

Introduction

 My name is Friedrich Schuster.
 I am a software developer, working mostly with object-oriented languages …
 … in projects for the pharmaceutical industry.

 Analytical Software in Heidelberg (the company I work for) was established in 1989 and
specializes in information technology for data analysis and business intelligence.

What was the idea behind this presentation?

Well, in Java, software development patterns are everywhere.

So the basic question was: how about patterns in R? Do they exist? Are they important?

First of all: what is a design pattern?

Patterns are everywhere. This is a staircase.

This is quite a different looking staircase.

The basic principle is the same: „a flight of stairs, a supporting framework, and a handrail“.

You all know the staircase pattern.

That's another staircase. With additional features.

The last example shows that it is easy to identify a “nonstandard implementation” of the staircase
pattern.

Do you need to describe a staircase in every detail? It depends. Not if you say „Go downstairs,
use the staircase over there“. Now for building a new staircase, knowing the pattern alone is not
sufficient. You will first have to carefully design every part of it.

That means that the pattern not only helps building actual staircases, but also simplifies
communication.

Software design patterns are similar.

 They are generalized, reusable and time-tested templates of solutions.
 Every pattern has a name, ...
 … a description of the general principle of the solution and ...

 … also includes reasons why to use the pattern, where to use it, what elements it
consists of, how the elements interact, the consequences of its use, and code
examples.

 Multiple patterns are organized into catalogues.

In short: patterns are templates and describe design alternatives.

Why are design patterns useful? Just a few reasons:

 They are easy to understand.
 Patterns reduce the risk of unforeseen negative consequences of a design.

 Re-use of patterns increases productivity.

The overall effect is that patterns help to improve the quality and value of the software.

As programming languages, R and Java are quite different.

For example R is a functional language.

That means that …
… patterns in R cannot be defined on the class level alone. In a functional language the basic unit
of code is a function. But R also has object-oriented features.

So in R patterns consist of functions, of classes and methods, of packages and
environments (plus all combinations).

First pattern example: the “factory method” from object oriented programming.

Let's assume that in this scatterplot every symbol is a separate object. The plotting program does
not create the symbols, but calls a separate function for this which returns the required symbol
object. This function is called the “factory method”.

So the plotting program does not have to know what exact type of symbol it has to create. It just
has to know how to fetch symbols from the “factory method”. Exchanging sets of symbols
becomes easy: just supply a different factory method. So a factory makes a program independent
of how objects are created.

Another more abstract example: this is the code illustrating the Closure pattern.
I will not go into every detail.

 The intent of this pattern is to create local values in their own environment along with the
functions that use and update them.

 In this example: the (outer) function „newClosureExample()“ creates the closure.

 Within the closure inner functions and a state variable are defined and then returned as a
list object to the caller.

 The idea of a closure is quite similar to the class concept in object-oriented programming: it
is possible to maintain the state of a variable plus the surrounding functionality as one
object (in this case as a list object). (Motivation)

 The participants of the pattern are the outer function, the enclosed environment, the
inner functions sand the state variable.

 Where and when can it be used? For example: for computing a summary value by
continuously updating the state variable.

 Calling the Closure function returns a list object with the “publicly” available functions (the
green functions). All other inner functions remain private (the red function log()).

Using the closure ...

 The closure object is created by calling the closure function (“newClosureExample()”)

 For updating the state variable the public functions are called with the „$“ operator.

Some examples of „Pattern-like“ concepts from functional programming:

 (Map:) You all know the the Map concept: a function is applied to all elements of a vector.
It returns a vector of the same size with the results of each function application. This is
identical to the „apply()“-family of function in R.

 (Filter:) In the Filter concept a function is also applied to all elements of a vector. But it
returns only a subset of the original collection. In R, there is a „Filter()“ function in the base
package „funprog“.

Please note: Map() and Filter() are not patterns in a strict sense: because all the functionality is
already in the language, and no additional coding is required by the user.

One more example:

Let's assume that data from different experiments has to be processed regularly. Experiments
change often, so the processing has to be flexible and extensible.
Common processing steps exist for all experiments. Other steps are only valid for some of the
experiments.
The idea is to pass every data object (no matter what experiment it is from) to an chain of
processing steps. The first step receives the data and handles, then forwards it to the next step,
which does likewise. Internally every step inspects the data, and only processes it if it's from the right
kind of experiment.

Interestingly there are two patterns for this kind of task

 Compose() from functional programming: Computes a result by chaining multiple
functions together and passing the result of each one to the next. The last result is the final
one. This function is implemented in the „roxygen“ package.

And the
 „Chain of responsibility“ pattern from object/oriented programming. It works with

classes and methods, not with functions as objects.

So the question is which one to use? Just apply the „KISS“ principle: "keep it short and simple".
(and use Compose(), because it is much simpler to implement in R).

The patterns presented were just a few examples of a larger number of known patterns.
Unfortunately there is no pattern catalogue for R (that I am aware of). … If you find one please
don't forget to let me know.

So back to the initial questions:

Do patterns exist in R? Yes.

Are they important? To my surprise mostly not. At least not for simple programming tasks. With
package development the situation changes: package development itself follows a pattern.

In the end using a domain specific language with powerful functional features means that you
don't need a lot of patterns for programming (at least not most of the time).

Now if you forget most of what you heard and remember only a two things, let it be this:

1. Patterns and pattern catalogues are a great source of ideas.
2. Using pattern names simplifies communication.

Hope you liked the presentation, and enjoy the conference,

Thank you!

