
A cloud infrastructure for R reports
Gergely Daróczi1,2,3; Aleksandar Blagotic1,2

Founder, Easystats Ltd, UK |Assistant lecturer, PPKE BTK, HUN|PhD candidate, Corvinus University, HUN |R/web-developer, Easystats Ltd, UK |MsC student, University of Niš, SRB

P22

Rapporter is a web application dedicated to create comprehensive, reliable, literate and
reproducible statistical reports on any mobile device or PC, using an intuitive user interface.

The application builds on the power of R beside other open-source technologies like rApache
enabled Apache and nginX webservers on Ubuntu LTS, Couch and Mongo as our robust NoSQL
database backends, GlusterFS for the distributed and replicated network filesystem, Ruby on Rails
with a bunch of gems like thin webserver for the content management system and hundreds of R
packages from CRAN and GitHub.

Our main idea was to create a webapp for statistical analysis that can be used in any modern
browser even on tablets/iPads and doing the heavy computations on the scalable server side in a
triply-secured environment (user roles, sandboxR and RAppArmor packages along with AppArmor).

So the user simply uploads some data in various formats and can apply a wide variety of statistical
templates [1] on those with the help of diversified input methods [2], then export the reports [3] to
pdf, odt, docx or HTML formats [4]. As the templates are written in a brew-like syntax [5], it is
extremely easy to fork or modify those with even minimal programming skills or write new methods
from scratch using any R packages [6] and functions.

Some might consider Rapporter as a customisable and user-friendly graphical user interface to R
running on the cloud, but the recently introduced API highly extends this use-case. The so-called
Rapplications [7] can be integrated in any homepage without any programming skills, providing an
easy to use front-end to any statistical templates with publication-ready outputs.

Feature requests, bug reports or other questions are very welcomed on our support/help page [8, B].

Contact: daroczig@rapporter.net | alex@rapporter.net useR! 2013

About rapporter.net

Infrastructure

Security considerations for evaluating untrusted R commands in the cloudReferences (in order of mention)

6

1

3

5

7

2

4

8

The goal of Rapporter was to provide a front-end to R in all modern browsers running on various platforms [A] – let it be a desktop,
a notebook, tablet or a mobile phone. Users can access their data, reports and statistical tools stored in the Rapporter cloud from any
place over the Internet and even do it collaboratively with other fellows and contributors.

A minor but useful part of the infrastructure is hosted at Zendesk that provides an extensible knowledge base and support forum [B].

All the requests and data packets sent by the clients to Rapporter servers hit our Content Delivery Network provider [C] first that would return all static content
of the webapp cached at several locations around the world for improved response times. The CDN also operates as a front-line firewall and filters out some
unwanted and potentially dangerous packets and queries [D] beside minimizing the risk of (Distributed) Denial-of service attacks. Users can optionally use
Rapporter over a secure channel by HTTPS protocol [E], as the data transmitted to and from CloudFlare is encrypted on demand for improved security.

8

 rapporter.net
 r-project.irg
 rapache.net
 nginx.org
 www.ubuntu.com
 couchdb.apache.org
 www.mongodb.org
 www.gluster.org
 rubyonrails.org
 code.macournoyer.com/thin
 github.com/rapporter/sandboxR
 hackme.rapporter.net
 github.com/jeroenooms/RAppArmor
 johnmacfarlane.net/pandoc
 www.cloudflare.com
 github.com/errbit/errbit
 www.zabbix.com
 www.zendesk.com
 www.pingdom.com
 rapport-package.info
 rapporter.github.io/pander

B

A

C

E

F

G

H

I

O

M

L

P

J

K

I

Data storage [M]

Although administering and maintaining
several similar database engines might not
make much sense in most setup, we use
two NoSQL databases for improved
performance. CouchDB is awesome for its
disk-based B-tree views, simple attachment
concept and eventual consistency schema,
while MongoDB makes the Rails models a
lot more convenient to work with.
Gluster is a network filesystem that stores
R generated images on a replicated and
optionally distributed storage attached to
the highly available Rails servers.

The major drawback or rather just difficulty of running R in a shared, hosted session and
environment is that R was written to be used on the localhost, and more importantly: by a single
user. So the core has bunch of internal functions granting access to the storages, network
interfaces and other peripherals, even letting users to easily launch system commands or bring
up a live console. The possible workarounds were discussed by Jeroen Ooms (2013) in ”Security
Policies in R on Linux” at JSS. Although we highly appreciate Jeroen’s RAppArmor and also using that
on all our R workers, we still see some security holes to be addressed by other tools – like
sandboxR. Please see some examples on the right demonstrating the features of the two package.

So we ended up using a sandbox in an enforced hard-limit AppArmor profile with some fine-
tuned and customizable hats, so that the internal functions could access those resources locked
from users in the means of direct access. But hey, if there is a convenient way to load datasets
(with the help of internal functions), why would anyone try to read.table from the disk after all?

> system("rm -fr /")
Forbidden function called: system.

> foo <- "system(‘/usr/bin/bash')"
> eval(parse(text = foo))
Forbidden function called: parse.

> get('system')
Forbidden function used as symbol: system.

> get(paste("", "y", "tem", sep = "s"))("whoami")
Forbidden function used as symbol: system.

> options("sandboxR.disabled.options")
Not available option(s) queried.

> forkbomb <- function(){ # (c) Jeroen Ooms
+ repeat # RAppArmor package
+ parallel::mcparallel(forkbomb())
+ }
> forkbomb()
Error in mcfork() :
unable to fork, possible reason:
Resource temporarily unavailable

The dynamic content is mainly served by our Ruby on Rails [F] workers in the means of a cluster of thin servers [G] running inside of our private
internal network. This content management system is made of several separate threads replying to user request via a load balancing reverse
proxy [H] that also serves static content, plus JavaScript, CSS and image assets.

Although we try to do our best with deploying working code on production servers, we also collect possible Rails error messages with Errbit [I].

Another major part of our setup are the HAProxy cluster [I] of rApache based R workers [J] running within an enforced AppArmor [K] profile and
optional AppArmor hats based on user privileges. This latter Linux kernel security module ensures that the users could not directly touch the
disks or make connections to our databases – even if some malicious code would somehow escape our in-house developed sandbox called
sandboxR

N

As we are using R for creating complex or one-time and temporary reports via a Graphical User Interface or the recently introduced Application Programming
Interface called Rapplications, our home-made internal R functions do not deal with any statistical problems, but rather provides an environment for the users to
easily implement those. Rapporter is basically made of our open-source rapport and pander packages (please see below) beside the above described Rails
front-end and hardened security tools, and the data, methods and results all bundled in various JSON driven databases [M].

All our servers are running Ubuntu LTS [N] on 64 bit with a decent amount of memory and CPU cores optionally dedicated to VIP customers, and continuously
monitored 24 hours a day, 7 days a week via the public [9] Pingdom availability monitor [O] and a more detailed and technical. enterprise-class monitoring
solution with thousands of metrics, called Zabbix [P] – beside Google Analytics of course.

Reproducible statistical templates

Our pander package acts as a wrapper around Pandoc [L], the universal document
converter, automatically mapping R objects to markdown and then transforming the
resulting markdown files to other document formarts, and rapport provides a way
to create reproducible, dynamic and literate statistical templates with dynamic
inputs for easy and iterative reporting.

sandboxR. The dynamic hat option allows fine-grained control over the hardware resources on a per-user basis in the means of e.g. CPU power
and memory limit, or network access. Please see some further security considerations below.

D

9

> sapply(c(
'pander',
'rapport',
'sandboxR',
'RAppArmor'),

+ library,
+ char = TRUE)

