
Some lessons relevant to including external
libraries in your R package

Kasper D. Hansen
Department of Biostatistics
Johns Hopkins University

kasperdanielhansen@gmail.com
@KasperDHansen
www.hansenlab.org



What

We stand on the shoulder of giants

R has excellent (bidirectional) interfaces to many languages.

It is often tempting, and sensible, to interface to an external library,
to solve a problem.

But there are issues. This talk explores my experiences doing this.

Every library has a different story.



Two steps

1. Make it work on your platform of choice, for yourself.
2. Make it work on all platforms, and with your repository of

choice (CRAN, Bioconductor, ?).

Step 2 can be very hard, and is easy to underestimate.

Check license.

Huge difference between CRAN and Bioconductor; I exclusively use
the later.



Some lessons

Two approaches for using an external library

1. Link to an external library during R package building.
2. Include library code and build library as part of R package.

Different tradeofs between developer time and user frustration.

I favor (2), but there are issues with Windows.

Examples of (1) in the wild includes download library at package
build time.



Crux of the problem

The external code is not under your control.

You may not understand it - apart from the API.

There are often portability issues; R runs on many platforms and
compilers. It is hard to write portable code. Since you don’t
understand the core code (or control it), it may be very hard to
address these issues.



Example: illuminaio

A package for parsing IDAT files, a series of binary formats for
Illumina microarray data.

Initial version from 2012 (much of the code is older).

Mostly written using reverse engineering of the file format.

Early versions of IDAT files were encrypted (support due to M.
Smith).

We use des.[ch] from FSF for decryption. No Makevars, works
on all platforms.



Example: affxparser

An interface to Fusion SDK, reference code from a microarray
manufacturer for parsing their binary file formats.

Initial version from 2005.

Fusion SDK is mostly written in C++; large complex codebase
(roughly 90 cpp files plus headers).



Example: affxparser, approach

We include Fusion SDK as src/fusion_sdk and build the SDK as
part of the R package building process.

Scrips for preparing Fusion SDK are in inst/info and
subdirectories, including patches.

We only compile the (large) subset of Fusion SDK we need.

Getting it to work on Linux, OS X using GCC was easy. Fusion SDK
had only been tested with Visual C on MS Windows (red flag).
Luckily, it was not too hard to get to work on MS Windows (H.
Bengstsson).



Example: affxparser, issues

Current

I (Embarrassingly) Throws exceptions which crashes R. These
should be caught, but none of us know C++ exceptions.

I Non portable paths:
affxparser/src/fusion_sdk/calvin_files/writers/src/CalvinCHPQuantificationDetectionFileBufferWriter.cpp

I Calls to std::cout, std:cerr, printf and others.
I Hack in Makevars to decrease optimization level (assumes GCC

style optimization flags). Caused by memory alignment issues
related to memory mapping of files.

Historical

I Weird crashes with GCC 4.3. Perhaps compiler bug.
I #pragma and unclear #ifdef usage.



Example: Rgraphviz, introduction

Interfaces to Graphviz, a graph layout library written by a group
formerly at AT&T.

From 2002 (very early Bioconductor) by the old core team (mostly
Jeff Gentry).

Has always worked on UNIX systems; historically major pain on
Windows (now solved)

Graphviz has a huge, old, complicated codebase (source tarball is 25
MB), mostly written in C. Conceptually, code factors into two parts:
layout and rendering. Only use the former in Rgraphviz.



Example: Rgraphviz, history
I 2002: Initial version links to external Graphviz; this does not

work on Windows (At the time, Graphviz is was built on
Windows using Visual C).

I 2005: S. Falcon manages to hand build Graphviz using MinGW
(Windows); the pre-built Graphviz is included in Rgraphviz.
Still unknown how this was accomplished.

I 2007: The Graphviz team supplies pre-built binaries which
works for linking on Windows. The 2005 solution is abandoned;
users now have to install Graphviz themselves.

This proved to be a major headache.

I Graphviz is updated frequently, in a non-backwards compatible
manner.

I Windows users had to locate the exact version used to build
the binary version of Rgraphviz. But older Graphviz versions
hidden on website.



Example: Rgraphviz, history, continued

I 2009: Updated Rgraphviz to support Graphviz 2.21 needed for
64 bit Windows (K. Hansen). Still had crashes on some
versions of Windows.

I 2009: Using .onLoad to catch errors when loading (M.
Morgan). This allows us to print useful messages regarding
version mismatch between Rgraphviz and Graphviz. Installation
still major headache though.

I 2012: Complete refactoring of the build process (K. Hansen).
Now installs easily on Windows.



Example: Rgraphviz, 2012 refactoring

1. Needed to separate rendering from layout in codebase. I did
this to remove many unnecessary dependencies from the build
process; needed to modify Automake files.

2. Rtools does not support running autoconf; many tools are
missing. I made a mixture of MinGW and Rtools to get missing
tools.

3. Several bugs, including memory leaks, in the Graphviz code
were identified; I had to debug without really understanding
what was going on.

4. Finally built it on Windows, developed using a dualboot
machine, then a VM.

End result: we now include src/graphviz and build Graphviz as
part of Rgraphviz. This allows us total control. We include pre-built
libraries for Windows in src/libwin and link to these libraries
during Rgraphviz building.



My checklist

Has the library been built

I using GCC (including GCC 4.2), clang
I using the Intel compilers
I on OS X?, Solaris?
I on Windows, using MinGW

Bonus for using autoconf as a build system.

What are the dependencies?



Issues to be solved by the community

1. Very painful to develop on platforms you have little access to
(for me, Windows).
Possible solution: make VM with everything installed, available
to developers.

2. Rtools does not support autoconf.
3. Develop system for delivering pre-built libraries, especially for

Windows but also OS X.


