multiplex: Analysis of multiple social networks with algebra

· Doing combinatorics in R ·

Antonio Rivero Ostoic
jaro@econ.au.dk, multiplex@post.com

AARHUS UNIVERSITY

useR! Conference ★ Aalborg, Denmark ★ 1st July 2015
1. Multivariate network data

2. Algebraic analyses of social networks
 - two-mode networks
 - multiple networks
 - signed networks
Motivation

- **multiplex** is a package designed to perform algebraic analyses of multiple networks

 but it is not limited to algebra ...

multiple networks have relations at different levels
Multivariate network data

- For manipulation, networks are typically represented by *matrices*.
Multivariate network data

For manipulation, networks are typically represented by matrices.

Another way to store network data is by enumerating the ties in a “list”.
Function \texttt{zbind()}

Creating multivariate network data from arrays

\begin{align*}
F &= \begin{pmatrix} 23 & 58 & 70 & 89 \\ 23 & 0 & 1 & 0 & 1 \\ 58 & 1 & 0 & 0 & 1 \\ 70 & 0 & 0 & 0 & 0 \\ 89 & 1 & 1 & 0 & 0 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 0 & 0 \\ 89 & 1 & 1 & 0 & 0 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 1 & 0 \\ 89 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \\
C &= \begin{pmatrix} 23 & 58 & 70 & 89 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 0 & 0 \\ 89 & 1 & 1 & 0 & 0 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 0 & 0 \\ 89 & 1 & 1 & 0 & 0 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 1 & 0 \\ 89 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \\
A &= \begin{pmatrix} 23 & 58 & 70 & 89 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 1 & 0 \\ 89 & 0 & 0 & 0 & 1 \\ 23 & 0 & 0 & 0 & 0 \\ 58 & 0 & 0 & 0 & 0 \\ 70 & 0 & 0 & 1 & 0 \\ 89 & 0 & 0 & 0 & 1 \\ \end{pmatrix}
\end{align*}

\texttt{zbind(F, C, A)}
Function `read.srt()`

Creating multivariate network data from a data frame

```
read.srt(file, header=TRUE, toarray=TRUE, ...)
```

```
<table>
<thead>
<tr>
<th>send</th>
<th>receive</th>
<th>C</th>
<th>F</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>89</td>
<td>58</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>58</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>89</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>89</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Manipulating multivariate network data: `perm()`

\[
\begin{align*}
&> Z \leftarrow \text{read.srt}(\text{file, header=TRUE, toarray=TRUE}) \\
&> \text{perm}(Z, \text{clu=c(4,3,2,1)}) \\
&> \text{perm}(Z, \text{clu=c(2,1,2,1)})
\end{align*}
\]

\[
\begin{array}{cccccc}
\text{C} & \text{C} & \text{C} \\
23 & 58 & 70 & 89 & 89 & 70 & 58 & 23 & 58 & 89 & 23 & 70 \\
23 & 0 & 0 & 0 & 0 & 89 & 0 & 0 & 1 & 1 & 58 & 0 & 0 & 0 & 0 \\
58 & 0 & 0 & 0 & 0 & 70 & 0 & 0 & 0 & 0 & 89 & 1 & 0 & 1 & 0 \\
70 & 0 & 0 & 0 & 0 & 58 & 0 & 0 & 0 & 0 & 23 & 0 & 0 & 0 & 0 \\
89 & 1 & 1 & 0 & 0 & 23 & 0 & 0 & 0 & 0 & 70 & 0 & 0 & 0 & 0 \\
\hline
\text{F} & \text{F} & \text{F} \\
23 & 58 & 70 & 89 & 89 & 70 & 58 & 23 & 58 & 89 & 23 & 70 \\
23 & 0 & 1 & 0 & 1 & 89 & 0 & 0 & 1 & 1 & 58 & 0 & 1 & 1 & 0 \\
58 & 1 & 0 & 0 & 1 & 70 & 0 & 0 & 0 & 0 & 89 & 1 & 0 & 1 & 0 \\
70 & 0 & 0 & 0 & 0 & 58 & 1 & 0 & 0 & 1 & 23 & 1 & 1 & 0 & 0 \\
89 & 1 & 1 & 0 & 0 & 23 & 1 & 0 & 1 & 0 & 70 & 0 & 0 & 0 & 0 \\
\hline
\text{A} & \text{A} & \text{A} \\
23 & 58 & 70 & 89 & 89 & 70 & 58 & 23 & 58 & 89 & 23 & 70 \\
23 & 0 & 0 & 0 & 0 & 89 & 1 & 0 & 0 & 0 & 58 & 0 & 0 & 0 & 0 \\
58 & 0 & 0 & 0 & 0 & 70 & 0 & 1 & 0 & 0 & 89 & 0 & 1 & 0 & 0 \\
70 & 0 & 0 & 1 & 0 & 58 & 0 & 0 & 0 & 0 & 23 & 0 & 0 & 0 & 0 \\
89 & 0 & 0 & 0 & 1 & 23 & 0 & 0 & 0 & 0 & 70 & 0 & 0 & 0 & 1
\end{array}
\]
Manipulating multivariate network data: \texttt{transf()}

\begin{verbatim}
> transf(F, type="matlist", lb2lb=TRUE)

[1] "23, 58" "23, 89" "58, 23" "58, 89" "89, 23" "89, 58"

> transf(transf(F, type="matlist", lb2lb=TRUE), type="listmat")

 23 58 89
 23 0 1 1
 58 1 0 1
 89 1 1 0
\end{verbatim}
Algebraic Analyses of Social Networks
Galois representation of two-mode networks

- Algebraic approaches for the analysis of two-mode networks are made through *Galois derivations*

- A two-mode network represents a *formal context* (Ganter & Wille, 1996), which is a data frame of binary relations between objects and attributes

- The Galois derivations between the set of objects and the set of attributes lead to the complete list of the *concepts* in the context

- A *hierarchy* of concepts is a partially ordered set, which can be represented by the *concept lattice of the context*
Formal Context

Galois representation of two-mode networks

```r
## Fruits data set with attributes
> frt <- data.frame(yellow = c(0,1,0,0,1,0,0,0), green = c(0,0,1,0,0,0,0,1),
                   red = c(1,0,0,1,0,0,0,0), orange = c(0,0,0,0,0,1,1,0),
                   apple = c(1,1,1,1,0,0,0,0), citrus = c(0,0,0,0,1,1,1,1) )

## Label the objects
> rownames(frt) <- c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious",
                   "Lemon","Orange","Mandarin","Lime")

> frt
         yellow green red orange apple citrus
PinkLady    0     0   1     0     1    0
GrannySmith 1     0   0     0     1    0
GoldenDelicious 0     1   0     0     1    0
RedDelicious 0     0   1     0     1    0
Lemon       1     0   0     0     0    1
Orange      0     0   0     1     0    1
Mandarin    0     0   0     1     0    1
Lime        0     1   0     0     0    1

read.srt(file, header=TRUE, toarray=FALSE, attr=TRUE)
```
Galois derivations with `galois()`

```r
> galois(frt, labeling="full")

$yellow
[1] "GrannySmith, Lemon"

$green
[1] "GoldenDelicious, Lime"

$'apple, red'
[1] "PinkLady, RedDelicious"

$'citrus, orange'
[1] "Mandarin, Orange"

$'apple, green'
[1] "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$citrus
[1] "Lemon, Lime, Mandarin, Orange"

$'apple, citrus, green, orange, red, yellow'
character(0)
...

[[12]]
[1] "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

attr("class")
[1] "Galois" "full"
```
Galois derivations with reduced labeling

```r
> gf <- galois(frt, labeling = "reduced")

$reduc
$reduc$yellow
[1] ""

$reduc$green
[1] ""

$reduc$red
[1] "PinkLady, RedDelicious"

$reduc$orange
[1] "Mandarin, Orange"

$reduc$apple
[1] ""

$reduc$citrus
[1] ""

$reduc[[7]]
character(0)

$reduc[[8]]
[1] "GrannySmith"

...

$reduc[[12]]
character(0)
```
Galois derivations with reduced labeling

> str(gf)

List of 2
 $ full :List of 12
 ..$ yellow : chr "GrannySmith, Lemon"
 ..$ green : chr "GoldenDelicious, Lime"
 ..$ apple, red : chr "PinkLady, RedDelicious"
 ..$ citrus, orange : chr "Mandarin, Orange"
 ..$ apple : chr "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"
 ..$ citrus : chr "Lemon, Lime, Mandarin, Orange"
 ..$ apple, citrus, green, orange, red, yellow: chr(0)
 ..$ apple, yellow: chr "GrannySmith"
 ..$ citrus, yellow: chr "Lemon"
 ..$ apple, green: chr "GoldenDelicious"
 ..$ citrus, green: chr "Lime"
 ..$: chr "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange"
 - attr(*, "class")= chr [1:2] "Galois" "full"

$ reduc:List of 12
 ..$ yellow: chr ""
 ..$ green : chr ""
 ..$ red : chr "PinkLady, RedDelicious"
 ..$ orange: chr "Mandarin, Orange"
 ..$ apple : chr ""
 ..$ citrus: chr ""
 ..$: chr(0)
 ..$: chr "GrannySmith"
 ..$: chr "Lemon"
 ..$: chr "GoldenDelicious"
 ..$: chr "Lime"
 ..$: chr(0)
- attr(*, "class")= chr [1:2] "Galois" "reduced"
Partial ordering of the concepts: `partial.order()`

```r
> partial.order(gf, type = "galois",
+     labels=paste("c", 1:length(gf$full), sep=""))
```

```
  c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
  c1  1  0  0  0  0  0  0  0  0  0  0  1
  c2  0  1  0  0  0  0  0  0  0  0  0  1
  c3  0  0  1  0  1  0  0  0  0  0  0  1
  c4  0  0  0  1  0  1  0  0  0  0  0  1
  c5  0  0  0  0  1  0  0  0  0  0  0  1
  c6  0  0  0  0  0  1  0  0  0  0  0  1
  c7  1  1  1  1  1  1  1  1  1  1  1  1
  c8  1  0  0  0  1  0  0  1  0  0  0  1
  c9  1  0  0  0  0  1  0  0  1  0  0  1
  c10 0  1  0  0  1  0  0  0  0  1  0  1
  c11 0  1  0  0  0  1  0  0  0  0  1  1
  c12 0  0  0  0  0  0  0  0  0  0  0  1
```
Concept lattice of the context: `diagram()`

```r
## Plot the lattice diagram, require "Rgraphviz"
> diagram( partial.order(gf, type = "galois") )
```

![Concept lattice diagram](image)
Bipartite graphs construction

```r
> lstfrt <- transf(frt, type = "matlist", lb2lb = TRUE)
```

```
[1] "GoldenDelicious, apple" "GoldenDelicious, green" "GrannySmith, apple"
[4] "GrannySmith, yellow"    "Lemon, citrus"    "Lemon, yellow"
[7] "Lime, citrus"          "Lime, green"          "Mandarin, citrus"
[10] "Mandarin, orange"      "Orange, citrus"      "Orange, orange"
[13] "PinkLady, apple"       "PinkLady, red"       "RedDelicious, apple"
[16] "RedDelicious, red"
```

```r
> transf(lstfrt, type = "listmat", lb2lb = TRUE)
```

```
apple citrus GoldenDelicious GrannySmith green Lemon Lime Mandarin orange Orange PinkLady red RedDelicious yellow
apple 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
citrus 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
GoldenDelicious 1 0 0 0 1 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
GrannySmith 1 0 0 0 0 1 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
green 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
Lemon 0 1 0 0 0 0 1 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
Lime 0 1 0 0 0 0 1 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
Mandarin 0 1 0 0 0 0 0 0 0 1 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
orange 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
Orange 0 1 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
PinkLady 1 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
red 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
RedDelicious 1 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
yellow 0 0 0 0 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0 0 0 0
```

```r
```
Bipartite graphs as p.o. diagrams

> diagram(transf(lstfrt, type = "listmat", lb2lb = TRUE))
Multiple Networks

Relational structure

- While ties between actors establish a system *social structure*, with multiple networks we model also its *relational structure*
 - i.e. “interrelations between relations”

- We use a *partially ordered semigroup* to represent relational structures with the unique *strings*
 - which are made of generators and compound relations

- Compounds are the inner matrix product of other strings
Role Structure: `strings()`

```r
> net <- incubA[,1:3]

> strings(net)

```

```
$wt
...

, , CK

[1,] 1 0 1 0
[2,] 1 1 0 0
[3,] 1 0 1 0
[4,] 0 0 0 0

, , FK

[1,] 1 0 1 0
[2,] 1 1 1 0
[3,] 1 0 1 0
[4,] 0 0 0 0

$ord
[1] 5

$st
[1] "C" "F" "K" "CK" "FK"

attr("class")
[1] "Strings"
```
Role Structure: \texttt{strings()}

\begin{verbatim}
> net <- incubA[,,1:3]

> strings(net, equat=TRUE, k=3)$equat

$F
[1] "F" "CC" "FF" "CF" "FC" "CCC" "FFC"
[8] "CFF" "CCF" "FFF" "FCC" "FCF" "CFC"

$K
[1] "K" "KK" "KKK"

$CK
[1] "CK" "KC" "KKC" "CKK" "KCK"

$FK
[1] "FK" "KF" "KKF" "FKK" "CCK" "FFK" "KCC"
[8] "KFF" "KFK" "CKC" "FKF" "CFK" "CKF" "FCK"
[15] "FKC" "KCF" "KFC"
\end{verbatim}
Role Structure: `semigroup()`

```r
> semigroup(net, type="numerical")

$dim
[1] 4

$gens
...

$ord
[1] 5

$st
[1] "C" "F" "K" "CK" "FK"

$S
     1 2 3 4 5
 1 1 2 2 4 5 5
 2 2 2 5 5 5 5
 3 4 5 3 4 5 5
 4 5 5 4 5 5 5
 5 5 5 5 5 5 5

attr(,"class")
[1] "Semigroup" "numerical"
```
Role Structure: `semigroup()`

```r
> semigroup(net, type="symbolic")

$dim
[1] 4

$gens
...

$ord
[1] 5

$st
[1] "C" "F" "K" "CK" "FK"

$S
     C  F  K CK FK
C     F  F CK FK FK
F     F  F FK FK FK
K     CK FK K CK FK
CK    FK FK CK FK FK
FK    FK FK FK FK FK

attr("class")
[1] "Semigroup" "symbolic"
```
Hasse Diagram of Role Relations

```r
> posnet <- partial.order(strings(net), type="strings")
```

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>F</th>
<th>K</th>
<th>CK</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CK</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FK</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Hasse Diagram of Role Relations

```r
> posnet <- partial.order(strings(net), type="strings")
> diagram(posnet)
```
Hasse Diagram of Role Relations: incubA

> diagram(partial.order(strings/incubA, type="strings")))
Decomposition of Relational Structures & role structures

- An *aggregated* relational structure is obtained by means of a *subdirect representation*. Direct representation is not always feasible and overlapping is required.

- Decomposition implies finding *congruence* relations in the semigroup.

```r
> S <- semigroup(net)
> PO <- partial.order(strings(net), type="strings")

> CNGR <- cngr(S, PO, unique=TRUE)
> decomp(S, CNGR, type="cc", reduc=TRUE)
```

- Aggregated structures are homomorphic images of the network relational structure, and provides the *logics* in the interlock of the relations.
Signed Networks

- Signed networks are special cases of multiple networks where relations are either positive or negative.
 - but in social networks ambivalent ties occur as well.

- We check whether the network structure is structurally balanced or not.
 - i.e. whether or not the network has an inherent equilibrium.

- This is done by evaluating cycles or semicycles through the defined rules in either a “balance” or a “cluster” semiring.
Signed Networks: `signed()`

```r
> net.sg <- signed(net[,1], net[,3])

$val
[1] "p" "o" "n"

$s
 1 2 3 4
1 n o p o
2 n o o o
3 n o o o
4 p o o o

attr("class")
[1] "Signed"
```
Signed Networks: `semiring()`

```r
> formals(semiring)

$x

$type
c(c("balance", "cluster"))

$symclos
[1] TRUE

$transclos
[1] TRUE

$labels
NULL

$k
[1] 2
```
Balance & Cluster Semiring

> semiring(net.sg, type="balance")

...

Q

 1 2 3 4
1 p p n n
2 p p n n
3 n n p p
4 n n p p

k

[1] 2

attr("class")
[1] "Rel.Q" "balance"

> semiring(net.sg, type=cluster", symclos=FALSE, k=3)
References

Pattison, P. *Algebraic Models for Social Networks*. Cambridge Univ. Press. 1993

R Development Core Team, *R: A language and environment for statistical computing*, 3.2.0

Visone project team, *visone: Software for the analysis and visualization of social networks*, 2.6.4

Ostoic, J.A.R. *multiplex: Analysis of Multiple Social Networks with Algebra*. R package version 1.6
Thank you!

Q & A