ro	Using	Formula
	000	

Int

Xtras

do()ing stuff 0000

Calculus 0

Team

A mosaic Sampler

Randall Pruim, Calvin College

tro	Using Formulas ●○○	Xtras 000		do()ing stuff 0000	Calculus O	More O	Team
Т	aking Advanta	ge of F	Form	nulas – N	lumerica	l Summari	ies
	> mean(age, dat [1] 35.7	a=HELP)				
	> mean(age ~ se	ex, data	HEL	P)			
	sex S	N Missi	ng				
	1 female 36.3 10)7	0				
	2 male 35.5 34	16	0				
	> sd(age ~ sex	+ homel	ess,	data=HELP))		
	sex homeles	ss S	NI	Missing			
	1 female homeles	ss 6.66	40	0			
	2 male homeles	ss 8.61	169	0			
	3 female house	ed 8.13	67	0			
	4 male house	ed 6.71	177	0			
		~ .			. ()	~ ~	

Also works for var(), median(), max(), min(), IQR(), sum(), prop(), count()

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

```
Using Formulas
                   Xtras
                            do()ing stuff
                                                    More
      Taking Advantage of Formulas – Testing
> faithful$long <- faithful$eruptions > 3
> binom.test( ~long , faithful )
Exact binomial test
data: faithful$long
number of successes = 175, number of trials = 272,
p-value = 2.609e-06
alternative hypothesis: true probability of success is not equal t
95 percent confidence interval:
 0.583 0.700
sample estimates:
probability of success
                 0.643
These also work:
> binom.test( faithful$long )
> binom.test( faithful$eruptions > 3 )
> prop.test( faithful$eruptions > 3 )
```

ntro	Using Formulas	Xtras	do()ing stuff	Calculus	More	Team
	000	000	0000	0	0	

Just the Facts Ma'am

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

R's output can sometimes be overly verbose for beginners.

> in	terv	val(t.t	est(age	e~sex	,	data=HELP)	2
mean	in	grou	ıp f	emal	е	mean	in	group mal	Le	
				36.2	5			35.4	17	
				lower	r			uppe	er	
				-0.88	3			2.4	15	

> pval(t.test(age~sex , data=HELP))
p.value
0.354

(Remember this p-value for later.)

```
Using Formulas
                       Xtras
                                  do()ing stuff
                       ....
                           Xtra Output
Other times, it is too terse.
> xchisq.test( xtabs( ~ sex + substance, data=HELP ) )
Pearson's Chi-squared test
data: xtabs(~sex + substance, data = HELP)
X-squared = 2.03, df = 2, p-value = 0.3631
  36.00 41.00 30.00
(41.81) (35.90) (29.29)
[0.8068] [0.7236] [0.0173]
<-0.898> < 0.851> < 0.131>
 141.00
         111.00 94.00
(135.19) (116.10) (94.71)
[0.2495] [0.2238] [0.0053]
< 0.500> <-0.473> <-0.073>
key:
observed
(expected)
[contribution to X-squared]
<residual>
                                                            ENVEN E DQC
```



```
> xhistogram( ~age , data=HELP, fit='normal',
+ groups = age > 30)
```


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Other features:

- Easy horizontal and vertical reference lines.
- Uses fitdistr from MASS for fitting.

Intro	Using Formulas 000	Xtras 00●	do()ing stuff 0000	Calculus O	More O	Team		
	More Xtras							
	<pre>> xpnorm(10, mean If X ~ N(8,1.23), t</pre>							

P(X <= 10) = P(Z <= 1.626) = 0.948 P(X > 10) = P(Z > 1.626) = 0.052

[1] 0.948

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

This can be used for simulations early in the course, before students know what a binomial distribution is. We just need a way to replicate the coin tossing easily.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro	Using Form 000	ulas	Xtras 000	do()ing stuff ○●○○	Calculus O	More O	Team
			То	ssing Coins			
> :	rflip(10)						
Fl	ipping 10 d	coins [P	rob(Heads	s) = 0.5]			
т	тттнтл	гннн					
> ;	x <- do(100) * rfli	p(10); he	ead(x, 2)			
	n heads ta	ails					
1	10 2	8					
2	10 5	5					

> dotPlot(~heads, data = x, breaks=seq(-0.5, 10.5, by=1))


```
Using Formulas
                   Xtras
                            do()ing stuff
                                                    More
                            0000
          do()ing the mosiac shuffle()
> do(1) * lm( age \sim sex, HELP )
  Intercept sexmale sigma r-squared
       36.3 -0.784 7.71 0.00187
1
> null.dist <- do(1000) * lm( age ~ shuffle(sex), HELP )</pre>
> head(null.dist, 1)
  Intercept sexmale sigma r-squared
1
       35.3 0.452 7.72 0.000621
> with(null.dist, perctable( abs(sexmale) > 0.784 ) )
FALSE TRUE
 62.3 37.7
```


Data is a Distribution, Too

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We have implemented functions paralleling rnorm(), pnorm(), and qnorm() for data distributions.

```
> rdata( 10, HELP$age )
[1] 21 36 41 33 36 21 38 47 28 21
> pdata( 30, HELP$age )
[1] 0.256
> qdata( .50, HELP$age )
50%
35
```

Intro	Using Formulas 000	Xtras 000	do()ing stuff 0000	Calculus •	More O	Team
			Calculus			

Differentiation:

```
+ A = 1, B = 0)
> f( pi )
[1] -1
> f( pi, A=3, B=pi )
[1] 3
```

> randx <- runif(4, -pi, pi)</pre>

> f(randx) - cos(randx)[1] 0 0 0 0

Anti-differentiation:

> f <- D(A * sin(x + B) ~ x, > F <- antiD(dnorm(x) ~ x)> # F(0) == 0 by default > F (randx) - pnorm(randx) [1] -0.5 -0.5 -0.5 -0.5> # Using G(-Inf) == 0 gives pdf > G <- antiD(dnorm(x) ~ x , from=-Inf) +

> > G (randx) - pnorm(randx) [1] -2.13e-10 -2.13e-10 -2.13e-10 [4] -2.13e-10

> G(2)[1] 0.977

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But Wait, There's More! - mosaicManip

The mosaicManip package takes advantage of the manipulate package from RStudio to provide interactive applets for Statistics and Calculus.

> mhistogram(~ age | sex, data=HELP)

- In alpha testing now.
- Come see our poster for many more examples.

(日)

Using Formulas

Xtras

do()ing stuff

Team

The mosaic team

R Pruim

D Kaplan

N Horton Smith C

A Rich

You

э.

Calvin C

Macalaster C

JJ Alaire RStudio

http://www.mosaic-web.org

https://r-forge.r-project.org/projects/mosaic/ ▲□▶ ▲圖▶ ▲ 匡▶ ▲ 匡▶ □

Using Formulas

Xtras

do()ing stuff

Team

The mosaic team

R Pruim

D Kaplan

N Horton Smith C

A Rich

You

э.

Calvin C

Macalaster C

JJ Alaire RStudio

http://www.mosaic-web.org

https://r-forge.r-project.org/projects/mosaic/ ▲□▶ ▲圖▶ ▲ 匡▶ ▲ 匡▶ □