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What makes us 
different?

Genome-wide genotyping of 
individuals for O(106) common 
variants, by microarray, is a 
commodity.
Genome sequencing also 
detects rare or private 
variants, and structural 
variants.

Why is that useful?



Warfarin
First use: rat and mice killer

Anticoagulant. Prevents embolism and 
thrombosis

Dose requirement ~ clinical & demographic 
variables;  
VKORC1 (action)
CYP2C9 (metabolism)



Herceptin
Monoclonal antibody that interferes with 
the ERBB2 receptor.

http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/HER2/neu
http://en.wikipedia.org/wiki/HER2/neu
http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29
http://en.wikipedia.org/wiki/Receptor_%28biochemistry%29


Tyrosin Kinase Inhibitors
•Erlotinib (Tarceva)
•Imatinib (Glivec)
•Gefitinib (Iressa)
•Dasatinib (Sprycel)
•Sunitinib (Sutent)
•Nilotinib (Tasigna)
•Lapatinib (Tyverb)
•Sorafenib (Nexavr)
•Temsirolimus (Torisel)

NSCLC: resistance to TKI therapy ⇐ heterogeneity and mutational
redundancy of the disease

Identify each patient’s specific ‘driver mutations’
E.g. Activation of EGFR by exon 19 deletion or exon 21 mutation ⇒ 
erlotinib and gefitinib
.... etc.

http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/erlotinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/erlotinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/imatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/imatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/gefitinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/gefitinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/dasatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/dasatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sunitinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sunitinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/nilotinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/nilotinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/lapatinib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/lapatinib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sorafenib
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/sorafenib
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://en.wikipedia.org/wiki/Monoclonal_antibody
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/temsirolimus
http://cancerhelp.cancerresearchuk.org/about-cancer/treatment/biological/types/ssLINK/temsirolimus


Genome-wide association studies
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Identifiability - additive model with no 
interactions
Finding important variables (loci): 
impressive
Prediction performance, effect sizes: poor
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Identifiability - additive model with no 
interactions
Finding important variables (loci): 
impressive
Prediction performance, effect sizes: poor

Genome wide association studies:

Association based approaches do not 
have enough power - we need 

perturbation experiments on model 
systems

•Have we missed important variables? 
(rare polymorphisms, structural variants)

•Are we overlooking variables with rare, 
strong effect (sufficient but not necessary)? 

•Interactions (epistasis)
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RNAi: targeted depletion of a specific 
gene’s products (mRNA)

Synthetic phenotype
The phenotype that is seen 
only when two gene products 
are simultaneously inhibited, 
for example, in double mutants 
or using RNAi or drugs.

RNAi also has disadvantages, such as the variability 
and incompleteness of knockdowns and the potential 
nonspecificity of reagents. In addition, whereas classical 
genetic screens can identify alleles that uncover regu-
latory mechanisms, RNAi is purely a loss-of-function  
technique targeting the mature message (TABLE 1). Below, 
we describe general considerations in RNAi screen 
design using examples from different systems.

Design of RNAi screens
Defining the goal. The first step in designing a good 
screen is to have a clear goal, as it will affect the design 
of the overall screen. For example, if the process to be 
analysed is well characterized, a directed screen might 
be designed to find missing components. This was done 
to identify the long sought-after gene encoding vitamin 
K epoxide reductase, an important drug target, by an 
RNAi screen in human cells that was focused on a set 
of genes in a particular chromosomal region9. Another 
goal might be to provide a broad overview of the types 
of genes involved in a less well-understood process, as 
was done in a C. elegans genome-wide screen for genes 
involved in endocytosis10.

Primary screen assay. A robust and specific assay is the 
most important element of a successful RNAi screen. 
Its development is usually the most time-consuming 
aspect, requiring repetitive work and careful attention 
to detail while minor changes in parameters are tested 
and optimized, but the time spent in assay development 
is rewarded in the results of the final screen. 

Like any good genetic screen, an RNAi screen needs 
an assay that is specific for the biological process being 
investigated. Unfortunately, often the ease of the assay is  
inversely proportional to its specificity. Cell lethality 
is probably the easiest phenotype to score, but it does 
not give much information about a gene’s function. By 
contrast, an assay in which the function of synapses is 
directly measured using electrophysiological techniques 
is specific, but also laborious and probably not feasible 
on a genome-wide scale. Often, large-scale RNAi screens 
have to find a compromise between specificity and  
practicality.

Fortunately, there is a rich history of genetic screens 
in C. elegans and Drosophila that can be applied to 
whole-animal RNAi screening. Although some classical 
screens might already have been extensively performed, 
it can still be useful to repeat them using an RNAi screen 
because a different range of hits can be found. In par-
ticular, lethal genes or those with weak effects are often 
missed in classical genetic screens. Because an RNAi 
screen involves identifying which reagents induce the 
phenotype rather than recovery of the mutant, these are 
easy to spot using this approach. 

The range of whole-animal assays that can be used is 
vast. These can be simple visual assays of morphologi-
cal defects, changes in the expression of GFP reporters, 
synthetic phenotypes, sensitivity or resistance to drugs or 
small molecules, or any other assay that gives a repro-
ducible output. Biological processes that are difficult or 
impossible to access in cell culture, such as organ func-
tion or organ formation and behaviour, can be probed 
using whole-animal RNAi screening. Processes that 
occur at the level of single cells are also amenable to 
RNAi screening. 

Cell culture-based screens open up new avenues for 
high-throughput screening and are particularly suit-
able for dissecting basic cellular processes. In contrast 
to whole-animal assays, cell-based phenotypes are 
comparatively reductionist and particular care has to be 
taken to choose the appropriate biological context. The 
simplest cell-based assay is a homogeneous or bulk-cell 
assay, in which the phenotypes of many cells are aver-
aged across each well in a microtitre plate. An example 
of this type of assay is testing for viability by ATP pro-
duction, as measured by the activity of ATP-dependent 
luciferase11,12. At the other extreme are imaging screens, 
in which an image of each well (or spot) is taken and 
then individual cells are scored, potentially with many 
phenotypic descriptors. Time-lapse imaging has recently 
been adapted to RNAi screens, allowing dynamic  
processes such as mitosis to be investigated13. 

Positive and negative controls should be selected to 
develop the primary screen assay in order to achieve high 
signal with the positive controls and low noise with the 

Drosophila Humans

Nature Reviews | Genetics

Worms

Long 
>150 bp
dsRNA

TransfectionBathing

siRNA

>100 bp 21 bp

Long dsRNAT7 T7

C. elegans

E. coli

Dicer, 
RISC loading

Dicer, 
RISC loading RISC loading

Figure 1 | Approaches for genome-wide RNAi screens in different organisms. 
Overview of RNAi screening approaches used in different organisms. Long double-
stranded (ds) RNAs are introduced into Caenorhabditis elegans (by ingestion of 
expressing Escherichia coli) or Drosophila cells (by bathing) and are intracellularly 
diced into small-interfering RNAs (siRNAs). This leads to highly efficient knockdown 
because many different siRNAs are generated from each dsRNA. Introduction of 
siRNAs into human (or vertebrate) cells requires transfection. RNAi screens in human 
cells usually require multiple independent siRNAs, either in individual wells or 
delivered as pools. Other methods for human cells include viral transduction of 
hairpin expression constructs or endoribonuclease-derived siRNAs (esiRNAs),endoribonuclease-derived siRNAs (esiRNAs),esiRNAs), 
essentially pool of extracellular diced long dsRNAs. RISC, RNA-induced silencingRNA-induced silencing 
complex; T7, bacteriophage T7 promoter.
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Specificity
Efficiency
Reproducibility

Genome-wide 
“libraries”



What do human cells do when you knock down 
each gene in turn?

with F. Fuchs, C. Budjan, Michael Boutros (DKFZ)
Genomewide RNAi library (Dharmacon, 22k siRNA-pools)
HeLa cells, incubated 48h, then fixed and stained
Microscopy readout: DNA (DAPI), tubulin (Alexa), actin (TRITC)

CD3EAP

Molecular Systems Biology, 2010



RNAi perturbation phenotypes are observed by 
automated microscopy

CEP164 CD3EAP BTDBD3

wt- wt- wt-

22839 wells, 4 images per well
each with DNA, tubulin, actin       (1344 x 1024 pixel at 3 x 12 bit)



Segmentation

Nuclei are easy (e.g. locally adaptive threshold)
But cells touch.
How do you draw reasonable boundaries between cells?



Voronoi segmentation



Voronoi segmentation



Voronoi segmentation



Voronoi segmentation

But we only used the 
nuclei. The 

boundaries are 
artificially straight.

 How can we better 
use the information 

in the actin and 
tubulin channels? 
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Converting images into quantitative 
features

178 features per cell

cell size
cell intensity
eccentricity
nucleus size
DNA content
actin content
tubulin content
actin F11
actin F12
actin F21 
actin F22
tubulin F11
tubulin F12
…

289 
34.33118 
0.472934 
2857.356 
485.2710
0.828876 
0.098647 
0.049594 
0.081746 
0.158817
0.179339 
0.009249 
0.219697 

…

EBImage::computeFeatures



Cells are classified into predefined classes
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178 features per cell
Radial-kernel SVM
Manually annotated training set of ~3000 cells
Accuracy: ~ 90 %

Actin Fiber

Big Cell

Metaphase

Lamellipodia

Debris

Normal

Protrusions



The image is now represented by a 13-dim 
vector: “phenotypic profile”

n
ext
ecc
Next
Nint
AtoTint
NtoATsz
AF %
BC %
C %
M %
LA %
P %

289 
34.33118 
0.472934 
2857.356 
485.2710
0.828876 
0.098647 
0.049594 
0.081746 
0.158817
0.179339 
0.009249 
0.219697 



How do you measure
distance and similarity

in a 13-dimensional phenotypic
profile space?



Similarity depends on the choice and 
weighting of descriptors



Training set: pairs of genes that are somehow ‘related’: EMBL STRING
Get (η, α) by minimizing average distance between training set genes, 
keeping average distance of all genes fixed.

Distance metric learning n
ext
ecc
Next
Nint
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Next2
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289 
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2857.356 
485.2710
0.828876 
0.098647 
0.049594 
0.081746 
0.158817
0.179339 
0.009249 
0.219697 
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Figure 3: Sigmoid transformation. The histogram shows the ’number of cells’ per-
turbation descriptor n from the plates of the second batch. The increase (red) and
decrease (blue) transformation functions are shown, with their parameters (α+, β+)
and (α−, β−).
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Phenotype landscape: by graph 
layout or MDS



Summary

Automated phenotyping of cells upon genetic perturbations by 
microscopy and image analysis

Segmentation, feature extraction, classification, distance metric 
learning, multi-dimensional scaling, clustering.

“Phenotypic map” is useful to biologists

Method is also being applied to drugs

                  



Collaboration with Michael Boutros, German Cancer Research 
Centre (Heidelberg)

Fuchs, Pau et al., Molecular Systems Biology (2010)

All data and software available at 
http://www.cellmorph.org
packages EBImage and imageHTS

               

                  Gregoire Pau

http://www.cellmorph.org
http://www.cellmorph.org


Focus on the analysis of genomic data
Based on R and CRAN 
Six-monthly release cycle, in sync with R 
Releases:
• 1.0 in March 2003 (15 packages), …, 
• 2.8 in April 2011 (466 software packages) ‏



Complex data containers (S4 classes) for new experimental 
technologies (microarrays, sequencing) shared between 
packages - even from different authors.

metadata packages: gene annotation, pathways, genomes
experiment data packages: landmark datasets
stronger emphasis on vignette-style documentation
stricter submission review (much more could be done)
more package interdependence → releases
training courses 
mailing list is amenable to software and domain (bio) questions
Push new technologies: S4, vignettes, string handling, 

computations with ranges, out-of-RAM objects

What’s the added 
value?
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Interactive Reports

Distinguish
•interactive exploration by data analyst

•reports (presentation graphics)

Everybody has a PDF reader.
Everbody has a web browser.
Web browsers are turning into an operating system.



PDF viewer



PDF viewer

HTML



arrayQualityMetrics

Reports on Quality of Microarray Datasets

effort to collect all extant, useful quality metrics for microarrays
funding by EU FP7 and by Genentech
used by public databases (EBI::ArrayExpress) to annotate their data 
offerings for users

Example report



arrayQualityMetrics

Reports on Quality of Microarray Datasets

effort to collect all extant, useful quality metrics for microarrays
funding by EU FP7 and by Genentech
used by public databases (EBI::ArrayExpress) to annotate their data 
offerings for users

Example report

•mouseover → tooltip (rendered as an 
HTML table next to the plot)

•click →  select & highlight 
(propagated to several plots, tables) 

•expand, collapse sections

•use HTML elements (checkboxes) to 
control plots 



Comments and outlook
SVG is part of HTML 5:
•linked plots and brushing
•HTML widgets as controllers (checkboxes, wheels)

SVG/HTML post-processing via the XML package

Callback processing currently in JavaScript.  
Use R? On server: googleVis talk by Markus Gesmann, Diego de 
Castillo;     locally: browser plugin

Duncan Temple Lang’s SVGAnnotation package: works for any R 
graphic (incl. base), but depends on undocumented / changeable 
behavior of cairo.

Paul Murrell’s gridSVG package: cleaner and more durable 
approach, based on grid graphics. 



Generalisation?

arrayQualityMetrics is for microarrays

Software sees:
•a set of items (arrays)
•a set of modules that compute the sections of the report (PCA, 
boxplots, scatterplots)

This could be generalised to reports on very different types of subject 
matter - I will be happy to discuss this.
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What makes us different?

From Genome Wide 
Association Studies, ~400 
variants that contribute to 
common traits and diseases 
are known 

Epistasis, interactions

2

Individual and the cumulative 

effects are disappointingly 

small 

...



Take a step back...

Genetic interactions
• only pairwise
• for a simple phenotype
• in a simple model system



2 | ADVANCE ONLINE PUBLICATION | NATURE METHODS

ARTICLES

High-throughput analysis of pairwise interactions
We tested all pairwise interactions between 93 genes involved 
in signal transduction in Drosophila cells, evaluating two non-
overlapping RNAi reagents for each target (192 dsRNA reagents 
including controls; Fig. 1e, Supplementary Figs. 2 and 3, and 
Supplementary Table 1)9. Targeted genes included annotated 

components of the three MAPK pathways (Ras-MAPK, JNK and 
p38 pathway) and all annotated protein and lipid phosphatases 
expressed in Drosophila Schneider cells (Supplementary Table 2). 
We performed experiments in Schneider S2 cells, which we fixed, 
stained with Hoechst dye and analyzed using high-throughput 
fluorescence imaging and automated image analysis (Fig. 1e). 
We selected three nonredundant quantitative features from the 
images: number of cells per well, mean nuclear area and nuclear 
fluorescence intensity (Fig. 1e and Supplementary Fig. 4). For 
example, treatment with dsRNA to the firefly luciferase gene  
.

m
(negative control) led to an average of 48,200 cells per well with a 
mean nuclear area of 59.1 m2 per cell. Depletion of Rho1, a small 
GTPase involved in cytokinesis and cytoskeleton remodeling10 
led to significantly larger nuclear area (77.9 m2 per cell, P < 1 ×  
10−15, Student’s t-test, n = 16), likely reflecting multinucleate 
morphology caused by incomplete cytokinesis, with a concomi-
tant decrease in the number of cells (25,400 cells per well, P < 1 ×  
10−15, Student’s t-test, n = 16). In contrast, pnt depletion .

m
also 

resulted in a decreased number of cells (19,000 cells per well, P < 1 ×  
10−15, Student’s t-test, n = 16) but a smaller mean nuclear area 
(44.7 m2 per cell, P < 1 × 10−15, Student’s t-test, n = 16).

We performed two biologically independent experiments 
yielding 73,728 measurements in total, from which we esti-
mated interaction scores (Fig. 2a, Supplementary Figs. 5–8 and 
Supplementary Table 3). Phenotypic measurements were highly 
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Figure 1 | A multiparametric approach  
to identify genetic interactions through  
double-RNAi. (a–c) Genetic interaction  
surfaces of double-RNAi treatments over  
a range of dsRNA concentrations. Axes  
indicate the amounts of the respective  
dsRNAs combined per well. Interaction  
scores (  scores
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) are shown on a color scale ranging from 
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(d) Schematic overview of  score calculation. Single 
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RNAi effects (A and B) are compared to that of a negative control dsRNA 
.

m
(Fluc). The expected double-RNAi effect is obtained by multiplying the single 

RNAi effects (arrowhead points to the relative cell number of 50% expected in this example) and compared to the observed double-RNAi phenotype. 
The  score is the log2 ratio between the observed and the expected value. (e) Schematic overview of the combinatorial RNAi experiment. Each color 
corresponds to a single dsRNA in the assay plates. To each plate, a different second dsRNA (RNAi 1–192) is added to all wells. This design creates all 
possible dsRNA combinations (arrows) targeting each pair of genes, A and B, with two dsRNAs (A1 and A2, and B1 and B2
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Figure 2 | Clustering of genetic interaction profiles predicts gene 
function. (a) Hierarchical clustering of the genetic interaction profiles 
based on observed cell number. Known signaling components from  
the Ras-MAPK pathway (top right) and the JNK pathway (bottom right) 
are highlighted. mRNA-cap, gene encoding mRNA-capping enzyme

.

m
.  

(b,c) Genetic interaction profiles for Ras-MAPK (right; dark gray) and  
JNK (right; light gray) regulators based on nuclear area per cell (b) or 
mean signal intensity (c). Genes in b and c are ordered as in a.

Q36Q36

0ΔBΔA

Simplest “model system”: pairwise gene knock-
down interactions and a scalar phenotype



A combinatorial RNAi screen

01/23/113

 93 Dm kinases and phosphatases 
 Each targeted by two independent dsRNA designs
 Validation of knock-down by qPCR
 96 plates (~37.000 wells)
 4.600 distinct gene pairs

with Bernd Fischer (EMBL) and
M. Boutros, Thomas Sandmann, 
Thomas Horn (DKFZ )

Nature Methods 4/2011



Image analysis and feature extraction 
(version of 2010)

 number of cells
 DAPI intensity for each cell
 DAPI area for each cell

04/19/11



For many phenotypes, the perturbation effects combine multiplicatively for non-
interacting genes i, j:

... i.e. additive on a logarithmic scale

Modelling Genetic Interactions

€ 

logdijk = w + mi + m' j +gij + εijk

measurement
(nr cells, growth rate, …)

baseline

main effect
of dsRNA i

main effect
of dsRNA j

interaction

measurement error

dij = ω µi µj

Nij ∼ NB(λij,α(λij))

log µij = sj + βi0 + xtβi

1
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Thus we get a matrix of interaction parameters:
profile clustering reflects functional modules

0.5
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gij



Classification of genes by function through 
their interaction profiles 

01/23/1126

cross-validated performance 
on training set

functional prediction applied to 
new genes

circle sizes ~ cross-validated posterior
probabilities of  the classifier



Classification of genes by function through 
their interaction profiles 

01/23/1126

cross-validated performance 
on training set

functional prediction applied to 
new genes

circle sizes ~ cross-validated posterior
probabilities of  the classifier

Show Me Your Friends and 
I'll Tell You Who You Are



Genetic interactions in 3 dimensions

Different phenotypes produce 
different sets of interactions

For each set, significant overlap 
with known genetic interactions 
and with human interologs 

01/23/1114



Interaction matrices

nrCells intensity area

nrCells intensity area
Correlation matrices

number of  cells intensity area



Interaction matrices

nrCells intensity area

nrCells intensity area
Correlation matrices

number of  cells intensity area

Ras/MAPK

Ras/MAPK inhibitors

JNK



Network learning - identify the underlying 
molecular modules

Outlook Network Learning 

4/16/11 5 

-  In classification the knowledge which two genes are perturbed is not used 
-  Correlation of interaction profiles is better preserved between phenotypes 
  than the interaction itself 
!  The underlying (mechanistic) network contributing to the phenotype is similar 
!  network predict the phenotype(s) for an unseen genetic state  
!  learn the underlying regulatory network from the data 

gene knock down 
0/1 0/1 0/1 

expression/ 
activation level 

area nrCells 
phenotype level 

observed 

observed 

hidden: 
activation level 
network structure 
prior knowledge 
on network structure 

number of cells
phenotypes (p)
(observed)

activity (a) of core 
modules (e.g. complexes, 
ʻpath-waysʼ)
(hidden)

area

binary genetic 
perturbation (g)
(observed)



Ongoing: a much bigger matrix
•Larger matrix, again Dmel2 cells

•~1500 chromatin-related genes  x  100 query genes
•full microscopic readout (4x and 20x), 3 channels:

✴ DAPI 
✴ phospho-His3 (mitosis marker)
✴ aTubulin (for spindle phenotypes)

•1600   384-well plates, ~ 300.000 measurements

01/23/1131

ctrl dsRNA Rho1 dsRNA Dynein light chain  dsRNA



Outlook: genetic interactions from model system 
experiments as regularisation/priors for the identification 

of genetic interactions in observational studies
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Genetic Interactions

dij = ω µi µj

(m̂, m̂�, ŵ) = argmin
�

ijk

|log ddijk − w −mi −mj|11

log dijk with ŵ + m̂i +
� m̂�

j

Y = Y0 + bi xi + bij xixj + bijk xixjxk

DESeq

Poisson and NB

P(K = k) =

�
k + r − 1
r − 1

�
pr(1− p)k, r ∈ R+, p ∈ [0, 1]

p =
µ

σ2

r =
µ2

σ2 − µ

GLM

Nij ∼ Poisson(µij)

Nij ∼ NB(µij,α(µij))

log µij = sj +
�

k

βikxkj

µij = sj ×
�

ai if j ∈ group A
bi if j ∈ group B
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Summary
Quantitative, combinatorial RNAi works in metazoan cells. 
Technological tour de force; data exploration, QA/QC, 
normalisation and transformation....

Individual genetic interactions vs interaction profiles.

Data are high-dimensional and complicated:
•  dose effects, 
•  different / multivariate phenotypes 
•  relative timing 
reveal non-redundant interactions.

All data & code available from 

Bernd Fischer,
Thomas Horn, Thomas Sandmann, Michael Boutros

Nature Methods 2011(4)
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Ras85D and drk: concentration dependence
strength, presence and direction of an interaction can depend on 
reagent concentration (cf. drug-drug interactions)

01/23/1116



01/23/1115

Sign inversion for different phenotypes



Hidden Markov Model on class labels:
parameters summarise the data

control

Mad2

Bub1

Learn HMM on class labels 



Interaction scores Correlations



Screen Plot of Interaction Score (#cells)

within
screen

replicates
(cor=0.968)

independent
daRNA
designs

(cor=0.902)

01/23/11

between
screen

replicates
(cor=0.948)



Screen Plot of Read-out (Number of Cells)

within
screen

replicates
(cor=0.97)

independent
dsRNA
designs

(cor=0.90)

01/23/11

between
screen

replicates
(cor=0.95)


