
Integrating R with the Go
programming language using
interprocess communication
Christoph Best, Karl Millar, Google Inc.

chbest@google.com

Statistical software in practice &
production
● Production environments !!!= R development environment

○ Scale: machines, people, tools, lines of code…

● “discipline of software engineering”
○ Maintainable code, common standards and processes
○ Central problem: The programming language to use

● How do you integrate statistical software in production?
○ Rewrite everything in your canonical language?
○ Patch things together with scripts, dedicated servers, ... ?

Everybody should
just write Java!

Programming language diversity
● Programming language diversity is hard …

○ Friction, maintenance, tooling, bugs, …

● … but sometimes you need to have it
○ Many statistics problems can “only” be solved in R*

● How do you integrate R code with production code?
○ without breaking production

*though my colleagues keep pointing out that any Turing-complete language can solve any
problem

The Go programming language
● Open-source language, developed by small team at Google
● Aims to put the fun back in (systems) programming
● Fast compilation and development cycle, little “baggage”

● Made to feel like C (before C++)
● Made not to feel like Java or C++ (enterprise languages)

● Growing user base (inside and outside Google)

Integration: Intra-process vs inter-process
● Intra-process: Link different languages through C ABI

○ smallest common denominator
○ issues: stability, ABI evolution, memory management, threads, …

Can we do better? Or at least differently?
● Idea: Sick of crashes? Execute R in a separate process

○ Runs alongside main process, closely integrated: “lamprey”
● Provide communication layer between R and host process

○ A well-defined compact interface surface

R code

C++
Java
Python
...

R
runtime
(library)

 C runtime

RPC server

RPC client

 Go

 R

IPC Messages

single process
shared memory
shared crashes two processes

memory isolation

Integration: Intra-process vs inter-process

How it works
● Host process starts R subprocess

○ Tightly coupled on same machine/container

● R subprocess loads required packages
● R executes executionservice::RunExecutionService()

○ listens for connections, executes incoming requests, returns results
○ leverages existing RPC package

● Communication layer: gRPC(-like) / Protocol buffers
○ All messages are proto buffers
○ R subprocess is server, host language process is client

“Lamprey”

Data model
● Host sees R subprocess as REPL

Sends R commands and R values, reads results
○ Only R values, no references handled on this level

● R values encoded as proto buffers on wire
● Only basic R types go on the wire:

○ vectors of elementary data types
○ lists
○ everything else must be expressed by basic types

READ-EVALUATE-PRINT LOOP

Four simple requests from Go to R
● CreateContext() returns Context:

○ create an execution context (isolation)
● Set(ctx, variableName, Rvalue)

○ Assign a value to a named variable
● Do(ctx, Rexpression) returns RValue

○ Evaluate an expression (a string) in R
○ Expression refers to previously set variabkes
○ Return result value

● CloseContext(ctx):
○ free resources in context (e.g. variables)

Wire representation for R values
message REXP {

 required RClass rclass = 1;

 repeated double realValue = 2 [packed=true];

 repeated sint32 intValue = 3 [packed=true];

 repeated RBOOLEAN booleanValue = 4;

 repeated STRING stringValue = 5;

 repeated REXP rexpValue = 8;

 repeated string attrName = 11;

 repeated REXP attrValue = 12;

}

STRING, INTEGER, REAL, LOGICAL, NULLTYPE, LIST

}basic R vectors
list of R values
only one present

Object attributes

from RProtoBuf package,
Originally written by Saptarshi Guha for RHIPE (http://www.rhipe.org)

Wire representation for R values
enum RBOOLEAN {

 F=0;

 T=1;

 NA=2;

}

message STRING {

 optional string strval = 1;

 optional bool isNA = 2 [default=false];

}

String contains a flag to indicate NA value

Boolean is an enum with three values

Set request: wire representation
message SetRequest {

 optional Context context = 1;

 optional string variable_name = 2;

 optional rexp.REXP value = 3;

}

message SetResponse {

}

Context in which to assign the variable

Variable name to assign to

Value in wire encoding

No response necessary
Error conditions are transmitted separately

Evaluate request: wire representation
message EvaluateRequest {

 optional Context context = 1;

 repeated string expression = 2;

 optional bool return_result = 3 [default=true];

}

message EvaluateResponse {

 optional rexp.REXP result = 1;

}

Context in which to assign the variable

R expression as string
Can refer to variables

Indicates whether a result is expected

Result value in wire representation

A quick example
 service, err := rexp.NewService(context.Background()))

 x := []float64{1, 2, 3}

 y := []float64{2, 4, 6}

 r, err := service.Do(

 rexp.Set("x", x),

 rexp.Set("y", y),

 "d <- data.frame(x=x, y=y)",

 "m <- lm(x ~ y, d)",

 "list(coef=m$coefficients, res=m$residuals)")

 coefficients := r.Get("coef").ToAny().([]float64)

 residuals := r.Get("res").ToAny().([]float64)

Set up input data

Execute R code (magically sets up context etc.)

Extract
results

Transfer input data to R process

Make input data into a data frame

Do statistics here
Prepare results

Strategies
● Problem: You can only transfer “basic” R values
● Solution: Construct higher types explicitly (e.g. data frames)

○ In the future, we can hide this complexity using improvements to the
Go libraries

● Problem: Only values can be transferred, no references
● Solution: You can keep references as variables on the R side

○ Go library code can allocate variable names, etc, automate a lot of
things

This library only provides the “bottom layer”.

Does it work?
● Yes.

○ Used in several experimental projects.
○ Statisticians/analysts able to deal with interface.

● Is it fast enough?
○ Yes, for reasonably sized datasets (10-100 MBytes)
○ About 3ms for CreateContext/Set/Evaluate/CloseContext sequence
○ About 50-100 MByte/s for transferring data
○ Speed more dominated by R runtime than wire protocol

Future work
● Better data types on the Go side

○ Data frames natively in Go
○ Automatic construction of data.frame in R

● Callbacks and inverted server
○ Callbacks: Allow R to make calls to Go
○ Inverted server: Run Go as a subprocess of R
○ Could be used to extend R with Go code

● Open sourcing

Summary
● Inter-process communication is a (surprisingly) effective way

to couple two programming languages

● Simplicity
● Robustness
● Clarity

