multiplex: Analysis of multiple social networks with algebra

\author{

- Doing combinatorics in R.
}

Antonio Rivero Ostoic

```
jaro@econ.au.dk, multiplex@post.com
```

Aarhus University

Agenda

1. Multivariate network data
2. Algebraic analyses of social networks

- two-mode networks
- multiple networks
- signed networks

Motivation

- multiplex is a package designed to perform algebraic analyses of multiple networks
\Rightarrow but it is not limited to algebra ...

- multiple networks have relations at different levels

Multivariate network data

- For manipulation, networks are typically represented by matrices

	V1	V2	V3	V4
$[1]$,	0	1	1	0
$[2]$,	1	0	1	0
$[3]$,	1	1	0	0
$[4]$,	0	0	0	0

Multivariate network data

- For manipulation, networks are typically represented by matrices

	V1	V2	V3	V4
$[1]$,	0	1	0	0
$[2]$,	1	0	1	0
$[3]$,	0	0	0	0
$[4]$,	0	0	0	0

	V1	V2	V3	V4
$[1]$,	0	0	0	0
$[2]$,	0	0	0	0
$[3]$,	0	1	0	0
$[4]$,	0	0	0	0

- Another way to storage network data is by enumerating the ties in a "list"

Function zbind()

Creating multivariate network data from arrays

Function read.srt()

Creating multivariate network data from a data frame

send	receive	C	F	A
89	23	1	1	0
89	58	1	1	0
23	58	0	1	0
23	89	0	1	0
58	23	0	1	0
58	89	0	1	0
70	70	0	0	1
89	89	0	0	1

```
read.srt(file, header=TRUE, toarray=TRUE, ...)
```


Manipulating multivariate network data: perm()

```
> Z <- read.srt(file, header=TRUE, toarray=TRUE)
> perm(Z, clu=c(4,3,2,1))
> perm(Z, clu=c(2,1,2,1))
```

	23	58	70	89
23	0	0	0	0
58	0	0	0	0
70	0	0	0	0
89	1	1	0	0

	89	70	58	23
89	0	0	1	1
70	0	0	0	0
58	0	0	0	0
23	0	0	0	0

	58	89	23	70
58	0	0	0	0
89	1	0	1	0
23	0	0	0	0
70	0	0	0	0

, , F

	23	58	70	89
23	0	1	0	1
58	1	0	0	1
70	0	0	0	0
89	1	1	0	0

	89	70	58	23
89	0	0	1	1
70	0	0	0	0
58	1	0	0	1
23	1	0	1	0

	58	89	23	70
58	0	1	1	0
89	1	0	1	0
23	1	1	0	0
70	0	0	0	0

, , A

	23	58	70	89
23	0	0	0	0
58	0	0	0	0
70	0	0	1	0
89	0	0	0	1

	89	70	58	23
89	1	0	0	0
70	0	1	0	0
58	0	0	0	0
23	0	0	0	0

	58	89	23	70
58	0	0	0	0
89	0	1	0	0
23	0	0	0	0
70	0	0	0	1

Manipulating multivariate network data: transf()

```
\(F=\)\begin{tabular}{rrrrr}
23 & 58 & 70 & 89 \\
23 & 0 & 1 & 0 & 1 \\
58 & 1 & 0 & 0 & 1 \\
70 & 0 & 0 & 0 & 0 \\
89 & 1 & 1 & 0 & 0
\end{tabular}
> transf(F, type="matlist", lb2lb=TRUE)
[1] "23, 58" "23, 89" "58, 23" "58, 89" "89, 23" "89, 58"
> transf(transf(F, type="matlist", lb2lb=TRUE), type="listmat")
\begin{tabular}{lrrr} 
& 23 & 58 & 89 \\
23 & 0 & 1 & 1 \\
58 & 1 & 0 & 1 \\
89 & 1 & 1 & 0
\end{tabular}
```

Algebraic Analyses of Social Networks

Galois representation of two-mode networks

- Algebraic approaches for the analysis of two-mode networks are made through Galois derivations
- A two-mode network represents a formal context (Ganter \& Wille, 1996), which is a data frame of binary relations between objects and attributes
- The Galois derivations between the set of objects and the set of attributes lead to the complete list of the concepts in the context
- A hierarchy of concepts is a partially ordered set, which can be represented by the concept lattice of the context

Formal Context

Galois representation of two-mode networks

```
## Fruits data set with attributes
> frt <- data.frame(yellow = c(0,1,0,0,1,0,0,0), green = c(0,0,1,0,0,0,0,1),
    red =c c(1,0,0,1,0,0,0,0), orange =c(0,0,0,0,0,1,1,0),
    apple =c(1,1,1,1,0,0,0,0), citrus =c(0,0,0,0,1,1,1,1) )
## Label the objects
> rownames(frt) <- c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious",
                            "Lemon","Orange","Mandarin", "Lime")
```

$>$ frt						
	yellow	green	red	orange	apple citrus	
PinkLady	0	0	1	0	1	0
GrannySmith	1	0	0	0	1	0
GoldenDelicious	0	1	0	0	1	0
RedDelicious	0	0	1	0	1	0
Lemon	1	0	0	0	0	1
Orange	0	0	0	1	0	1
Mandarin	0	0	0	1	0	1
Lime	0	1	0	0	0	1

read.srt(file, header=TRUE, toarray=FALSE, attr=TRUE)

Galois derivations with galois()

```
> galois(frt, labeling="full")
$yellow
[1] "GrannySmith, Lemon"
$green
[1] "GoldenDelicious, Lime"
$`apple, red`
[1] "PinkLady, RedDelicious"
$`citrus, orange`
[1] "Mandarin, Orange"
$apple
[1] "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"
$citrus
[1] "Lemon, Lime, Mandarin, Orange"
$`apple, citrus, green, orange, red, yellow`
character(0)
...
[[12]]
[1] "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"
attr(,"class")
[1] "Galois" "full"
```


Galois derivations with reduced labeling

```
> gf <- galois(frt, labeling = "reduced")
$reduc
$reduc$yellow
[1] ""
$reduc$green
[1] ""
$reduc$red
[1] "PinkLady, RedDelicious"
$reduc$orange
[1] "Mandarin, Orange"
$reduc$apple
[1] ""
$reduc$citrus
[1] ""
$reduc[[7]]
character(0)
$reduc[[8]]
[1] "GrannySmith"
```

\$reduc[[12]]
character (0)

Galois derivations with reduced labeling

```
> str(gf)
```

```
List of 2
    $ full :List of 12
        ..$ yellow : chr "GrannySmith, Lemon"
    ..$ green : chr "GoldenDelicious, Lime"
    ..$ apple, red : chr "PinkLady, RedDelicious"
    ..$ citrus, orange
    : chr "Mandarin, Orange"
    ..$ apple
    ..$ citrus : chr "Lemon, Lime, Mandarin, Orange"
    ..$ apple, citrus, green, orange, red, yellow: chr(0)
    ..$ apple, yellow : chr "GrannySmith"
    ..$ citrus, yellow : chr "Lemon"
    ..$ apple, green : chr "GoldenDelicious"
    ..$ citrus, green : chr "Lime"
    ..$ : chr "GoldenDelicious, GrannySmith, Lemon, Li৷
    ..- attr(*, "class")= chr [1:2] "Galois" "full"
    $ reduc:List of }1
    ..$ yellow: chr ""
    ..$ green : chr ""
    ..$ red : chr "PinkLady, RedDelicious"
    ..$ orange: chr "Mandarin, Orange"
    ..$ apple : chr ""
    ..$ citrus: chr ""
    ..$ : chr(0)
    ..$ : chr "GrannySmith"
    ..$ : chr "Lemon"
    ..$ : chr "GoldenDelicious"
    ..$ : chr "Lime"
    ..$ : chr(0)
    - attr(*, "class")= chr [1:2] "Galois" "reduced"
```


Partial ordering of the concepts: partial.order()

```
> partial.order(gf, type = "galois",
labels=paste("c", 1:length(gf$full), sep="") )
```

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$	$c 7$	$c 8$	$c 9$	$c 10$	$c 11$	$c 12$
$c 1$	1	0	0	0	0	0	0	0	0	0	0	1
$c 2$	0	1	0	0	0	0	0	0	0	0	0	1
$c 3$	0	0	1	0	1	0	0	0	0	0	0	1
$c 4$	0	0	0	1	0	1	0	0	0	0	0	1
$c 5$	0	0	0	0	1	0	0	0	0	0	0	1
c6	0	0	0	0	0	1	0	0	0	0	0	1
$c 7$	1	1	1	1	1	1	1	1	1	1	1	1
c8	1	0	0	0	1	0	0	1	0	0	0	1
$c 9$	1	0	0	0	0	1	0	0	1	0	0	1
$c 10$	0	1	0	0	1	0	0	0	0	1	0	1
$c 11$	0	1	0	0	0	1	0	0	0	0	1	1
$c 12$	0	0	0	0	0	0	0	0	0	0	0	1

Concept lattice of the context: diagram()

```
## Plot the lattice diagram, require "Rgraphviz"
> diagram( partial.order(gf, type = "galois") )
```


Bipartite graphs construction

```
> lstfrt <- transf(frt, type = "matlist", lb2lb = TRUE)
```

[1] "GoldenDelicious, apple" "GoldenDelicious, green" "GrannySmith, apple"			
[4] "GrannySmith, yellow"	"Lemon, citrus"	"Lemon, yellow"	
[7] "Lime, citrus"	"Lime, green"	"Mandarin, citrus"	
$[10]$	"Mandarin, orange"	"Orange, citrus"	"Orange, orange"
$[13]$	"PinkLady, apple"	"PinkLady, red"	"RedDelicious, apple"

[16] "RedDelicious, red"
> transf(lstfrt, type = "listmat", lb2lb = TRUE)

apple	0	0	0	0	0	0	0	0	0
citrus	0	0	0	0	0	0	0	0	0
GoldenDelicious	1	0	0	0	1	0	0	0	0
GrannySmith	1	0	0	0	0	0	0	0	0
green	0	0	0	0	0	0	0	0	0
Lemon	0	1	0	0	0	0	0	0	0
Lime	0	1	0	0	1	0	0	0	0
Mandarin	0	1	0	0	0	0	0	0	1
orange	0	0	0	0	0	0	0	0	0
Orange	0	1	0	0	0	0	0	0	1
PinkLady	1	0	0	0	0	0	0	0	0
red	0	0	0	0	0	0	0	0	0
RedDelicious	1	0	0	0	0	0	0	0	0
yellow	0	0	0	0	0	0	0	0	0

Bipartite graphs as p.o. diagrams

> diagram(transf(lstfrt, type = "listmat", lb2lb = TRUE))

Multiple Networks

Relational structure

- While ties between actors establish a system social structure, with multiple networks we model also its relational structure
\rightarrow i.e. "interrelations between relations"
- We use a partially ordered semigroup to represent relational structures with the unique strings
\rightarrow which are made of generators and compound relations
- Compounds are the inner matrix product of other strings

Role Structure: strings()

$$
>\text { net <- incubA }[,, 1: 3]
$$

```
> strings(net)
```

, , C

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	0	1	0
$[2]$,	1	1	0	0
$[3]$,	1	0	1	0
$[4]$,	0	0	0	1

, , F

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	0	1	0
$[2]$,	1	1	1	0
$[3]$,	1	0	1	0
$[4]$,	0	0	0	1

, , K
$\begin{array}{rrrrr} & {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\ {[1,]} & 1 & 0 & 0 & 0 \\ {[2,]} & 0 & 1 & 0 & 0 \\ {[3,]} & 1 & 0 & 1 & 0 \\ {[4,]} & 0 & 0 & 0 & 0\end{array}$
\$wt
, , CK
$\begin{array}{lrrrr} & {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\ {[1,]} & 1 & 0 & 1 & 0 \\ {[2,]} & 1 & 1 & 0 & 0 \\ {[3,]} & 1 & 0 & 1 & 0 \\ {[4,]} & 0 & 0 & 0 & 0\end{array}$
, , FK
$\begin{array}{lrrrr} & {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\ {[1,]} & 1 & 0 & 1 & 0 \\ {[2,]} & 1 & 1 & 1 & 0 \\ {[3,]} & 1 & 0 & 1 & 0 \\ {[4,]} & 0 & 0 & 0 & 0\end{array}$
\$ord
[1] 5

```
\$st
[1] "C" "F" "K" "CK" "FK"
attr(,"class")
[1] "Strings"
```


Role Structure: strings()

```
> net <- incubA[,,1:3]
```

> strings(net, equat=TRUE, $k=3$) \$equat
, , C

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	0	1	0
$[2]$,	1	1	0	0
$[3]$,	1	0	1	0
$[4]$,	0	0	0	1

[1] "F" "CC" "FF" "CF" "FC" "CCC" "FFC"
[8] "CFF" "CCF" "FFF" "FCC" "FCF" "CFC"
\$K

```
[1] "K" "KK" "KKK"
$CK
[1] "CK" "KC" "KKC" "CKK" "KCK"
$FK
[1] "FK" "KF" "KKF" "FKK" "CCK" "FFK" "KCC"
[8] "KFF" "KFK" "CKC" "FKF" "CFK" "CKF" "FCK"
[15] "FKC" "KCF" "KFC"
```

, , K

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	0	0	0
$[2]$,	0	1	0	0
$[3]$,	1	0	1	0
$[4]$,	0	0	0	0

Role Structure: semigroup()

```
> semigroup(net, type="numerical")
```

```
$dim
[1] 4
$gens
...
$ord
[1] 5
$st
[1] "C" "F" "K" "CK" "FK"
$S
    142345
142445
2 2 2 5 5 5
3}4454344
4 5 5 4 5 5
5 5 5 5 5 5
attr(,"class")
[1] "Semigroup" "numerical"
```


Role Structure: semigroup()

```
> semigroup(net, type="symbolic")
$dim
[1] 4
$gens
...
$ord
[1] 5
$st
[1] "C" "F" "K" "CK" "FK"
$S
    C F K CK FK
C F F CK FK FK
F F F FK FK FK
K CK FK K CK FK
CK FK FK CK FK FK
FK FK FK FK FK FK
attr(,"class")
[1] "Semigroup" "symbolic"
```


Hasse Diagram of Role Relations

```
> posnet <- partial.order(strings(net), type="strings")
```

	C	F	K	CK	FK
C	1	1	0	0	0
F	0	1	0	0	0
K	1	1	1	1	1
CK	1	1	0	1	1
FK	0	1	0	0	1

Hasse Diagram of Role Relations

```
> posnet <- partial.order(strings(net), type="strings")
> diagram(posnet)
```


Hasse Diagram of Role Relations: incuba

```
> diagram( partial.order(strings(incubA), type="strings") ) )
```


Decomposition of Relational Structures

\& role structures

- An aggregated relational structure is obtained by means of a subdirect representation
\rightarrow direct representation is not always feasible and overlapping is required
- Decomposition implies finding congruence relations in the semigroup

```
> S <- semigroup(net)
> PO <- partial.order(strings(net), type="strings")
> CNGR <- cngr(S, PO, unique=TRUE)
> decomp(S, CNGR, type="cc", reduc=TRUE)
```

\rightarrow Aggregated structures are homomorphic images of the network relational structure, and provides the logics in the interlock of the relations

Signed Networks

- Signed networks are especial cases of multiple networks where relations are either positive or negative
$\stackrel{m}{ } \rightarrow$ but in social networks ambivalent ties occur as well
- We check whether the network structure is structurally balanced or not
\rightarrow i.e. whether or not the network has an inherent equilibrium
- This is done by evaluating cycles or semicycles through the defined rules in either a "balance" or a "cluster" semiring

Signed Networks: signed()

```
> net.sg <- signed(net[,,1], net[,,3])
```

```
$val
[1] "p" "o" "n"
$S
    1 2 % 3 4
1 n o p o
2n o o o
n O O o
4 o o o
attr(,"class")
[1] "Signed"
```


Signed Networks: semiring()

```
> formals(semiring)
$x
$type
c("balance", "cluster")
$symclos
[1] TRUE
$transclos
[1] TRUE
$labels
NULL
$k
    [1] 2
```


Balance \& Cluster Semiring

```
> semiring(net.sg, type="balance")
```

$$
\begin{array}{lllll}
\$ Q \\
& 1 & 2 & 3 & 4 \\
1 & p & p & n & n \\
2 & p & p & n & n \\
3 & n & n & p & p \\
4 & n & n & p & p
\end{array}
$$

$$
\$ \mathrm{k}
$$

$$
[1] \quad 2
$$

attr(, "class")
[1] "Rel.Q" "balance"
> semiring(net.sg, type=cluster", symclos=FALSE, k=3)

References

Q Pattison, P. Algebraic Models for Social Networks. Cambridge Univ. Press. 1993
Q Doreian, P., V. Batagelj and A. Ferligoj Generalized Blockmodeling. Cambridge Univ. Press, 2004

Q Ganter, B. and R. Wille Formal Concept Analysis - Mathematical Foundations. Springer. 1996

R Development Core Team, R: A language and environment for statistical computing, 3.2.0
(3) Gentry, J, L. Long, R. Gentleman, S. Falcon, F. Hahne, D. Sarkar, and K.D. Hansen Rgraphviz: Provides plotting capabilities for R graph objects. R package version 2.12.0

Visone project team, visone: Software for the analysis and visualization of social networks, 2.6.4
(2)

Ostoic, J.A.R. multiplex: Analysis of Multiple Social Networks with Algebra. R package version 1.6

Thank you!

$Q 8 A$

