R as a Citizen in a Polyglot World

The promise of the Truffle framework

Lukas Stadler, VM Research Group, Oracle Labs
useR! 2015
Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. Oracle reserves the right to alter its development plans and practices at any time, and the development, release, and timing of any features or functionality described in connection with any Oracle product or service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and do not necessarily reflect the views of Oracle.
„The Polyglot World“
From 30,000 feet
„The Polyglot World“
From 20,000 feet
„The Polyglot World“
From 10,000 feet
„The Polyglot World“

From 1,000 feet
„The Polyglot World“

From 1,000 feet
„The Polyglot World“
From 1,000 feet
„The Polyglot World“
The Graal/Truffle Technology Stack

World’s first competitive-performance multilingual runtime stack
Oracle Labs’ Graal/Truffle Technology Stack

Components

• Language implementations:
 – JS, Ruby, Python, C, Smalltalk, ...

• Truffle framework
 – Language runtime features
 – Interoperability, tooling, debugging
 – Partial evaluation of AST interpreters

• Graal compiler
 – Java bytecode compiler

“One VM to rule them all, and with interoperability bind them”
Demo
FastR: apply the advantages of the Truffle/Graal stack to R

- **Superior performance without resorting to C and Fortran**
 - Significant amounts of time are spent converting R to C code for performance

- **Interoperability with CRAN, Bioconductor, github, ... repositories and packages**
 - Can hardly be called “R” without this

- **Interoperability within the Graal/Truffle ecosystem**
 - Transparent inerop with JS, C, Ruby, ...

- **Research vehicle for data-heavy and parallel applications**
 - multi-tenancy, multi-threading and multi-node execution of R applications, alternative internal data representations, etc.
The FastR Project

• Derivative of GNU-R – all code GPLv2
 – https://bitbucket.org/allr/fastr
 – Sources only, no binary release (yet)

• Started with Jan Vitek’s group at Purdue, ongoing at Northeastern

• Collaborations with:
 – Purdue/Northeastern (testr, S3/S4 semantics, formulas, …)
 – JKU Linz (Truffle, language interoperability, …)
 – Formerly: UC Davis, TU Dortmund
 – TU Berlin (planned)
Acknowledgements

Oracle Labs
Danilo Ansaloni
Stefan Anzinger
Daniele Bonetta
Matthias Brantner
Laurent Daynès
Gilles Duboscq
Michael Haupt
Christian Humer
Mick Jordan
Peter Kessler
Hyunjin Lee
David Leibs
Kevin Menard
Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Lukas Stadler
Michael Van De Vanter

Oracle Labs (continued)
Adam Welc
Till Westmann
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolckzo
Andreas Wöß
Thomas Würthinger

Oracle Labs Interns
Shams Imam
Stephen Kell
Gero Leinemann
Julian Lettnner
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Labs Alumni
Erik Eckstein
Christos Kotselidis

JKU Linz
Prof. Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Matthias Grimmer
Christian Häub
Josef Haider
Christian Hube
David Leopoldsederr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of California, Irvine
Prof. Michael Franz
Codrut Stancu
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Romand Tsegelskyi
Prahlad Joshi
Petr Maj Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle
Hardware and Software
Engineered to Work Together