right)$ depends on only a few u_{j}.
In the three-level model, each observation involves two random effects, one for the cluster and one for the group.

The sequential reduction approximation

The integrand of the likelihood factorizes

$$
L(\theta \mid \mathbf{y})=\int_{\mathbb{R}^{n}} \prod_{i=1}^{m} f_{y}\left(y_{i} \mid \theta, \mathbf{u}\right) \prod_{j=1}^{n} \phi\left(u_{j}\right) d \mathbf{u} .
$$

Typically, each $f_{y}\left(y_{i} \mid \theta, \mathbf{u}\right)$ depends on only a few u_{j}.
In the three-level model, each observation involves two random effects, one for the cluster and one for the group.

The sequential reduction approximation exploits this factorization structure.

Ogden, H. E. (2015). A sequential reduction method for inference in generalized linear mixed models. Electronic Journal of Statistics, 9, 135-152.

The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points

The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points
2. the 'level of approximate function storage', k

The sequential reduction approximation

Two parameters control the approximation:

1. the number of adaptive Gaussian quadrature points
2. the 'level of approximate function storage', k

glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k to be larger than 0 .

glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k to be larger than 0 .

Internally, glmmsr uses rgraphpass to compute the likelihood approximation.

glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k to be larger than 0 .

Internally, glmmsr uses rgraphpass to compute the likelihood approximation.

Why two packages?

- rgraphpass is still in active development, and does not yet work in Windows. You can use glmmsr as an extended interface to lme4 without installing rgraphpass.

glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k to be larger than 0 .

Internally, glmmsr uses rgraphpass to compute the likelihood approximation.

Why two packages?

- rgraphpass is still in active development, and does not yet work in Windows. You can use glmmsr as an extended interface to lme4 without installing rgraphpass.
- rgraphpass could be extended to do computations for models other than GLMMs

glmmsr and rgraphpass

The sequential reduction approximation is available in glmmsr by setting k to be larger than 0 .

Internally, glmmsr uses rgraphpass to compute the likelihood approximation.

Why two packages?

- rgraphpass is still in active development, and does not yet work in Windows. You can use glmmsr as an extended interface to lme4 without installing rgraphpass.
- rgraphpass could be extended to do computations for models other than GLMMs (graphical models with continuous variables)

Back to three-level model

```
library(glmmsr)
glmerSR(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial,
    nAGQ = 10, k = 3)
```


Back to three-level model

```
library(glmmsr)
glmerSR(response ~ covariate + (1 | cluster) + (1 | group),
    data = three_level, family = binomial,
    nAGQ = 10, k = 3)
## Generalized linear mixed model fit by maximum likelihood (Sequential
## Reduction Approximation, k = 3, nAGQ = 10) [glmerSRMod]
## Family: binomial ( logit )
## Formula: response ~ covariate + (1 | cluster) + (1 | group)
## Groups Name Estimate
## 1 cluster (Intercept) 0.6461
## 2 group (Intercept) 0.4504
## Number of obs: 200, groups: cluster, 100; group, 50;
## Fixed effects:
## (Intercept) covariate
## -0.2077 0.1389
```


Comparing approximations to the loglikelihood

Part II: an extended interface

Example 3: fighting flat-lizards

Whiting, M. J., Stuart-Fox, D. M., O'Connor, D., Firth, D., Bennett, N. C., \& Blomberg, S. P. (2006). Ultraviolet signals ultra-aggression in a lizard. Animal Behaviour, 72(2), 353-363.

Example 3: fighting flat-lizards

Data available as flatlizards in BradleyTerry2.

```
names(flatlizards$contests)
## [1] "winner" "loser"
names(flatlizards$predictors)
\begin{tabular}{lrlll} 
\#\# & [1] "id" & "throat.PC1" & "throat.PC2" & "throat.PC3" \\
\#\# & [5] "frontleg.PC1" & "frontleg.PC2" & "frontleg.PC3" & "badge.PC1" \\
\#\# & {\([9]\)} & "badge.PC2" & "badge.PC3" & "badge.size"
\end{tabular} "testosterone"
```


Example 3: fighting flat-lizards

Example 3: fighting flat-lizards

Lizard i has 'ability' λ_{i}, and

$$
\operatorname{Pr}\left(i \text { beats } j \mid \lambda_{i}, \lambda_{j}\right)=\Phi\left(\lambda_{i}-\lambda_{j}\right)
$$

Example 3: fighting flat-lizards

Lizard i has 'ability' λ_{i}, and

$$
\operatorname{Pr}\left(i \text { beats } j \mid \lambda_{i}, \lambda_{j}\right)=\Phi\left(\lambda_{i}-\lambda_{j}\right)
$$

We are interested in how a lizard's ability depends on covariates x_{i}.
We model

$$
\lambda_{i}=\beta^{T} x_{i}+\sigma u_{i},
$$

where $u_{i} \sim N(0,1)$.

Example 3: fighting flat-lizards

```
library(BradleyTerry2)
BTm(result, winner, loser, ~ throat.PC1[..] + throat.PC3[..]
    + head.length[..] + SVL[..] + (1|..),
    family = binomial(link = "probit"), data = lizards_BT)
```


Example 3: fighting flat-lizards

```
library(BradleyTerry2)
BTm(result, winner, loser, ~ throat.PC1[..] + throat.PC3[..]
    + head.length[..] + SVL[..] + (1|..),
    family = binomial(link = "probit"), data = lizards_BT)
```

\#\# Bradley Terry model fit by glmmPQL.fit
\#\#
\#\# Call:
\#\# BTm(outcome = result, player1 = winner, player2 = loser,
\#\# formula $=$ ~throat.PC1[..] + throat.PC3[..] + head.length[..]
\#\# + SVL[..] + (1 | ..), family = binomial(link = "probit"),
\#\# data = lizards_BT)
\#\#
\#\# Fixed effects:
\#\#
\#\# throat.PC1[..] throat.PC3[..] head.length[..] SVL[..]
$\begin{array}{lllll}\# \# & -0.04914 & 0.24061 & -0.80876 & 0.10778\end{array}$
\#\#
\#\# Random Effects Std. Dev.: 0.6057213

A sub-formula interface

We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown 'abilities'
2. The model for the unknown ability of each lizard

A sub-formula interface

We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown 'abilities'
2. The model for the unknown ability of each lizard

We want to mimic this two-stage specification in R.

A sub-formula interface

We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown 'abilities'
2. The model for the unknown ability of each lizard

We want to mimic this two-stage specification in R.
Main formula
result ~ 0 + Sub(ability[winner] - ability[loser])
result, winner and loser are in data, ability is not.

A sub-formula interface

We wrote the model down in two stages:

1. The model for the match outcomes in terms of unknown 'abilities'
2. The model for the unknown ability of each lizard

We want to mimic this two-stage specification in R.
Main formula
result ~ 0 + Sub(ability[winner] - ability[loser])
result, winner and loser are in data, ability is not.
Sub-formula
ability[liz] ~ 0 + covariates[liz] + (1 | liz)
covariates are in data, ability and liz are not.

Back to flat-lizards data

```
glmerSR(result ~ 0 + Sub(ability[winner] - ability[loser]),
    ability[liz] ~ O + throat.PC1[liz] + throat.PC3[liz] +
    head.length[liz] + SVL[liz] + (1 | liz),
    data = lizards, family = binomial(link = "probit"))
```


Back to flat-lizards data

```
glmerSR(result ~ 0 + Sub(ability[winner] - ability[loser]),
    ability[liz] ~ 0 + throat.PC1[liz] + throat.PC3[liz] +
    head.length[liz] + SVL[liz] + (1 | liz),
    data = lizards, family = binomial(link = "probit"))
```

\#\# Generalized linear mixed model fit by maximum likelihood (Laplace
\#\# Approximation) [glmerMod]
\#\# Family: binomial (probit)
\#\# AIC BIC logLik deviance df.resid
\#\# $99.6052112 .6310-44.802689 .6052 \quad 95$
\#\# Random effects:
\#\# Groups Name Std.Dev.
\#\# liz (Intercept) 1.043
\#\# Number of obs: 100, groups: liz, 77
\#\# Fixed Effects:
\#\# throat.PC1[liz] throat.PC3[liz] head.length[liz] SVL[liz]
$\begin{array}{lllll}\text { \#\# } & -0.07449 & 0.39376 & -1.41852 & 0.16409\end{array}$

Conclusions

Approximating the likelihood

- glmmsr provides an improved likelihood approximation
- uses the rgraphpass package, which is still in development
- rgraphpass could be extended for other types of model: please let me know if you have ideas!

Conclusions

Approximating the likelihood

- glmmsr provides an improved likelihood approximation
- uses the rgraphpass package, which is still in development
- rgraphpass could be extended for other types of model: please let me know if you have ideas!

A new interface

- glmmsr provides an extension to the interface to lme4, to allow easy fitting of pairwise competition models.
- Many other types of models possible with this interface: please let me know if you have examples!

Conclusions

Approximating the likelihood

- glmmsr provides an improved likelihood approximation
- uses the rgraphpass package, which is still in development
- rgraphpass could be extended for other types of model: please let me know if you have ideas!

A new interface

- glmmsr provides an extension to the interface to lme4, to allow easy fitting of pairwise competition models.
- Many other types of models possible with this interface: please let me know if you have examples!
glmmsr available at github.com/heogden/glmmsr

