#### Multiple Choice Models: why not the same answer? A comparison among LIMDEP, R, SAS and STATA

#### Giuseppe Bruno Bank of Italy



#### The R User Conference 2011, Warwick, Coventry, U.K. August 16-18

The views expressed are those of the author only and do not involve the responsibility of the Bank of Italy

## OUTLINE

- 1. Motivation and focus of the paper
- 2. Four packages at comparison
- 3. Discrete choice models
- 4. Logit Models and IIA
- 5. Multinomial Probit Models
- 6. Conditional Probit Models
- 7. Some numerical Examples
- 8. Concluding remarks

# 1. Motivation and focus of the paper

Increasing interest in discrete choice models in the econometrics and behavioural literature.

Statistical and Social research institutes collect and store many microeconomic datasets.

Many statistical and econometric packages provide different algorithms for estimating discrete choice models.

i. Are accurate the estimation routines canned in these packages?ii. Do we have sound benchmarks to take into account?

# 2. Four packages at comparison

For answering the previous questions we compare and confront the estimates of some of the most spread packages for discrete choice modeling:

| 1) | LIMDEP       | (4.0.1)  |
|----|--------------|----------|
| 2) | R            | (2.13.0) |
| 3) | SAS          | (9.2)    |
| 4) | STATA (11.2) |          |

# 2. Four packages at comparison

Many other statistical packages are available. Some of them were not available for the scrutiny. Others do not feature powerful discrete choice estimation procedures.

- 1) Binary vs multinomial choice models,
- 2) Nominal vs ordered choices
- 3) Models with i.i.d. errors vs Models without i.i.d. errors

#### The simplest models are those where we have a binary decision:

$$y^* = \beta' \mathbf{x} + \epsilon \qquad \qquad y = \begin{cases} 0 & \text{if } y^* \leq 0 \\ 1 & \text{if } y^* > 0 \end{cases}$$

$$Prob(Y = 1|\mathbf{x}) = \int_{-\infty}^{\beta \mathbf{x}} \phi(t)dt = \Phi(\beta \mathbf{x}) \qquad Prob(Y = 1|\mathbf{x}) = \frac{exp(\beta \mathbf{x})}{1 + exp(\beta \mathbf{x})}$$

#### Ordered choices models

$$y_i^* = eta' \mathbf{x} + \epsilon$$
  $y_i = egin{cases} 0 & ext{if } y_i^* \leq \mu_0 \ 1 & ext{if } \mu_0 < y_i^* \leq \mu_1 \ 2 & ext{if } \mu_1 < y_i^* \leq \mu_2 \ \dots & & \ J & ext{if } y_i^* > \mu_{J-1} \end{cases}$ 

 $\epsilon \sim normal \longrightarrow ordered probit$  $\epsilon \sim logistic \longrightarrow ordered logit$ 

Unordered choice models are motivated by random utility model:

$$U_{ij} = \theta' x_{ij} + \varepsilon_{ij}$$

Index i refers to the decision maker, index j refers to the choice.  $\varepsilon_{ij}$  is the unobservable residual. Probability of making choice j is:

 $Prob(U_{ij} > U_{ik})$  for all  $k \neq j$ 

With IID residuals distributed according to extreme value (Gumbel) we have a closed form expression of the choice probabilities.

$$Pr(y_i = j | \mathbf{Z}_i) = \frac{exp(\beta' \cdot \mathbf{z}_{ij})}{\sum_{k=1}^{J} exp(\beta' \cdot \mathbf{z}_{ik})}$$

Variables are choice varying: <u>Conditional</u> Logit Model

$$Pr(y_i = j | \mathbf{Z}_i) = \frac{exp\left(\beta'_j \cdot \mathbf{z}_i\right)}{\sum_{k=1}^J exp\left(\beta'_j \cdot \mathbf{z}_i\right)}$$

Variables are choice invariant: <u>Multinomial</u> Logit Model

With a normal distribution for the residuals we don't have a closed form expression of the choice probabilities.

$$Pr(y_i = j | \mathbf{Z}_i, \Sigma_{\varepsilon}) = Prob \left[ U_{i,j} \ge U_{i,k} \quad \forall k \neq i \right] =$$
$$= \int_{\varepsilon_j = -\infty}^{\infty} \int_{\varepsilon_1 = -\infty}^{\varepsilon_j} \cdots \int_{\varepsilon_{j-1} = -\infty}^{\varepsilon_j} \int_{\varepsilon_{j+1} = -\infty}^{\varepsilon_j} \cdots \int_{\varepsilon_J = -\infty}^{\varepsilon_j} \phi\left(\epsilon | \mathbf{Z}_i, \Sigma_{\varepsilon}\right) d\varepsilon_1 d\varepsilon_2 \cdots d\varepsilon_J$$

This J-multivariate integral can be reduced to a (J-1)-dimensional. Still a daunting task!

### 4. Multinomial Logit Models and IIA

Going from binary to multinomial choices brings in the issue of Independence of Irrelevant Alternatives.

Introduction of new choices correlated with the already available choices modifies their log-odds. Red Bus / Blue Bus example

Modifications of the basic Logit have been developed for taking care of correlations among choices. Another possibility is provided by  $\ldots \rightarrow$ 

No constraint is put on the covariance structure of the unobserved components of the utility. With more then 5/6 alternatives the computational complexity gets quite large. Simulated maximum likelihood or MCMC for Bayesian Analysis are possible avenues. Some packages do not provide estimation algorithms for Multinomial Probit Models.

- R includes the MNP package which fits the Bayesian Multinomial Probit with Gibbs Sampling.
- Stata provides the mprobit commands which imposes **independent standard normal** distribution for the residuals of the utility. No covariances are estimated.
- MNP seems the more comprehensive procedure.

| Beliefs         | R (10,000 draws) | R (20,000 draws) | R (40,000 draws) | Stata  |
|-----------------|------------------|------------------|------------------|--------|
| Somewhat strong |                  |                  |                  |        |
|                 |                  |                  |                  |        |
| Intercept       | 22183            | 08894            | 01379            | 44738  |
| Education       | 01124            | 01127            | 00364            | 00152  |
| Income          | .00442           | .00435           | .00345           | .01306 |
| Age             | .00077           | .00060           | .00160           | .00853 |
| male            | 14141            | 11776            | 09044            | 47198  |
| www             | 13375            | 10476            | 05743            | 26512  |
| Not very strong |                  |                  |                  |        |
|                 |                  |                  |                  |        |
| Intercept       | .15777           | .08092           | .03179           | .98062 |
| Education       | 01096            | 00683            | 00291            | 02546  |
| Income          | .00553           | .00670           | .00727           | .00295 |
| Age             | 00534            | 00543            | 00535            | .00209 |
| male            | .00704           | .01583           | .02736           | 27948  |
| www             | .04094           | .02958           | .02569           | .01115 |
| Strong          |                  |                  |                  |        |
|                 |                  |                  |                  |        |
| Intercept       | 13363            | 08183            | .02215           | 02200  |
| Education       | 00596            | 00696            | .00083           | 00275  |
| Income          | 00363            | 00351            | 00022            | 00083  |
| Age             | .01073           | .00982           | .00690           | .02101 |
| male            | 27653            | 23366            | 15502            | 64164  |
| www             | .03384           | .02082           | .01448           | .03217 |

The numerical results are not very satisfactory. In a binomial framework the STATA command mprobit computes the same estimate as the probit command.

This test is not allowed in R: MNP refuses to run the estimate with only two categories.

#### 6. Conditional Probit Models

SAS procedure MDC provides a PROBIT estimation with alternative-varying variables,

LIMDEP command MNPROBIT allows PROBIT estimation with alternative-varying & invariant variables.

#### Conditional Logit Estimates comparisons

| Variables       | LIMDEP/NLOCIT   | В      | 54502   | Stata 11 |
|-----------------|-----------------|--------|---------|----------|
| variables       | LIMDEI / NLOGII | n      | 5A5 9.2 | Stata 11 |
| Ground cost     | 0155            | 0155   | 0155    | 0155     |
| Term time       | 0961            | 0961   | 0961    | 0961     |
| Income          | .0133           | .0133  | .0133   | .0133    |
| Air const       | 5.207           | -5.207 | 5.207   | 5.207    |
| Train const     | 3.869           | -1.338 | 3.869   | 3.869    |
| Bus const       | 3.163           | -2.044 | 3.163   | 3.163    |
| Car (reference) | -               | -      | -       | -        |

Conditional Probit Estimates comparisons

| Variables       | LIMDEP/NLOGIT | R     | SAS 9.2 | Stata 11 |
|-----------------|---------------|-------|---------|----------|
| Ground cost     | 0351          | 0116  | 0353    | 0122     |
| Term time       | 0783          | 0345  | 0811    | 0281     |
| Income          | .0566         | .0148 | .0551   | .0189    |
| Air const       | 1.579         | 1.149 | 1.792   | .8753    |
| Train const     | 4.304         | 1.583 | 4.346   | .6329    |
| Bus const       | 3.634         | 1.308 | 3.646   | 6259     |
| Car (reference) | -             | -     | -       | -        |

#### Nested Logit Estimates comparisons

|              |               | -      |           | ~        |
|--------------|---------------|--------|-----------|----------|
| Variables    | LIMDEP/NLOGIT | R      | SAS $9.2$ | Stata 11 |
| Ground cost  | 0316          | 0316   | 0316      | 03157    |
| Term time    | 1126          | 1126   | 1126      | 11261    |
| Air const    | 6.0423        | 6.0423 | 6.0423    | 6.0418   |
| Train const  | 5.0646        | 5.0646 | 5.0646    | 5.0640   |
| Bus const    | 4.0963        | 4.0963 | 4.0963    | 4.0958   |
| Air included | .0153         | -      | .0153     | .0153    |
| Air tau      | .5860         | .5860  | .5860     | .5860    |
| Ground tau   | .3889         | .3889  | .3890     | .3890    |

#### Mixed Logit Estimates comparisons

|                     |               | D      | GAG 6 6 | 0        |
|---------------------|---------------|--------|---------|----------|
| Variables           | LIMDEP/NLOGIT | R      | SAS 9.2 | Stata 11 |
| Ground cost         | 0308          | 0310   | 0310    | 0308     |
| Term time           | 1142          | 1141   | 1141    | 1144     |
| Air const           | 6.1503        | 6.1436 | 6.1491  | 6.1585   |
| Train const         | 5.0990        | 5.1057 | 5.1021  | 5.1067   |
| Bus const           | 4.1387        | 4.1421 | 4.1401  | 4.1462   |
| Standard Deviations |               |        |         |          |
| Air sd              | 2.9351        | 2.9768 | -2.9186 | 2.9331   |
| Train sd            | .01472        | .0007  | 0690    | .01309   |
| Bus sd              | .00638        | .0037  | .00485  | .00066   |

## 8. Concluding Remarks

It is relevant to compare canned estimated procedure.

The four examined packages produce quite comparable results in the estimation of multinomial/conditional logit models with different correlation structure among the errors.

Situation changes dramatically once we move to the Multinomial Probit Models: some packages do not provide estimation algorithms for them, others are not so easy to compare.

Development methods for open source statistical software might be improved by a tighter review of the numerical results.

#### Thank you for your attention.

Giuseppe Bruno Bank of Italy Research and International Relations Head of I.T. Support Unit giuseppe.bruno@bancaditalia.it