
Analyzing Big (Survey) Data with Limited Computing Resources in R: A Case Study
Anthony Damico, MHS and Rachel Licata, MPH

Kaiser Family Foundation

Background

The objective of this presentation is to describe the steps

required to convert large government survey data files into a

SQLite database and then produce the principle set of

statistical estimates and accompanying error terms, while

accommodating computer systems with limited amounts of

RAM. While proprietary software packages such as SAS and

SUDAAN have the capacity to analyze large survey data sets in

a memory-insensitive fashion, researchers can employ the

techniques outlined in this poster to utilize the free R statistical

computing platform and produce equivalent results.

Read large CSV files into SQL DB Means, Distributions, and Medians

Limitations and Future Research
• Medians (especially when grouped) run very slowly and should be optimized

• Replicate-Weighted Regressions are currently only possible using the survey

package, which requires somewhat larger amounts of RAM to load, even when

combined with ODBC.

Computing Standard Errors with SQL
#set to the number of GB of RAM on computer

gbram <- 0.5

#set to CSV file directory

setwd("C:\\American Community Survey\\2009\\")

#program start

start <- Sys.time()

chunk_size <- gbram * 100000

table_name <- "acs09"

library(RSQLite)

file_list <- c("ss09pusa.csv", "ss09pusb.csv")

file_list

input <- file(file_list[1], "r")

db <- dbConnect(SQLite(), dbname="acs09.db")

header <- readLines(input, n = 1)

fields <- strsplit(header, ",")[[1]]

colTypes <- rep("INTEGER", length(fields))

colDecl <- paste(fields, colTypes)

sql <- sprintf(

paste("CREATE TABLE",table_name,"(%s)") ,

paste(colDecl, collapse = ", "))

dbGetQuery(db, sql)

colClasses <- rep("character", length(fields))

sql.in <- sprintf(

paste("INSERT INTO",table_name,"VALUES (%s)"),

paste(rep("?", length(fields)), collapse = ","))

dbBeginTransaction(db)

for (i in 1:length(file_list)){

input <- file(file_list[i], "r")

header <- readLines(input, n = 1)

tryCatch({

while (TRUE) {

part <- read.table(input, nrows=chunk_size, sep=",",

colClasses = colClasses,

comment.char = "")

dbGetPreparedQuery(db, sql.in, bind.data = part)

}

}, error = function(e) {

if (grepl("no lines available", conditionMessage(e)))

TRUE

else

stop(conditionMessage(e))

})

}

dbCommit(db)

dbGetInfo(db)

Sys.time() - start

Since its inception, working with R has proven to be a challenge

for researchers using large data sets. Like the statistical

packages Stata and SPSS, R natively pulls files directly into

Random Access Memory (RAM), effectively capping the

workable file size by the available memory of a user’s

workstation. Record counts for databases used in genomics,

medical claims, and even population research can easily

number in the millions, potentially rendering each of these

software packages inadequate. Analysts accustomed to the

line-by-line memory handling technique of SAS and SUDAAN –

both of which read in a single row, execute all computations, and

then release that row from memory – commonly cite this

drawback as their central concern when asked why they have

not converted to R. Thanks to its dynamic package system,

however, the R language can harness the line-by-line

functionality of Structured Query Language in tandem with Open

Database Connectivity (ODBC), enabling it to replicate many

RAM-insensitive processes that were previously only known to a

subset of the major statistical systems.

Objective

Acknowledgements
The authors would like to thank Seth Falcon of Opscode Inc. for

coding assistance and Thomas Lumley of the University of

Washington for survey methodology advice.

dec_places <- "1.00000000"

simple weighted mean on a linear variable – Age – of all US residents

dbGetQuery(db , paste("SELECT“ , dec_places , "* SUM(AGEP*PWGTP) /

SUM(PWGTP) as wgtage

from acs09"))

simple weighted mean on a linear variable – Age – of all US residents, by state

dbGetQuery(db , paste("SELECT ST,“ , dec_places , "* SUM(AGEP*PWGTP) /

SUM(PWGTP) as wgtage

from acs09

GROUP BY ST"))

simple weighted mean on a factor variable

% with Public Health Insurance Coverage – of all US residents

dbGetQuery(db , paste("SELECT PUBCOV," , dec_places , "* sum(PWGTP) /

(SELECT sum(PWGTP) from acs09) as pctPUBCOV

FROM acs09

GROUP BY PUBCOV"))

% with Public Health Insurance Coverage – of all US residents, by state

try(dbGetQuery(db , "DROP TABLE totals_temp"),silent=T)

dbGetQuery(db , paste("CREATE TABLE totals_temp AS

SELECT ST," , dec_places , "* sum(PWGTP) as PWGTP FROM

acs09

GROUP BY ST"))

dbGetQuery(db , paste("SELECT b.ST, PUBCOV,", dec_places , "* sum(b.PWGTP) /

(a.PWGTP) as pctPUBCOV

FROM acs09 b INNER JOIN totals_temp a

ON a.ST == b.ST

GROUP BY PUBCOV, b.ST")

#rough median and other quantiles on a linear variable – Income – of adult US residents

s <- dbGetQuery(db , "SELECT SUM(PWGTP) FROM acs09 WHERE AGEP > 17 AND

PINCP != ''")

#find record with the desired quantile point

p_w <- s * .5

#p_w <- s * .75

#reorder table by variable of interest

try(dbGetQuery(db , "DROP TABLE ordered_temp"),silent=T)

dbGetQuery(db , "CREATE TABLE ordered_temp AS

SELECT CAST(PINCP AS INTEGER) AS PINCP , PWGTP

FROM acs09 WHERE PINCP != ‘‘ AND AGEP > 17

ORDER BY PINCP ASC")

#pull single record at appropriate point in data set containing weighted median

sql.in <- paste("SELECT PINCP , (SELECT SUM(PWGTP) FROM ordered_temp b

WHERE b.rowid <= a.rowid) as sum_wgts

FROM ordered_temp a

WHERE sum_wgts >=" , p_w , "AND AGEP > 17 LIMIT 1")

wgtd_median <- dbGetQuery(db , sql.in)

weighted mean and confidence interval of a linear variable – Age – by state

i <- 1:80

replicate_sums <- paste(", ",dec_places," * SUM(AGEP * pwgtp",i,") / ",

dec_places , "* SUM(pwgtp",i,") AS PWGTP_",i,sep="",collapse="")

sql.in <- paste("SELECT ST,", dec_places ,"* SUM(AGEP*PWGTP) /" ,

dec_places , "* SUM(PWGTP) AS PWGTP_A" , replicate_sums ,

"FROM acs09 GROUP BY ST")

z <- dbGetQuery(db , sql.in)

for (i in 1:80){

z[,paste("DIFFSQ",i,sep="")] <- (z[,"PWGTP_A"] - z[,paste("PWGTP_",i,sep="")])^2

}

z[,"SE"] <- sqrt(rowSums(z[,grepl("DIFFSQ",names(z))]) * 4 / 80)

z[,"UB"] <- z[,"PWGTP_A"] + 1.645 * z[,"SE"]

z[,"LB"] <- z[,"PWGTP_A"] - 1.645 * z[,"SE"]

#state code, mean, SE, 90% lower bound, 90% upper bound

z[,c("ST","PWGTP_A","SE","LB","UB")]

weighted mean and confidence interval of a factor variable – % with Public Ins. – by state

i <- 1:80

try(dbGetQuery(db , "DROP TABLE totals_temp"),silent=T)

replicate_sums <- paste(", SUM(pwgtp",i,") AS PWGTP_",i,sep="",collapse="")

sql.in <- paste("CREATE TABLE totals_temp AS SELECT ST, SUM(PWGTP) AS PWGTP_A",

replicate_sums ,

"FROM acs09 GROUP BY ST")

dbGetQuery(db , sql.in)

replicate_sums <- paste("," , dec_places , "*sum(b.PWGTP",i,") / (a.PWGTP_",i,") as

pct",i,sep="",collapse="")

sql.in <- paste("SELECT b.ST, PUBCOV," , dec_places ,

"* SUM(b.PWGTP)/(a.PWGTP_A) as pctA" , replicate_sums,

"FROM acs09 b INNER JOIN totals_temp a ON a.ST == b.ST",

"GROUP BY PUBCOV, b.ST")

z <- dbGetQuery(db , sql.in)

for (i in 1:80){

z[,paste("DIFFSQ",i,sep="")] <- (z[,"pctA"] - z[,paste("pct",i,sep="")])^2

}

z[,"SE"] <- sqrt(rowSums(z[,grepl("DIFFSQ",names(z))]) * 4 / 80)

z[,"UB"] <- z[,"pctA"] + 1.645 * z[,"SE"]

z[,"LB"] <- z[,"pctA"] - 1.645 * z[,"SE"]

#state code, public coverage category, percent, SE, 90% lower bound, 90% upper bound

z[,c("ST","PUBCOV","pctA","SE","LB","UB")]

