TAM: An R Package for Item Response Modelling

Thomas Kiefer¹, Alexander Robitzsch¹, Margaret Wu²

¹Federal Institute for Educational Research, Innovation and Development of the Austrian School System (BIFIE), Salzburg, Austria, ²Educational Measurement Solutions, Victoria, Australia

useR! 2015 Aalborg July 2, 2015

Alexander Robitzsch.

Measurement Statistician at the Federal Institute for Educational Research, Innovation and Development of the Austrian School System (BIFIE), Salzburg, Austria. https://www.bifie.at/user/ robitzsch-alexander Professor Margaret Wu. Long-term Statistician for the OECD, Scientist at the Work-based Education Research Centre of the Victoria University Melbourne, Australia and Co-Founder of Educational Measurement Solutions. http://www.edmeasurement.com.au

R Package TAM (Kiefer, Robitzsch, & Wu)

Introduction Item Response Theory Why TAM? Conclusion

Introduction

Area of Application: Psychometrics

- Psychometrics is the (statistical) field of measuring psychological concepts.
- A field of application is the educational large-scale assessment (LSA).
- The psychological concept in an LSA is defined in a competency construct.
- The competence construct is a often very broad – definition of the students trait in question.

PISA 2012 Assessment and Analytical Framework

MATHEMATICS, READING, SCIENCE, PROBLEM SOLVING AND FINANCIAL LITERACY

Area of Application: Psychometrics

- Psychometrics is the (statistical) field of measuring psychological concepts.
- A field of application is the educational large-scale assessment (LSA).
- The psychological concept in an LSA is defined in a competency construct.
- The competence construct is a often very broad – definition of the students trait in question.



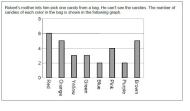
Figure: Model for the Competency construct of mathematical literacy in PISA

(OECD, 2013)

Area of Application: Educational Assessment

- Traits are measured using items.
- Items apply to a specific domain within the competence construct.
- Items are scored dichotomously (right / wrong) or polytomously (partial credit).
- Items are either closed response or constructed response format.
- A measurement is the students score to that or an equivalent item of the domain.

COLORED CANDIES



Question 1: COLORED CANDIES

M467Q01

What is the probability that Robert will pick a red candy?

A 10% B 20% C 25% D 50%

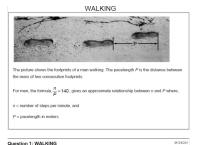
Figure: A typical item used in PISA

(https://nces.ed.gov/surveys/

pisa/releaseditems.asp, June '15)

Area of Application: Educational Assessment

- Traits are measured using items.
- Items apply to a specific domain within the competence construct.
- Items are scored dichotomously (right / wrong) or polytomously (partial credit).
- Items are either closed response or constructed response format.
- A measurement is the students score to that or an equivalent item of the domain.



If the formula applies to Heiko's walking and Heiko takes 70 steps per minute, what is Heiko's pacelength? Show your work.

Figure: Another typical item used in PISA

(https://nces.ed.gov/surveys/

pisa/releaseditems.asp, June '15)

Measurement

- To measure a domain sufficiently precise a large amount of items is used.
- Individual students are presented with a reasonably small representative sample (a booklet) of all possible items.
- Statistical Inference is obtained using Item Response Theory (IRT).

	idstud	female	migra	M192Q01	M406Q01	M406Q02	M423Q01	M496Q01	M496Q02
1	90001500281	0	0	1	1	1	0	1	1
2	90001500290	0	0	0	1	0	1	0	0
3	90001500292	0	0	1	1	0	0	0	0
4	90001500294	0	0	1	0	0	1	0	1
5	90001500295	0	0	1	1	1	1	0	0
6	90001500297	0	0	1	0	0	1	0	1
	M564Q01 M564	4Q02 M5	71Q01 N	4603Q01 1	M603Q02				
1	. 1	1	1	1	1				
2	1	0	0	0	0				
3	1	1	0	0	0				
4	. 1	1	0	0	0				
5	1	1	1	1	1				
6	1	0	0	0	0				

Measurement

- To measure a domain sufficiently precise a large amount of items is used.
- Individual students are presented with a reasonably small representative sample (a booklet) of all possible items.
- Statistical Inference is obtained using Item Response Theory (IRT).

	IDSTUD	IDBOOK	FEMALE	R11F01M	R11F02	1 R11	FO3M	R21E01M	R21E02M	R21E03M
80	40105	1	1	1)	0	1	1	1
194	80120	1	1	1		1	1	1	0	1
40	30101	2	0	NA	N.	Α	ΝA	1	1	1
81	40106	2	0	NA	N.	Α	ΝA	1	1	0
125	60204	3	1	NA	N.	Α	ΝA	NA	NA	NA
235	100210	3	0	NA	N.	Α	ΝA	NA	NA	NA
	R21Y08M	I R21Y09	9C R21Y	10C R31M	08M R31	109C	R31M1	LOC		
80	NA	. 1	NA	NA	NA	NA		NA		
194	NA	L 1	NA	NA	NA	NA		NA		
40	C)	2	0	NA	NA		NA		
81	1		2	0	NA	NA		NA		
125	1		2	1	1	1		1		
235	1		2	0	1	1		1		

R Package TAM (Kiefer, Robitzsch, & Wu)

Item Response Theory

IRT Models

IRT models are generalized nonlinear mixed effects models:

- the score $Y_{pi} \in \{0,1\}$ of a student p to an item i is the dependent variable,
- given a randomly sampled student's trait, e.g. $\theta_p \sim N(\mu, \sigma^2)$, the responses are assumend to be independent Bernoulli distributed,
- given θ_p , the predictor $\eta_{pi} = \text{logit} (P(Y_{pi} = 1))$ is a linear combination of item characteristics

$$\eta_{pi} = \sum_{k=0}^{K} b_k X_{ik} + \theta_p + \varepsilon_{pi},$$

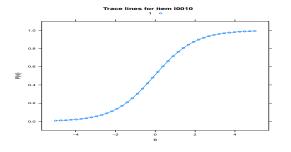
• let $X_{ik} = -1$, if i = k, and $X_{ik} = 0$, otherwise - thus obtain the Rasch model

$$P(Y_{pi} = 1 \mid \theta_p) = \frac{\exp(\theta_p - b_i)}{1 + \exp(\theta_p - b_i)};$$

(De Boeck & Wilson, 2004; Lord & Novick, 1968)

IRT models are extended towards different aspects:

- With respect to discriminatory power and guessing ratio of an item
- With respect to polytomous scores



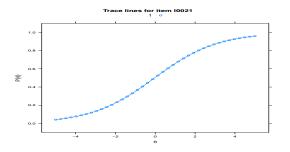
(Andersen, 1977; Birnbaum, 1968; Muraki, 1993; Rasch, 1960)

IRT models are extended towards different aspects:

• With respect to discriminatory power and guessing ratio of an item

$$P(Y_{pi} = 1 \mid \theta_p) = \frac{\exp\left(a_i\left(\theta_p - b_i\right)\right)}{1 + \exp\left(a_i\left(\theta_p - b_i\right)\right)}$$

With respect to polytomous scores



(Andersen, 1977; Birnbaum, 1968; Muraki, 1993; Rasch, 1960)

R Package TAM (Kiefer, Robitzsch, & Wu)

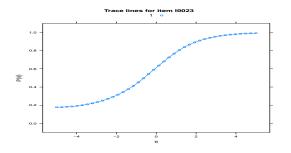
Item Response Theory

IRT models are extended towards different aspects:

• With respect to discriminatory power and guessing ratio of an item

$$P(Y_{pi} = 1 | \theta_p) = c_i + (1 - c_i) \frac{\exp(a_i(\theta_p - b_i))}{1 + \exp(a_i(\theta_p - b_i))},$$

With respect to polytomous scores



(Andersen, 1977; Birnbaum, 1968; Muraki, 1993; Rasch, 1960)

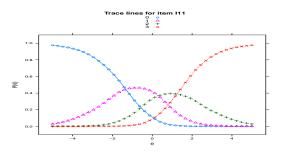
R Package TAM (Kiefer, Robitzsch, & Wu)

Item Response Theory

IRT models are extended towards different aspects:

- With respect to discriminatory power and guessing ratio of an item
- With respect to polytomous scores

$$P(Y_{pi} = k \mid \theta_p) = \frac{\exp(a_{ik}\theta_p - b_{ik})}{\sum_{k=0}^{K} \exp(a_{ik}\theta_p - b_{ik})}.$$



(Andersen, 1977; Birnbaum, 1968; Muraki, 1993; Rasch, 1960)

IRT models are extended towards different aspects:

- With respect to known student characteristics constituting the population (e.g., sex, migration status)
- With respect to construct dimensionality
- With respect to discrete skill classes (continuous distributions can be easily approximated by discrete ones)

Regression Coefficients V1 [1,] 0.704 Variance: [,1] [1,] 1.613

(Adams, Wilson, & Wang, 1997; Xu & von Davier, 2007; ?)

R Package TAM (Kiefer, Robitzsch, & Wu)

IRT models are extended towards different aspects:

• With respect to known student characteristics constituting the population (e.g., sex, migration status)

$$\theta_p \sim N\left(\mathbf{Z}\boldsymbol{\beta}, \sigma^2\right),$$

- With respect to construct dimensionality
- With respect to discrete skill classes (continuous distributions can be easily approximated by discrete ones)

```
Regression Coefficients

V1

Intercept 1.0263

female 0.3342

migra -0.7008

Variance:

[,1]

[1,] 1.988
```

IRT models are extended towards different aspects:

- With respect to known student characteristics constituting the population (e.g., sex, migration status)
- With respect to construct dimensionality

$$P\left(Y_{pi}=1 \mid \theta_p\right) = \frac{\exp(\sum_d a_{id}\theta_{pd} - b_i)}{1 + \exp(\sum_d a_{id}\theta_{pd} - b_i)}, \quad \theta_p \sim N^d\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$

 With respect to discrete skill classes (continuous distributions can be easily approximated by discrete ones)

Regression Coefficients [,1] [,2] [,3] Intercept 1.4055 0.3483 1.2977 female 0.2428 0.3026 0.4821 migra -0.6371 -0.5466 -0.7526 Variance: [,1] [,2] [,3] [1,] 1.354 1.291 1.831 [2,] 1.291 1.327 1.812 [3,] 1.831 1.812 2.621 R Package TAM (Kiefer, Robitzsch, & Wu)

IRT models are extended towards different aspects:

- With respect to known student characteristics constituting the population (e.g., sex, migration status)
- With respect to construct dimensionality
- With respect to discrete skill classes (continuous distributions can be easily approximated by discrete ones)

$$P(Y_{pi} = 1 | \theta_{p(l)}) = \frac{\exp(\theta_{p(l)} - b_{i(l)})}{1 + \exp(\theta_{p(l)} - b_{i(l)})}, \quad \theta_{p(l)} \in \{\theta_{p(1)}, \dots, \theta_{p(L)}\}.$$

R Package TAM (Kiefer, Robitzsch, & Wu)

Why TAM?

Here's why!

- Open source solution for everyday work in an educational assessment context (such as BIFIE);
- Estimation processes at BIFIE prior to TAM:
 - Data preparation in R,
 - 2 Call to third-party software for IRT analyses (e.g., **ConQuest**).

ConQuest:

- Absence of standard API,
- commercial black-box software.
- R packages:
 - **mirt** recently became suitable for use in LSA; still lacks some flexibility in specifying dependencies among item parameters.
 - Other R packages (e.g., **eRm**, **Itm**, **psychotools**) lack model classes or processing speed (or both) required for population-sized context.
- TAM is flexible due to design matrices; yet reasonably fast.
- Bonus: gain some deeper understanding of the estimation processes.

(Adams & Wu, 2007; Chalmers, 2012; Wu, Adams, Wilson, & Haldane, 2007)

R Package TAM (Kiefer, Robitzsch, & Wu)

IRT models can be set up using model syntax statements (based on lavaan).

- Relevant aspects for specifying IRT models in **TAM** group into four types.
- The Rasch model is specified by a minimaly complex input.
- Presented examples are necessarily limited; tamaan also allows for MODEL PRIOR, DO loops, and a lot more model classes.

> ## Toy example
> head(dat)

	A1	A2	AЗ	A4	Β1	B2	Β3	Β4	C1	C2	CЗ	C4	
2	1	1	1	1	1	1	1	1	1	1	1	0	
22	1	1	0	0	1	0	1	1	1	0	1	0	
23	1	1	0	1	1	0	1	1	1	1	1	1	
41	1	1	1	1	1	1	1	1	1	1	1	1	
43	1	0	0	1	0	0	1	1	1	0	1	0	
63	1	1	0	0	1	0	1	1	1	1	1	1	

IRT models can be set up using model syntax statements (based on lavaan).

- Relevant aspects for specifying IRT models in **TAM** group into four types.
- The Rasch model is specified by a minimaly complex input.
- Presented examples are necessarily limited; tamaan also allows for MODEL PRIOR, DO loops, and a lot more model classes.

```
> ## Basic setup
> tammodel <- "</pre>
```

ANALYSIS:

LAVAAN MODEL:

ITEM TYPE:

MODEL CONSTRAINT:

```
"
> ## estimate model
> # mod <- tamaan(tammodel, resp = dat)
```

R Package TAM (Kiefer, Robitzsch, & Wu)

IRT models can be set up using model syntax statements (based on lavaan).

- Relevant aspects for specifying IRT models in **TAM** group into four types.
- The Rasch model is specified by a minimaly complex input.
- Presented examples are necessarily limited; tamaan also allows for MODEL PRIOR, DO loops, and a lot more model classes.

```
> ## Rasch model ----
> tammodel <- "
ANALYSTS:
  TYPE = TRAIT:
LAVAAN MODEL:
  F1 = ~A1 C4
  F1 ~~ F1
TTEM TYPE:
  ALL(Rasch):
    .....
> # estimate model
> mod <- tamaan(tammodel, resp = dat, control = list(progress = FALSE))</pre>
> mod$variance
          V1
V1 1.190302
```

Why TAM?

IRT models can be set up using model syntax statements (based on lavaan).

- Relevant aspects for specifying IRT models in **TAM** group into four types.
- The Rasch model is specified by a minimaly complex input.
- Presented examples are necessarily limited; tamaan also allows for MODEL PRIOR, DO loops, and a lot more model classes.

```
> ## Rasch model ----
> tammodel <- "
ANALYSTS:
  TYPE = TRAIT;
LAVAAN MODEL:
  F1 = ~A1 C4
  F1 ~~ F1
TTEM TYPE:
  ALL(Rasch):
     .....
> # estimate model
> mod <- tamaan(tammodel, resp = dat, control = list(progress = FALSE))</pre>
> mod$variance
          V1
V1 1.190302
R Package TAM (Kiefer, Robitzsch, & Wu)
                                             Why TAM?
```

Model Syntax II

Extending the **lavaan** syntax tamaan additionally implements convenient operators for specifications on the item side, such as sum over multiple entitites "__" and guessing parameters "?=".

```
> ## 3PL Model ----
> tammodel <- "
ANALYSIS:
 TYPE = TRAIT:
LAVAAN MODEL:
 F1 = ~A1_C4
 F1 ~~ 1 * F1
 A1 ?= g1
 B1 + C1 ?= gBC * g1
> # estimate model
> mod <- tamaan(tammodel, resp = dat, control = list(progress = FALSE))</pre>
> round(mod$item$guess,2)
```

Model Syntax II

Catchy definitions of model constraints for parameters are available.

```
> ## MODEL CONSTRAINTS ----
> tammodel <- "
ANALYSTS:
 TYPE = TRAIT:
LAVAAN MODEL:
 F1 = 10ad1 load10 * A1 C2
 F1 ~~ 1 * F1
MODEL CONSTRAINT:
 load2 == 1.1*load1
 load3 == 0.9 * load1 + (-.1) * load0
 load8 == load0
 load9 == load0
....
> # estimate
> mod <- tamaan(tammodel , resp = dat, control = list(progress = FALSE))</pre>
> head(tamaanify(tammodel, dat)$L[, 1, ], 3)
  load1 load0 load4 load5 load6 load7 load10
A1 1.0 0.0 0
                       0
                             0
A2 1.1 0.0 0 0 0 0 0
A3 0.9 -0.1 0
                       0
                            0
                                  0
                                       0
```

Model Syntax II

Using the options in analysis TYPE, Latent Class Analysis (LCA) models can be specified.

```
> ## LCA Model ----
> tammodel <- "
ANALYSIS:
 TYPE=LCA:
 NCLASSES(3):
 NSTARTS(5, 20);
LAVAAN MODEL:
 F = ~A1_C4
   н
> # estimate model
> mod <- tamaan(tammodel, resp = dat,
         control = list(progress = FALSE))
+
> head(mod$lcaprobs, 3)
  item itemno Cat Class1 Class2 Class3
  A1 1 0 0.3075322 0.1658559 0.0000458541
1
2
  A1 1 0.6924678 0.8341441 0.9999541459
3
   A2
           2 0.0.4871546 0.4437222 0.0287977165
```

Processing Speed

Messy task: at multiple integration nodes θ_p , efficiently compute,

$$P\left(Y_{pi}=k \mid \theta_p\right) = \frac{\exp(\sum_d b_{ikd}\theta_{pd} + a_{ik}\xi_i)}{\sum_{k=0}^k \exp(\sum_d b_{ikd}\theta_{pd} + a_{ik}\xi_i)}, \,\forall i, k, p.$$

```
> calc_prob <- function(iIndex, A, AXsi, B, xsi, theta, nnodes, maxK){</pre>
   AXsi.tmp <- array(tensor(A[iIndex, , , drop = FALSE], xsi, 3, 1),
+
                      dim = c(length(iIndex), maxK, nnodes))
+
   AXsi[iIndex,] = AXsi.tmp[,,1]
+
   Btheta <- array(0, dim = c(length(iIndex) , maxK , nnodes) )</pre>
+
   for( dd in 1:ncol(theta)){
+
^{+}
     Btheta <- Btheta + array(B[iIndex, , dd, drop = FALSE] %0% theta[, dd],
                                \dim = \dim(Btheta))
+
+
  }
^{+}
   rprobs <- (rr <- exp(Btheta + AXsi.tmp)) /</pre>
     aperm(array(rep(colSums(aperm(rr,c(2, 1, 3)), dims = 1, na.rm=TRUE), maxK),
+
+
                  dim = dim(rr) [c(1, 3, 2)]), c(1, 3, 2))
   return(list("rprobs" = rprobs, "AXsi" = AXsi))
+
+}
```

Processing Speed II

Messy and time consuming task: efficiently compute the posterior distribution

$$f(\theta \mid Y) = \frac{f(Y \mid \theta) f(\theta)}{f(Y)}.$$

```
> # compute posterior distribution
> calc_posterior_TK <- function(rprobs, gwt, nitems){
+ fx <- gwt
+ for ( i in 1:nitems ){
+ r.ii <- rprobs[i ,, ]
+ fx <- fx * r.ii[ resp[,i] + 1 , ]
+ }
+ hwt <- fx / rowSums(fx)
+ return(hwt)
+ }
```

Processing Speed II

Messy and time consuming task: efficiently compute the posterior distribution $f(\theta \mid Y) = \frac{f(Y \mid \theta) f(\theta)}{f(Y)}.$

```
for(i=0; i<nresp; i++){</pre>
  for(k=0; k<nnodes; k++){</pre>
    res[i+nresp*k] = REAL(sFx)[i+nresp*k];
 }
}
for(i=0: i<nitems: i++){</pre>
 // extract non-missing value list
 len = LENGTH(VECTOR_ELT(sRespIndList, i));
  ni = INTEGER(VECTOR_ELT(sRespIndList, i)) ; //ni indices in R, therefore '-1'
 //compute fx
  for(k=0: k<len: k++){</pre>
    for(1=0; 1<nnodes; 1++){</pre>
      res[ ni[k] + 1*nresp - 1 ] = res[ ni[k] + 1*nresp - 1] *
                     rii[ i + resp[ni[k]+i*nresp - 1]*nitems + l*nitems*ncats ];
   }
  3
```

		TAM	mirt	eRm	ConQuest*
Ν					
500	30	00:00,057	00:00,425	00:01,229	00:00,761
	60	00:00,088	00:00,320	00:05,550	00:00,900
	100	00:00,193	00:00,689	00:21,136	00:01,740
	200	00:00,579	00:01,876	02:31,158	00:03,661
3000	30	00:00,229	00:00,412	00:01,610	00:02,371
	60	00:00,297	00:00,639	00:06,447	00:03,303
	100	00:00,568	00:01,195	00:22,977	00:04,683
	200	00:01,422	00:03,041	02:31,919	00:10,779
10000	30	00:00,561	00:00,958	00:02,821	00:07,360
	60	00:00,656	00:01,447	00:08,969	00:09,405
	100	00:01,242	00:02,461	00:28,209	00:12,583
	200	00:03,325	00:06,053	02:47,708	00:24,396
70000	30	00:02,723	00:04,691	00:12,943	00:50,298
	60	00:04,240	00:09,244	00:29,783	08:03,661
	100	00:06,620	00:14,547	01:07,383	01:26,910
	2000	00:17,789	00:31,569	04:31,620	02:18,048

	TAM	CDM	sirt	
Main functions	tam, tam.mml, tam.mml.2pl/.3p	din, gdina, ol gdm	supplementary	
Standard generics	summary, plot,	logLik, anova,	residuals	
Quasi-standard	ndard IRT.expectedCounts.*, IRT.factor.scores.*, IRT.irfprob.*, IRT.modelfit.*, IRT.posterior.*			

Conclusion

- There already are several R packages for IRT analysis. None of which is suitable for LSA.
- **TAM** is unmatedly flexible (just a glimpse is presented) and competitive in means of processing speed.
- For convenient recovery of its flexibility, **TAM** offers and extends **lavaan**'s model syntax.
- TAM implements generic functions for objects from a wide range of packages (also beyond the scope of TAM, CDM and sirt).
- In the Future:
 - keep TAM competitive in terms of flexibility and processing speed,
 - extend and round up the model syntax,
 - extend the quasi standard generics,
 - provide a Vignette.

Thank you for your attention!

Thomas Kiefer

BIFIE Salzburg

t.kiefer@bifie.at

www.bifie.at/user/kiefer-thomas

Bundes institut biffie Bildungsforschung, Innovation & Entwicklung des österreichischen Schulwesens

References |

- Adams, R. J., Wilson, M., & Wang, W.-C. (1997). The multidimensional random coefficient multinomial logit model. *Applied Psychological Measurement*, *21*, 1–23.
- Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model: A generalized form of the Rasch model. In M. von Davier & C. Carstensen (Eds.), *Multivariate and mixture distribution Rasch models* (p. 57-75). New York: Springer.
- Andersen, E. B. (1977). Sufficient statistics and latent trait models. *Psychometrika*, 42, 69–78.
- Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), *Statistical theories of mental test scores* (pp. 397–479). Reading, MA: Addison-Wesley.
- Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. *Journal of Statistical Software*, 48(6), 1-29. Retrieved from http://www.jstatsoft.org/v48/i06/
- De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York: Springer.
- Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

References II

- Muraki, E. (1993, December). Information functions of the generalized partial credit model. *Applied Psychological Measurement*, *17*(4), 351–363.
- OECD (Ed.). (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing.
- Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests.

Copenhagen: Nielsen & Lydiche.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2), 1–36. Retrieved from

http://www.jstatsoft.org/v48/i02/

- Wu, M. L., Adams, R. J., Wilson, M. R., & Haldane, S. (2007). ACER Conquest Version 2.0 [Computer software manual]. Mulgrave.
- Xu, X., & von Davier, M. (2007). Fitting the Structured General Diagnostic Model to NAEP Data (ETS Research Report). Princeton: ETS.