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What makes us
different?

Genome-wide genotyping of
individuals for 0(10°) common
variants, by microarray, is a
commodity.

Genome sequencing also
detects rare or private
variants, and structural
variants.

Why is that useful?
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Warfarin Wartri

Warfarin

First use: rat and mice Killer

Anticoagulant. Prevents embolism and
thrombosis Blood flow

Blood clot

Dose requirement ~ clinical & demographic

variables;
VKORC1 (action)
CYP2C9 (metabolism)



Herceptin

Monoclonal antibody that interferes with
the ERBB2 receptor.

Trastuzumab P
HERCEPTIN' :
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http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/HER2/neu
http://en.wikipedia.org/wiki/HER2/neu
http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29
http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29

Tyrosin Kinase Inhibitors

Growth factor
starts the signal
for cell to divide

Receptor

. Tyrosine kinase
inhibitor stops
signal

Nucleus

Dizgram showing how growth factor
inhibitors stop the signal inside the c=|
Copynght @ CancerHelp UK

e Erlotinib (Tarceva)

e [matinib (Glivec)

e Gefitinib (Iressa)

e Dasatinib (Sprycel)

¢ Sunitinib (Sutent)

e Nilotinib (Tasigna)

e Lapatinib (Tyverb)

e Sorafenib (Nexavr)

e Temsirolimus (Torisel)

NSCLC: resistance to TKI therapy < heterogeneity and mutational

redundancy of the disease

Identify each patient’s specific ‘driver mutations’
E.g. Activation of EGFR by exon 19 deletion or exon 21 mutation =

erlotinib and gefitinib
.. etc.


http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/erlotinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/erlotinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/imatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/imatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/gefitinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/gefitinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/dasatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/dasatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sunitinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sunitinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/nilotinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/nilotinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/lapatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/lapatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sorafenib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sorafenib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/temsirolimus
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/temsirolimus

Genome-wide association studies

+ thousands of people —
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Genome wide association studies:

Identifiability - additive model with no
interactions

Finding important variables (loci):
iImpressive

Prediction performance, effect sizes: poor
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Genome wide association studies:

Identifiability - additive model with no
interactions

Finding important variables (loci):
iImpressive

Prediction performance, effect sizes: poor

e Have we missed important variables?
(rare polymorphisms, structural variants)
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Genome wide association studies:

Identifiability - additive model with no
interactions

Finding important variables (loci):
iImpressive

Prediction performance, effect sizes: poor

e Have we missed important variables?
(rare polymorphisms, structural variants)

® Are we overlooking variables with rare,
strong effect (sufficient but not necessary)?
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Genome wide association studies:

Identifiability - additive model with no
interactions

Finding important variables (loci):
iImpressive

Prediction performance, effect sizes: poor

e Have we missed important variables?
(rare polymorphisms, structural variants)

® Are we overlooking variables with rare,
strong effect (sufficient but not necessary)?

® Interactions (epistasis)
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Genome wide association studies:

Identifiability - additive model with no
interactions

Finding important variables (loci):
iImpressive

Prediction performance, effect sizes: poor

e Have we missed important variables?
(rare polymorphisms, structural variants)

' -

® Are we overlook_m_g variables with rare, G T clt G A G

strong effect (sufficient but not necessary)? :
. o T AT € Clci®E
® Interactions (epistasis)
Association based approaches do not TIC\G GIAATCIC
have enough power - we need NG G AAA T C(TE
perturbation experiments on model

systems F T[TlcalclcacTC
T TIAIGAIGIGACTC




Forward genetics

Nature Vol. 287 30 October 1980 797

Fig.2 Ventral cuticular pattern of (from left to right) a normal Drosophila larva shortly
after hatching, and larvae homozygous for gooseberry, hedgehog and patch. The mutant
larvae were taken out of the egg case before fixation, All larvae were fixed, cleared and
mounted as described in ref. 22. A, abdominal segment; T, thoracic segment. For further

description see text and Fig. 3. x 140,
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RNAI: targeted depletion of a specific
gene’s products (MRNA)

Drosophila Humans

Long dsRNA siRNA
||||||||||||||||||||| R
Toobp 7 oP Genome-wide
lBathing Transfection ulibrariesn

oo S [

&5 l% l Specificity

— g Efficiency. -
¥ ¥\ 1\ Reproducibility




What do human cells do when you knock down
each gene in turn?

with F. Fuchs, C. Budjan, Michael Boutros (DKF2Z)
Genomewide RNAi library (Dharmacon, 22k siRNA-pools)
HelLa cells, incubated 48h, then fixed and stained

Microscopy readout: DNA (DAPI), tubulin (Alexa), actin (TRITC)

=M X«

vTOo =

Molecular Systems Biology, 2010




RNAI perturbation phenotypes are observed by
automated microscopy

22839 wells, 4 images per well
each with DNA, tubulin, actin (1344 x 1024 pixel at 3 x 12 bit)




Segmentation

Nuclei are easy (e.g. locally adaptive threshold)
But cells touch.
How do you draw reasonable boundaries between cells?



Voronoi segmentation




Voronoi segmentation




Voronoi segmentation




Voronoi segmentation

But we only used the

° huclel. The
boundaries are

artificially straight.

How can we better
—dOQ use the information
IS¥& in the actin and
tubulin channels?












Converting images into quantitative
features

EBImage::computeFeatures

cell size 289
cell intensity 34.33118
eccentricity 0.472934
hucleus size 2857.356
DNA content 485.2710
actin content 0.828876
tubulin content 0.098647
actin F11 0.049594
actin F12 0.081746
actin F21 0.158817
actin F22 0.179339
tubulin F11 0.009249
tubulin F12 0.219697

178 features per cell



Cells are classified into predefined classes

178 features per cell

Radial-kernel SVM

Manually annotated training set of ~3000 cells
Accuracy: ~ 90 %

Actin Fiber

..

o .

Big Cell

Debris

Lamellipodia

Metaphase

Normal



The image is now represented by a 13-dim

vector: “phenotypic profile”

n

ext

ecc
Next
Nint
AtoTint
NtoATsz
AF %
BC %
C%

M %
LA %

P %

289
34.33118
0.472934
2857.356
485.2710
0.828876
0.098647
0.049594
0.081746
0.158817
0.179339
0.009249
0.219697



How do you measure
and
in a 13-dimensional phenotypic
profile space?



Similarity depends on the choice and
weighting of descriptors




Frequency

Distance metric learning |5 s

a2i  0.828876

d(xa y) — E |fl<: (xk) _ fk (yk) ’ Next2 0.098647
X= |AF% 0.049594

k BC% 0.081746
1 C% 0.158817
M%  0.179339

M) = o Cinle —an) A o

Training set: pairs of genes that are somehow ‘related’: EMBL STRING
Get (n, o) by minimizing average distance between training set genes,

keeping average distance of all genes fixed.
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Phenotype landscape: by graph

layout or MDS
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Summary

Automated phenotyping of cells upon genetic perturbations by
microscopy and image analysis

Segmentation, feature extraction, classification, distance metric
learning, multi-dimensional scaling, clustering.

HN

“Phenotypic map” is useful to biologists 4<\:©_§:
Method is also being applied to drugs_<—©—é

O



Collaboration with Michael Boutros, German Cancer Research
Centre (Heidelberg)

Fuchs, Pau et al., Molecular Systems Biology (2010)

All data and software available at
http://www.cellmorph.org
packages EBImage and imageHTS

Gregoire Pau



http://www.cellmorph.org
http://www.cellmorph.org

Focus on the analysis of genomic data
Based on R and CRAN
Six-monthly release cycle, in sync with R
Releases:

1.0 in March 2003 (15 packages), ...,

2.8 In April 2011 (466 software packages)



What's the added
3/0CONDUCTOR [imds

Complex data containers (S4 classes) for new experimental
technologies (microarrays, sequencing) shared between
packages - even from different authors.

metadata packages: gene annotation, pathways, genomes
experiment data packages: landmark datasets

stronger emphasis on vighette-style documentation

stricter submission review (much more could be done)

more package interdependence — releases

training courses

mailing list is amenable to software and domain (bio) questions

Push new technologies: S4, vighettes, string handling,
computations with ranges, out-of-RAM objects



Interactive Reports

Distinguish
¢ interactive exploration by data analyst
e reports (presentation graphics)



Interactive Reports

Distinguish
¢ interactive exploration by data analyst
e reports (presentation graphics)

Everybody has a PDF reader.



Interactive Reports

Distinguish
¢ interactive exploration by data analyst
e reports (presentation graphics)

Everybody has a PDF reader.
Everbody has a web browser.



Interactive Reports

Distinguish
¢ interactive exploration by data analyst
e reports (presentation graphics)

Everybody has a PDF reader.
Everbody has a web browser.
Web browsers are turning into an operating system.



PDF viewer






arrayQualityMetrics

Reports on Quality of Microarray Datasets

effort to collect all extant, useful quality metrics for microarrays
funding by EU FP7 and by Genentech
used by public databases (EBI::ArrayExpress) to annotate their data

offerings for users

Example report



Reports

effort tc
funding
used by
offering

arrayQualityMetrics

® mouseover — tooltip (rendered as an
HTML table next to the plot)

o click — select & highlight
(propagated to several plots, tables)

e expand, collapse sections

e use HTML elements (checkboxes) to
control plots



Comments and outlook

SVG is part of HTML 5:
¢ linked plots and brushing
e HTMML widgets as controllers (checkboxes, wheels)

SVG/HTML post-processing via the XML package

Callback processing currently in JavaScript.

Use R? On server: googleVis talk by Markus Gesmann, Diego de
Castillo; locally: browser plugin

Duncan Temple Lang’s SVGAnnotation package: works for any R

graphic (incl. base), but depends on undocumented / changeable
behavior of cairo.

Paul Murrell’s gridSVG package: cleaner and more durable
approach, based on grid graphics.



Generalisation?

arrayQualityMetrics is for microarrays

Software sees:

¢ a set of items (arrays)

¢ a set of modules that compute the sections of the report (PCA,
boxplots, scatterplots)

This could be generalised to reports on very different types of subject
matter - | will be happy to discuss this.



What makes us different?

From Genome Wide
Association Studies, ~400
variants that contribute to
common traits and diseases

are known

Individual and the cumulative

.
effects are disappointingly AGAGT - Je
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What makes us different?

From Genome Wide
Association Studies, ~400
variants that contribute to
common traits and diseases
are known

Individual and the cumulative
effects are disappointingly
small

Epistasis, interactions

k | S | |
S S

3
¢ =@, + E(l)x + E XX+ Z Gy X, X X, + .. =
i, k=1

=1 i =1
TCTTEGAEGACTC



Take a step back...

Genetic interactions

e only pairwise

e for a simple phenotype

* in a simple model system



Simplest “model system?”: pairwise gene knock-

down interactions and a scalar phenotype
AA AB

80% 62.5% 100%

Phenotype

12.5% 100%
0p)
C
= —2 0 +1
g  Aggravating Interaction Alleviating
SC_% (negative) score (T, ) (positive)



000000

A combinatorial RNAI screen

0000000
Q000000
0000000
Q000000
0000000
0000000

Combinatorial RNAI

93 Dm kinases and phosphatases
Each targeted by two independent dsRN
Validation of knock-down by qPCR

96 plates (~37.000 wells)
4.600 distinct gene pairs

with Bernd Fischer (EMBL) and
M. Boutros, Thomas Sandmann,
Thomas Horn (DKFZ2)

Nature Methods 4/2011
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Interaction
score (m,.)
Imaging and Modelling of
image analysis genetic interactions




Image analysis and feature extraction
(version of 2010)

= number of cells
= DAPI intensity for each cell

= DAPI area for each cell




Modelling Genetic Interactions

For many phenotypes, the perturbation effects combine multiplicatively for non-

dij = W L

interacting genes i, j:

... I.e. additive on a logarithmic scale

. v
logdljk =W+m,+m  +g, +¢&;

baseline main effect measurement error
of dsRNA j
measurement main effect Interaction

(nr cells, growth rate, ...) of dsRNA i



Thus we get a matrix of interaction parameters:
profile clustering reflects functional modules
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Classification of genes by function through
their interaction profiles

cross-validated performance
on training set

Ras/MAPK

bsk

sipr

msn k ay

JNK

circle sizes ~ cross-validated posterior
probabilities of the classifier

functional prediction applied to
new genes

Ras/MAPK
dome__&y stg
CG3573 /& Cka

mop ) o PpV
alph € Igvr

mts :
puc.—7 5y
Rho1
@
Ptp61F Mekk1
Ptp69D Src42A
mtm * . ¢
Do & . .. @ shark
“Q’ OF i ((D-@—00+0-C-D-0D (@‘6
JNK

Mkk4 Src64B



Classification of ;

their int
cross-validated performance ShOW Me Your Friends and

on training set I'll Tell You Who You Are

Ras/MAPK

Sos phl
Dsor1 CSW
Ras85D drk
rl
/"

msn

j JNK

circle sizes ~ cross-validated posterior
probabilities of the classifier



Genetic interactions in 3 dimensions

Mean size Cell number
Different phenotypes produce (379) (372)
different sets of interactions
166 43 88
For each set, significant overlap 135
. . . 35 106
with known genetic interactions
and with human interologs o

Mean intensity
(337)



number of cells

1TUCIHS

nruells

Interaction matrices

intensity

11T IOI1L

Correlation matrices

INtensit




number of cells

1TUCIHS

nruells

.\._.\;
Ras/MARK .

s

Interaction matrices

intensity

11T IOI1L

Correlation matrices

INtensit




Network learning - identify the underlying
molecular modules

area number of cells

phenotypes (p) ’
(observed)

activity (a) of core
modules (e.g. complexes,
‘path-ways’)

(hidden)

binary genetic O OO0 OO
perturbation (g)
(observeqd) 010 o

N
I g; & 3/83 ZP HP (a"i | a’pa(i)agpa(i);ﬁa’Y)
=1



Ongoing: a much bigger matrix

e Larger matrix, again Dmel2 cells
e ~1500 chromatin-related genes x 100 query genes
e full microscopic readout (4x and 20x), 3 channels:

DAPI o
phospho-His3 (mitosis marker) // @
aTubulin (for spindle phenotypes) ¥ |

¢ 1600 384-well plates, ~ 300.000 measurements

ctrl dsRNA Rho1 dsRNA Dynein light chain dsRNA
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Outlook: genetic interactions from model system
experiments as regularisation/priors for the identification
of genetic interactions in observational studies

GwW

B B
ASd

ataset

o

v @ "
£ — L. Il Wall Maintonamce
L il Structure
~ osis
IO
cc romosome Structure
ate
A Syn
n

VA
Os o L T ° ° .
e v ° A o 9
e ey e o0 . ot e
. -l ."‘, s T
e | e - O
TR O o
Pz Pec ’.. -
~a L .l~~
.l~1 .
ACK
o .-a- .Ntﬂ ..,
L J
. o N - A ©
e YL A ° o M
L . Pe ° . (SN a0
.
e e g [ ., pee—
o ~ M o o
- . . i
) wan aa .A . !
%
.IM'
<o (L
O Ry re.
Oy e, ., -
’ < ° et n
r" ° e ’
"e s =] 'y
Cren
R
oK ., weoe ° o, .
- N - m g e °
° Ay .. .-v\ s o f
v pn P Ot L)
it . ) .l - SAAS
. . " L MY . .~ . . .
p « O e Pt Wi " e
e - rarme g Tran| o S
‘ “e - o
s Now
Vi
1 %0
- don
s
.’nl
IS .
a A
O N .
P " e . Y
O " ) L -
5 Yo Deve oL
“wan O
O » - o,
3 v -
A e o
a Yo
ot v
° ®ooc ° Spvne | . )
s g Ve | Wphdded ¢
o @ o - ON thes
Cwsm 0.1 y S DNA Repa
own
O Cthers

sparsity constraints
on b

| o

< individuals —



Summary

Quantitative, combinatorial RNAi works in metazoan cells.
Technological tour de force; data exploration, QA/QC,
normalisation and transformation....

Individual genetic interactions vs interaction profiles.

Data are high-dimensional and complicated:
e dose effects,

o different/ multivariate phenotypes

e relative timing

reveal non-redundant interactions.

All data & code available from BIUCONDUCTOR m
Vo= N
* 7

Bernd Fischer,
Thomas Horn, Thomas Sandmann, Michael Boutros

Nature Methods 2011(4) @ - ‘



Simon Anders

Joseph Barry

Bernd Fischer

Ishaan Gupta

Felix Klein

Gregoire Pau
Aleksandra Pekowska
Paul-Theodor Pyl
Alejandro Reyes

Collaborators

Lars Steinmetz

Michael Boutros (DKF2)
Robert Gentleman (Genentech)
Jan Korbel

Michael Knop (Uni HD)
Jan Ellenberg

Kathryn Lilley (Cambridge)
Anne-Claude Gavin

Alvis Brazma (EBI)

Paul Bertone (EBI)

Ewan Birney (EBI)



Ras85D and drk: concentration dependence

strength, presence and direction of an interaction can depend on

reagent concent@tion (cf.

drug-drug interactions)

0 10 20 40 80 100 120 140

Ras85D (ng)

drk (ng)

100 T



Sign inversion for different phenotypes

_> _>
Nuclear area (% neg. control) drk Rho1
0 50 100 150 ] O
Fluc 100%
drk 81%
Rho1 131%
| —> —>
drk + Rho1 106% (expected) e
K Rho1
drk + Rho1 _ 83% (measured)
Cell number (% neg. control)
0 50 1 100

. —> —>

drk head

34%
53%
18% (expected)
34% (measured)
V. — —>
- .
™~ \

== DNA
we t=Tubulin



Hidden Markov Model on class labels:

parameters summarise the data
Learn HMM on class labels

control



.
- -

> "
< »
. N
0'.
N L
" e - am—
J
.
-

nrCells

nrCells

05 00 05

intensity S
area
I
0.3 0.1 0.1 0. -1.0

Interaction scores

-05 00 05

intensity

Correlations

darea

05 0.0

0.5

1.0

05 10

0.0

10 05

05 10

0.0

-0.5

1.0



Screen Plot of Interaction Score (#cells)

sample 1 (wCelis)
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Screen Plot of Read-out (Number of Cells)

sample mean (nrCells)
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