MAINT.Data: Modeling and Analyzing Interval Data in R

Pedro Duarte Silva
Faculdade de Economia e Gestão / CEGE,
Universidade Católica Portuguesa, Porto, PORTUGAL

Paula Brito
Faculdade de Economia / LIAAD - INESC Porto LA
Universidade do Porto, PORTUGAL
Outline

- From Classical to Symbolic Data
- Parametric Modelization of Interval Data
 - Normal and Skew-Normal Models
 - Model configurations
- The MAINT.Data Package
 - The IData class and its basic methods
 - The IdtE classes and subclasses
 - The MANOVA, lda and qda methods for Interval Data
- Conclusions and Perspectives
From Classical to Symbolic Data

- Symbolic data → new variable types:
 - Set-valued variables: variable values are subsets of an underlying set
 - Interval variables
 - Categorical multi-valued variables
 - Modal variables: variable values are distributions on an underlying set
 - Histogram variables
Symbolic data array

The dataset consists of information's about patients (adults) in healthcare centers, during one semester.

<table>
<thead>
<tr>
<th>Healthcare Center</th>
<th>Age Y_1</th>
<th>Nb. Emergency consults Y_2</th>
<th>Pulse Y_3</th>
<th>Waiting time for consultation (min) Y_4</th>
<th>Education level Y_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[25,53]</td>
<td>{0,1,2}</td>
<td>[44,86]</td>
<td>([0,15] (0), [15,30] (0.25), [30,45] (0.5), [45,60] (0), ≥60 (0.25))</td>
<td>{9th grade, 1/2; Higher education, 1/2}</td>
</tr>
<tr>
<td>B</td>
<td>[33,68]</td>
<td>{1,4,5,10}</td>
<td>[54,76]</td>
<td>([0,15] (0.25), [15,30] (0.25), [30,45] (0.25), [45,60] (0.25), ≥60 (0))</td>
<td>{6th grade, 1/4; 9th grade, 1/4; 12th grade, 1/4; Higher education, 1/4}</td>
</tr>
<tr>
<td>C</td>
<td>[20,75]</td>
<td>{0,5,7}</td>
<td>[70,86]</td>
<td>([0,15] (0.33), [15,30] (0), [30,45] (0.33), [45,60] (0), ≥60 (0.33))</td>
<td>{4th grade, 1/3; 9th grade, 1/3; 12th grade 1/3}</td>
</tr>
</tbody>
</table>
Interval Data

<table>
<thead>
<tr>
<th>ω₁</th>
<th>[l₁₁, u₁₁]</th>
<th>...</th>
<th>[l₁ⱼ, u₁ⱼ]</th>
<th>...</th>
<th>[l₁ₚ, u₁ₚ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ωᵢ</td>
<td>[lᵢ₁, uᵢ₁]</td>
<td>...</td>
<td>[lᵢⱼ, uᵢⱼ]</td>
<td>...</td>
<td>[lᵢₚ, uᵢₚ]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ωᵣ</td>
<td>[lᵣ₁, uᵣ₁]</td>
<td>...</td>
<td>[lᵣⱼ, uᵣⱼ]</td>
<td>...</td>
<td>[lᵣₚ, uᵣₚ]</td>
</tr>
</tbody>
</table>

where $Y_1, ..., Y_p$ are variables, $ω₁, ..., ω_n$ are parameters, and $[lᵢ, uᵢ] = [lᵢ₁, uᵢ₁]$, $[lⱼ, uⱼ] = [lⱼ₁, uⱼ₁]$, $[lₚ, uₚ] = [lₚ₁, uₚ₁]$.
Interval Data Representations

Original parametrisation: $I_{ij} = [l_{ij}, u_{ij}]$

Alternative parametrisation: (c_{ij}, r_{ij})

$$c_{ij} = \frac{l_{ij} + u_{ij}}{2} \quad r_{ij} = u_{ij} - l_{ij}$$

MAINT.Data:

Implements parametric inference methodologies

⇒

Assumes probabilistic models for interval variables
Normal Model

Let \(R^* = \ln(R) \)

Assumption:

\((C, R^*) \sim N_{2p}(\mu, \Sigma)\) with

\[
\mu = \begin{bmatrix} \mu_C \\ \mu_{R^*} \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} \Sigma_{CC} & \Sigma_{CR^*} \\ \Sigma_{R^*C} & \Sigma_{R^*R^*} \end{bmatrix}
\]
Skew-Normal Model (Azzalini 1985)

Normal model - imposes a symmetrical distribution on the midpoints and a specific relation between mean, variance and skewness for the ranges.

Skew-Normal - generalizes the Gaussian by introducing an additional shape parameter α, while trying to preserve some of its mathematical properties.
Skew-Normal Model

p-variate density (Azzalini, Dalla Valle 1996):

\[f(y) = 2\phi_p(x - \xi; \Omega) \Phi_p (\alpha^t \omega^{-1} (x - \xi)) \]

\(\xi \) - p-dimensional vector of location parameters
\(\alpha \) - p-dimensional vector of shape parameters
\(\Omega \) - symmetric positive-definite matrix
\(\omega \) - diagonal matrix formed by the square-roots of the diagonal elements of \(\Omega \)
\(\phi_p, \Phi_p \) - density and distribution function of a p-dimensional standard Gaussian vector
Skew-Normal Model

log-likelihood of a p dimensional Skew-Normal:

\[l = -\frac{1}{2} n \ln |\Omega| - \frac{1}{2} \text{tr}(\Omega^{-1}V) + \sum_i \zeta_0 (\alpha^t \omega^{-1} (x_i - \xi_i)) \] (*)

where \[V = \frac{1}{n} \sum_i (x_i - \xi_i)(x_i - \xi_i)^t \]

and \[\zeta_0(x) = \ln (2 \Phi(x)) \]
Model Configurations

<table>
<thead>
<tr>
<th>Model</th>
<th>Characterization</th>
<th>(\sum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-restricted</td>
<td>Non-restricted</td>
</tr>
<tr>
<td>2</td>
<td>(C_j) not-correlated with (R^*_l) (l \neq j)</td>
<td>(\Sigma_{CR^*} = \Sigma_{R^*C}) diagonal</td>
</tr>
<tr>
<td>3</td>
<td>(Y_j)'s independent</td>
<td>(\Sigma_{CC}, \Sigma_{CR^*} = \Sigma_{R^*C}, \Sigma_{R^R^}) all diagonal</td>
</tr>
<tr>
<td>4</td>
<td>(C)'s not-correlated with (R^*)'s</td>
<td>(\Sigma_{CR^*} = \Sigma_{R^*C} = 0)</td>
</tr>
<tr>
<td>5</td>
<td>All (C)'s and (R^*)'s are non-correlated</td>
<td>(\sum) diagonal</td>
</tr>
</tbody>
</table>
Maximum Likelihood Estimation: Normal Model

Maximum likelihood estimator for μ

$$\hat{\mu} = \bar{X}$$

Maximum likelihood estimator for Σ

under Configuration 1:

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^t = \frac{1}{n} \mathbb{E}$$
Maximum Likelihood Estimation: Normal Model

Maximum likelihood estimator for Σ

under configurations 3, 4 and 5: obtained from the non-restricted estimators \rightarrow replacing by zeros the null parameters in the model for Σ

under configuration 2: obtained by numerical maximization of

$$\ln L(\hat{\mu}, \Sigma) = -np \ln(2\pi) - \frac{n}{2} \ln |\Sigma| - \frac{1}{2} \text{tr} E\Sigma^{-1}$$
Maximum Likelihood Estimation: Skew-Normal Model

under configuration 1

Log-likelihood :

\[l = -\frac{1}{2} n \ln |\Omega| - \frac{1}{2} \text{tr}(\Omega^{-1} V) + \sum_i \zeta_0 (\alpha^t \omega^{-1} (x_i - \xi_i)) \] (*)

maximized in two steps.

New parameter \(\eta = \omega^{-1} \alpha \)

Then \(\hat{\Omega} = V \).

The maximization with respect to \(\eta \) and \(\xi \) is then performed numerically.
Maximum Likelihood Estimation: Skew-Normal Model under configurations 2-5

Given that $\Sigma = \Omega - \omega \mu Z \mu^T Z \omega$ a null covariance $\Sigma(j,j')$

implies that

$\Omega(j, j') = \Omega(j, j)^{1/2} \mu Z_j \Omega(j', j')^{1/2} \mu Z_{j'}$

or, equivalently

$\Sigma(j, j') = 0 \Rightarrow \Omega(j, j') = \frac{2}{\pi} \frac{\Omega^T \omega^{-1} \alpha \alpha^T \omega^{-1} \Omega_j}{1 + \alpha^T \omega^{-1} \Omega \omega^{-1} \alpha}$

For configurations 2 - 5, this condition is imposed for the corresponding null elements of Σ.

It defines a system of non-linear equations on the $\Omega(j,j')$, which may be solved by standard numerical procedures.
Maximum Likelihood Estimation: Skew-Normal Model

under configurations 2-5

The ML estimate is then found by a Quasi-Newton optimization algorithm with:

- Analytical gradients found by the chain rule and implicit function theorem
- Randomly generated multiple starting points to avoid local optima

The MAINT.Data Package: Overview

Data Frame

Grouping factor

IData object

IdtSngDE object

IdtHomMxE object

Idtlda object

IdtHetMxE object

Idtqda object
The MAINT.Data Package: The Idata class

IData function

IData Methods

- print
- summary
- indexing
- assignment
- ...
- mle
- MANOVA
The MAINT.Data Package: The IdtE classes I -- Single Dist.

mle.method

IData object IdtSngDE object

mle.IData arguments
- Model
- Config
- SelCrit

IdtSngE Methods
- print
- summary
- coef
- stdErr
- testMod
...

IData object

- Grouping factor

MANOVA method

IdtHomMxE object

- print
- summary
- coef
- stdEr

Idtlda object

- print
- summary
- predict

IdtHomMxE Methods

- testMod
- Ida

Idtlda Methods

- print
- summary
- predict

- **IData object**
- **MANOVA method**
- **IdtHetMxE object**
- **qda method**

Grouping factor

IdtHetMxE Methods
- print
- summary
- coef
- stdEr

Idtqda Methods
- testMod
- qda
- predict
Creating Idata Objects

ChinaT <- IData(ChinaTemp[1:8], VarNames=c("Q1","Q2", "Q3","Q4"))

#Display the first three observations

head(ChinaT,n=3)

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnQing_1974</td>
<td>[0.673, 14.827]</td>
<td>[13.435, 28.465]</td>
<td>[19.821, 31.179]</td>
<td>[2.216, 9.984]</td>
</tr>
<tr>
<td>AnQing_1975</td>
<td>[2.319, 14.381]</td>
<td>[12.829, 28.471]</td>
<td>[23.192, 32.308]</td>
<td>[1.013, 10.987]</td>
</tr>
<tr>
<td>AnQing_1976</td>
<td>[0.906, 12.494]</td>
<td>[11.795, 28.405]</td>
<td>[19.680, 34.120]</td>
<td>[2.992, 10.308]</td>
</tr>
</tbody>
</table>
MANOVA tests

ManvChina <- MANOVA(ChinaT,ChinaTemp$GeoReg)
print(ManvChina)

Null Model Log likelihoods:

<table>
<thead>
<tr>
<th></th>
<th>NC1</th>
<th>NC2</th>
<th>NC3</th>
<th>NC4</th>
<th>NC5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-7336.254</td>
<td>-8331.416</td>
<td>-11564.904</td>
<td>-8390.351</td>
<td>-12648.760</td>
</tr>
</tbody>
</table>

Full Model Log likelihoods:

<table>
<thead>
<tr>
<th></th>
<th>NC1</th>
<th>NC2</th>
<th>NC3</th>
<th>NC4</th>
<th>NC5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6209.280</td>
<td>-6820.555</td>
<td>-9049.276</td>
<td>-6857.536</td>
<td>-9450.228</td>
</tr>
</tbody>
</table>

Full Model Akaike Information Criteria:

<table>
<thead>
<tr>
<th></th>
<th>NC1</th>
<th>NC2</th>
<th>NC3</th>
<th>NC4</th>
<th>NC5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12586.56</td>
<td>13793.11</td>
<td>18234.55</td>
<td>13851.07</td>
<td>19012.46</td>
</tr>
</tbody>
</table>

Selected Model:
[1] "NC1"

Null Model log-likelihood: -7336.254
Full Model log-likelihood: -6209.28
Qui-squared statistic: 2253.949
degrees of freedom: 40
p-value: 0
Chinalda <- lda(ManvChina)

PredRes <- predict(Chinalda, ChinaT)

Estimate error rates by ten-fold cross-validation
CVlda <- DACrossVal(ChinaT, ChinaTemp$GeoReg, TrainAlg=lda, Config=BestModel(ManvChina@H1res), CVrep=1)
Conclusions and Perspectives

- Probabilistic Models proposed for Interval Variables

- Normal (and Skew-Normal) distributions (different configurations) for Midpoints and Log-Ranges

- Implemented as an R package based on Maximum-Likelihood Estimation S4 classes and methods
Conclusions and Perspectives

- Current version includes tools for:
 - Single distribution estimation and inference
 - ANOVA and MANOVA
 - Linear and Quadratic Discriminantal Analysis

- Perspectives:
 - Extension to other multivariate methodologies (ex: Im method...)
 - Assume different distributions
References

