
Accelerating Simulations in R using Automatically Generated
GPGPU-Code

Frank Kramer1*, Andreas Leha1, Tim Beissbarth1

1. Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
*Contact author: frank.kramer@med.uni-goettingen.de

Keywords: GPGPU, CUDA, Simulation, simR2CUDA

Newly developed classifiers, estimators, and other algorithms are often tested in simulations to assess
power, control of alpha-level, accuracy and related quality criteria.

Depending on the required number of simulation runs
and the complexity of algorithms, especially the
estimation of parameters and the drawing of random
numbers under certain distributions, these simulations
can run for several hours or even days. Such simulations
are embarrassingly parallel and, therefore, benefit
massively from parallelization. Not everyone has access
to clusters or grids, though, but highly parallel graphics
cards suitable for general purpose computing are
installed in many computers. While there is a distinct
number of maintained R-packages available
(Eddelbuettel2011) that are able to interface with GPUs
and allow the user to speed up computations, integrating
these methods in simulation runs is often complicated
and mechanisms are not easily understood.

We present a new package that acts as a wrapper for
CUDA-implementations and offers a systematic way for
a statistician to accelerate simulations written in R. After
including the package simR2CUDA the user defines the
algorithm for a single simulation run in an R function and
passes the function, other required parameters and the
number of simulation runs to a compiler function. The
allowed syntax concerning flow-control for the function defining a single simulation run is restricted to
comply with GPU and implementation limitations. Given that a CUDA environment is correctly
installed and configured, a wrapper function, representing the whole simulation, and a CUDA function,
representing an individual simulation step, are generated and integrated into R using dyn.load.
Upon calling the generated code the simulation wrapper, a simple C function, splits up the independent
simulation runs for parallel execution on GPU threads and collects and returns the results, after
execution of all n runs on the GPU has finished (see Figure 1).

References

Eddelbuettel (2011). CRAN Task View: High-Performance and Parallel Computing with R,
http://cran.r-project.org/web/views/HighPerformanceComputing.html.

Figure 1: Illustration of generic process
flow in generated code

mailto:foo@bar.com
http://cran.r-project.org/web/views/HighPerformanceComputing.html

