
Dirichlet process Bayesian clustering
with the R package PReMiuM

Dr Silvia Liverani
Brunel University London

July 2015

Silvia Liverani (Brunel University London) Profile Regression 1 / 18



Outline

I Motivation
I Method
I R package PReMiuM

I Examples

Silvia Liverani (Brunel University London) Profile Regression 2 / 18



Many collaborators

I John Molitor (University of Oregon)
I Sylvia Richardson (Medical Research Centre Biostatistics Unit)
I Michail Papathomas (University of St Andrews)
I David Hastie
I Aurore Lavigne (University of Lille 3, France)
I Lucy Leigh (University of Newcastle, Australia)
I . . .

Silvia Liverani (Brunel University London) Profile Regression 3 / 18



Motivation

Multicollinearity

I Goal of epidemilogical studies is to investigate the joint effect of
different covariates / risk factors on a phenotype...

I ... but highly correlated risk factors create collinearity problems!

Example
Researchers are interested in determining if a relationship exists
between blood pressure (y = BP, in mm Hg) and

I weight (x1 = Weight, in kg)
I body surface area (x2 = BSA, in sq m)
I duration of hypertension (x3 = Dur, in years)
I basal pulse (x4 = Pulse, in beats per minute)
I stress index (x5 = Stress)
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Motivation

I Highly correlated risk factors create collinearity problems, causing
instability in model estimation

Model β̂1 SE β̂1 β̂2 SE β̂2

y ∼ x1 2.64 0.30 – –
y ∼ x2 – – 3.34 1.33
y ∼ x1 + x2 6.58 0.53 -20.44 2.28

I Effect 1: the estimated regression coefficient of any one variable
depends on which other predictor variables are included in the
model.

I Effect 2: the precision of the estimated regression coefficients
decreases as more predictor variables are added to the model.
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Profile Regression

Issues caused by
I correlated risk factors
I interacting risk factors

Profile regression
I partitions the multi-dimensional risk surface into groups

having similar risks
I investigation of the joint effects of multiple risk factors
I jointly models the covariate patterns and health outcomes
I flexible but tractable Bayesian model
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Profile Regression

Notation

For individual i

yi outcome of interest
xi = (xi1, . . . , xiP) covariate profile
wi fixed effects
zi = c the allocation variable indicates the

cluster to which individual i belongs
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Profile Regression

Statistical Framework

I Joint covariate and response model

f (xi , yi |φ, θ, ψ, β) =
∑

c

ψc f (xi |zi = c, φc)f (yi |zi = c, θc , β,wi)

I For example for discrete covariates

f (xi |zi = c, φc) =
J∏

j=1

φzi ,j,xi,j

I For example, for Bernoulli response

logit{p(yi = 1|θc , β,wi)} = θc + βT wi
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Profile Regression

Statistical Framework

I Joint covariate and response model

f (xi , yi |φ, θ, ψ, β) =
∑

c

ψc f (xi |zi = c, φc)f (yi |zi = c, θc , β,wi)

I Prior model for the mixture weights ψc
I stick-breaking priors (constructive definition of the Dirichlet

Process)
P(Zi = c|ψ) = ψc ψ1 = V1

ψc = Vc

∏
l<c

(1− Vl) Vc ∼ Beta(1, α)

I larger concentration parameter α the more evenly distributed is the
resulting distribution.

I smaller concentration parameter α the more sparsely distributed is
the resulting distribution, with all but a few parameters having a
probability near zero

Silvia Liverani (Brunel University London) Profile Regression 10 / 18



R package PReMiuM

Implementation: R package PReMiuM

We have implemented profile regression in C++ within the R package
PReMiuM.

I Binary, binomial, categorical, Normal, Poisson and survival
outcome

I Allows for spatial correlation
I Fixed effects (global parameters) including also spatial CAR term
I Normal and/or discrete covariates
I Dependent or independent slice sampling (Kalli et al., 2011) or

truncated Dirichlet process model (Ishwaran and James, 2001)
I Fixed alpha or update alpha, or use the Pitman-Yor process prior
I Handles missing data
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R package PReMiuM

Implementation: R package PReMiuM

We have implemented profile regression in C++ within the R package
PReMiuM.

I Allows users to run predictive scenarios
I Performs post processing
I Contains plotting functions

Currently working on:
I Quantile profile regression
I Enriched Dirichlet processes
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Applications and features of the model

Example: Simulated data

The profiles are given by
y : outcome, Bernoulli
x : 5 covariates, all discrete with 3 levels
w : 2 fixed effects, continuous or discrete
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Applications and features of the model

Survival response with censoring: sleep study
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Variable selection



Applications and features of the model

Spatial correlated response: deprivation in London

[−39.1,−7.73]

(−7.73,−2.04]

(−2.04,2.47]

(2.47,7.88]

(7.88,31.1]
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Applications and features of the model
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