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Notation

I Xi is the time from start of the study until the event of
interest for the ith subject.

I Gi = [Gi0,Gi1, . . . ,Gimi
] is the vector of assessment times.

I Gi0 = 0, initial assessment at start of study
I Gi1, first assessment after study begins

I
...

I Gimi , last assessment done on ith subject.

I (Li ,Ri ] interval in which event is known to occur.

I Li left endpoint (may be 0)
I Ri right endpoint (may be ∞)
I Usually only observe (Li ,Ri ] not Gi .
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●

Time Until Event

Xi

● ● ● ● ● ● ● ●

Observation Times

Gi0 Gi1 Gi2 Gi3 Gi4 Gi5 Gi6 Gi7

● ●

Observed Interval

Li == Gi3 Ri == Gi4



Some Assumptions

I Non-informative Censoring

I Example: Gi (assessment times) independent of Xi (event
times)

I Regularly scheduled assessment, changes in schedule not
related to event time. For example, must get blood draw to
know if disease has occurred, but follow regular blood draw
schedule regardless of true disease status.

I with Progression-Free Survival (time to first of disease
progression or death) this assumption is not likely to be met.
Deaths will change assessment schedule, because assess death
in near-continuous time not at next scheduled appointment
(more on that later).

I We will often assume independent censoring to start. Later
talk about how bad the violation of the assumption can be.

I Informative Censoring

I Assessment schedule may be related to event.
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Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status
data.

Case 2: Only 2 observation times.

I Do not confuse with many observation times,
but only keeping the interval, (Li ,Ri ].

I Rare in Practice.
I Used for theoretical work with continuous time

inspection processes

Case K: Arbitrary number of observation times.

I Usually will assume Case K interval censoring.
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Nonparametric Maximum Likelihood of Survival

Right-Censored Data

I NPMLE is Kaplan-Meier estimate

I Usually assume event time is measured continuously. In
practice it is measured discretely (e.g., nearest day, or minute).

I To start we will treat event times as continuous.
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Example: No censoring

Consider 7 observed event times:

For presentation order data by event times
X1 X2 X3 X4 X5 X6 X7

14 15 44 76 118 123 289

Derive Kaplan-Meier estimate graphically.
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Example: Right-censoring

Original: 14 15 44 76 118 123 289
Modification 1: 14 15 44 55+ 118 123 289

Modification 1: Fourth subject right-censored at 55.

Graphically show Efron’s (1967) redistribution-to-the-right
algorithm.



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

Subj. 7

Subj. 6

Subj. 5

Subj. 4

Subj. 3

Subj. 2

Subj. 1



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

Subj. 7

Subj. 6

Subj. 5

Subj. 4

Subj. 3

Subj. 2

Subj. 1



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0





1

n



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Event Times: 14,15, 44, 55+,118,123,289

time

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

S
ur

vi
va

l

Event Times:14,15,44,55+,118,123,289



Example: Right-censoring

Consider 5 observed event times, 2 right-censored:
Original: 14 15 44 76 118 123 289
Modification 1: 14 15 44 55+ 118 123 289
Modification 2: 14 15 44 55+ 118 123 201+

Modification 2: first subject right-censored at 55 and sixth subject
right-censored at 201.
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Kaplan-Meier (Product-Limit) Estimator

Continuity Assumption:

I For mathematical convenience we assume event times are
continuous.

I With continuity assumption, Kaplan-Meier estimate is
uniquely defined everywhere except after last observation if
censored.

I Without continuity assumption, NPMLE is undefined also
within intervals of unit one.
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Kaplan-Meier (Product-Limit) Estimator

Bias:

I Assuming non-informative censoring...
I Kaplan-Meier estimate is approximately unbiased.

I Asymptotically unbiased in (0, τ ], where τ is largest possible
observed event.

I Bias comes entirely from how define region of K-M estimator
after last observation if censored (see Gillespie, et al, 1992,
Biometrika, 149-55).

I If define that region as 0 (Efron, 1967), then negative bias.
I If define that region as continuing with K-M unchanged after

last observation if censored (Gill, 1980), then positive bias.
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Interval Censoring: NPMLE

Likelihood:

` =
n∏

i=1

{F (Ri )− F (Li )}

where F is the cumulative distribution function.
Survival distribution is S(t) = 1− F (t).



Interval Censoring

Example, Regular Observation Times:
Subject Number L R

1 2 3
2 5 6
3 9 10
4 10 11
5 5 6
6 6 7
7 8 9



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

S
ur

vi
va

l



E-M (Expectation-Maximization) Algorithm for NPMLE

Notation:

I Xi event time for ith subject

I (Li ,Ri ] observed interval for ith subject

I t1, t2, . . . , tm, set of possible observation times where NPMLE
may change. (Describe with pictures).



Irregular Observation Times

Data (sorted by Li ):
Subject Number L R

1 0 7
2 0 8
3 6 10
4 7 16
5 7 14
6 17 ∞
7 37 44
8 45 ∞
9 46 ∞

10 46 ∞
Possible change times (later discuss how we do not need all):

t0 = 0, t1 = 6, t2 = 7, t3 = 8, t4 = 10, t5 = 14, t6 = 16, t7 =
17, t8 = 37, t9 = 44, t10 = 45, t11 = 46, t12 =∞
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E-M Algorithm for NPMLE

1. Mathematical Notation (for clarity, precision)

2. Graphically (for intuition)
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Notation:

I Xi event time for ith subject

I (Li ,Ri ] observed interval for ith subject

I t1, t2, . . . , tm, set of possible observation times where NPMLE
may change.

I Let t0 ≡ 0 and tm+1 ≡ ∞.

I p(tj) = Pr [tj−1 < X ≤ tj ]

I p = [p(t1), p(t2), . . . , p(tm+1)]

I pi (tj) = Pr [tj−1 < Xi ≤ tj | Xi ∈ (Li ,Ri ]]
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E-M Algorithm for NPMLE

I start with initial estimate of p̂.
I Each of m + 1 elements should be positive, and all should sum

to 1.
I Example: p̂ = [ 1

m+1 ,
1

m+1 , . . . ,
1

m+1 ]

I E-step: for each i

I p̂i (tj) =
p̂(tj )I{tj∈(Li ,Ri ]}∑

tk∈(Li ,Ri ] p̂(tk )

I Example: Li = t1,Ri = t3,

p̂i =

[
0,

p̂(t2)

p̂(t2) + p̂(t3)
,

p̂(t3)

p̂(t2) + p̂(t3)
, 0, . . . , 0

]

I M-step: update p̂. For each j

I p̂(tj) = 1
n

∑n
i=1 p̂i (tj)

I Iterate until convergence.
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I Each of m + 1 elements should be positive, and all should sum

to 1.
I Example: p̂ = [ 1

m+1 ,
1

m+1 , . . . ,
1

m+1 ]

I E-step: for each i

I p̂i (tj) =
p̂(tj )I{tj∈(Li ,Ri ]}∑

tk∈(Li ,Ri ] p̂(tk )

I Example: Li = t1,Ri = t3,

p̂i =

[
0,

p̂(t2)

p̂(t2) + p̂(t3)
,

p̂(t3)

p̂(t2) + p̂(t3)
, 0, . . . , 0

]

I M-step: update p̂. For each j
I p̂(tj) = 1

n

∑n
i=1 p̂i (tj)

I Iterate until convergence.



Irregular Observation Times

Data (sorted by Li ):
Subject Number L R

1 0 7
2 0 8
3 6 10
4 7 16
5 7 14
6 17 ∞
7 37 44
8 45 ∞
9 46 ∞

10 46 ∞
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Turnbull intervals

Turnbull (1976, JRSS-B, 290-295)

Turnbull intervals:

I Also called innermost intervals and real representations of
maximal cliques.

I Set of disjoint intervals whose left endpoints are in
L = {L1, L2, . . . , Ln} and right endpoints are in
R = {R1,R2, . . . ,Rn} but contain no other members of L or R
except the endpoints.



Turnbull intervals

Subj
# t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 0 7
2 0 8
3 6 10
4 7 16
5 7 14
6 17 ∞
7 37 44
8 45 ∞
9 46 ∞

10 46 ∞
(6 7](7 8] (37 44] (46 ∞)
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R code

library(interval)

data(bcos)

L<-bcos[1:10,"left"]

R<-bcos[1:10,"right"]

plot(icfit(L,R))
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Continuous Inspection Processes: Theory

I If you have a continuous inspection process, how fast does the
NPMLE converge?

I Case 1 Censoring (only 1 inspection for each subject)

I NPMLE converges at n1/3 rate.

I Details: As n→∞

n1/3 Ŝ(t)− S(t)(
1
2S(t)(1− S(t))f (t)/g(t)

)1/3

converges in distribution to a (non-normal) random variable.
Here f (t) and g(t) are density functions of event time and
inspection time respectively.

I Groeneboom and Wellner (1992, Information Bounds and
NPMLE, Birkhäuser)

I Case K Censoring (hard problem, see e.g., Schick and Yu,
2000, Scan. J. Stat 45-55).
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n1/3 Ŝ(t)− S(t)(
1
2S(t)(1− S(t))f (t)/g(t)

)1/3

converges in distribution to a (non-normal) random variable.
Here f (t) and g(t) are density functions of event time and
inspection time respectively.

I Groeneboom and Wellner (1992, Information Bounds and
NPMLE, Birkhäuser)
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Algorithms for NPMLE of Interval Censored Data

I E-M or Self-consistent algorithm (Turnbull, 1976, JRSSB,
290-5, Dempster, Laird, and Rubin, 1977, JRSS, 1-38).

I E-M, polish using Kuhn-Tucker conditions (Gentleman and
Geyer, 1996, Biometrika, 618-23, interval R Package, SAS,
Proc Lifereg).

I Gentleman and Vandal (2001, JCGS, 403-421, Icens R
package)

I Iterative Convex Minorant (ICM) Algorithm (Groeneboom and
Wellner, 1992, Information Bounds and Nonparametric
Maximum Likelihood Estimation).

I Hybrid, E-M and ICM (Wellner and Zhan, 1997, JASA,
945-957).

I Vector Exchange Algorithm (Böhning, 1986, Metrika, 337-347)
I Intra-simplex direction (Lesperance and Kalbfleisch, 1992,

JASA, 120-6).

I Support Reduction Algorithm (Groeneboom, Jongbloed,
Wellner, 2008, Scan J Stat, 385-, MLEcens R package)
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R package: interval

> library(interval)

> data(bcos)

> head(bcos)

left right treatment

1 45 Inf Rad

2 6 10 Rad

3 0 7 Rad

4 46 Inf Rad

5 46 Inf Rad

6 7 16 Rad

Two treatments for breast cancer, radiation (Rad, n=46) and
radiation with chemotherapy (RadChem, n=48). Response is time
in months until breast retraction. Finkelstein and Wolfe (1985,
Biometrics, 845-).



R package interval: icfit function

I icfit function calculates NPMLE by E-M algorithm
I default calls MLEcens package to calculate initial estimate.

I MLEcens developed for bivariate interval censored data, but
can be used in univariate case

I uses Support Reduction algorithm, written in C (very fast).

I icfit checks the Kuhn-Tucker conditions



R package: interval

> fit<-icfit(Surv(left,right,type="interval2")~treatment,

data=bcos)

> summary(fit)

treatment=Rad:

Interval Probability

1 (4,5] 0.0463

2 (6,7] 0.0334

3 (7,8] 0.0887

4 (11,12] 0.0708

5 (24,25] 0.0926

6 (33,34] 0.0818

7 (38,40] 0.1209

8 (46,48] 0.4656

treatment=RadChem:

Interval Probability

1 (4,5] 0.0433

2 (5,8] 0.0433

3 (11,12] 0.0692

4 (16,17] 0.1454

5 (18,19] 0.1411

6 (19,20] 0.1157

7 (24,25] 0.0999

8 (30,31] 0.0709

9 (35,36] 0.1608

10 (44,48] 0.0552

11 (48,60] 0.0552



> plot(fit)
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> plot(fit,shade=FALSE)
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> plot(fit, dtype=”cdf”)
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> fit[1]

$strata

treatment=Rad

8

$error

[1] 2.067097e-09

$numit

[1] 1

$pf

(4,5] (6,7] (7,8] (11,12] (24,25] (33,34] (38,40]

0.04634677 0.03336337 0.08866737 0.07075292 0.09264584 0.08178576 0.12087983

(46,48]

0.46555814

$intmap

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 4 6 7 11 24 33 38 46

[2,] 5 7 8 12 25 34 40 48

attr(,"LRin")

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$converge

[1] TRUE

$message

[1] "normal convergence"

...



> summary(fit[1])

Interval Probability

1 (4,5] 0.0463

2 (6,7] 0.0334

3 (7,8] 0.0887

4 (11,12] 0.0708

5 (24,25] 0.0926

6 (33,34] 0.0818

7 (38,40] 0.1209

8 (46,48] 0.4656



Using Different Starting Functions

> formula<-Surv(left,right,type="interval2")~treatment

> system.time(icfit(formula,data=bcos))

user system elapsed

0.02 0.00 0.02

Warning: default calls MLEcens 0.1-3, can crash R!

> system.time(icfit(formula,data=bcos,initfit=NULL))

user system elapsed

0.10 0.00 0.09

> system.time(icfit(formula,data=bcos,initfit="initEMICM"))

user system elapsed

0.17 0.00 0.17



Icens package

> library(Icens)

> library(interval)

> data(bcos)

> bcosRad<-bcos[bcos$treatment=="Rad",c("left","right")]

> fitRad<-EMICM(bcosRad)

> bcosRadChem<-bcos[bcos$treatment=="RadChem",c("left","right")]

> fitRadChem<-EMICM(bcosRadChem)



> plot(fitRad,surv=TRUE)
> plot(fitRadChem,surv=TRUE,new=FALSE,shade=2)
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survival package

I Can calculate NPMLE for interval censored data using E-M
(i.e., Turnbull) algorithm, but ...

I assumes drop in survival occurs at midpoints,

I for confidence intervals of survival uses methods developed for
right censored data (not sure of properties for interval
censored data).



Distribution Estimation: Other Issues

I For these issues there are no R packages to solve them at this
time.



Confidence Intervals on Survival Function

I Vandal, Gentleman, and Liu (2005, Can J. Stat, 71-83)
I Bootstrap
I Empirical likelihood

I When inspection times are fixed, -2 times log-empirical
likelihood ratio → Chi-square with 1 degree of freedom

I when number of inspection times grows with sample size,
more theory needed.



Interval Censoring with Truncation

I The event time, X , is truncated in B if the researcher would
not have been aware of the existence of X had X not been in
B.

I Example (left-truncation): If the event time is length of time
from diagnosis of cancer until death. Only individuals who live
long enough after diagnosis to get in study are observed.

I

` =
n∏

i=1

F (Ri )− F (Li )

F (ri )− F (li )

where (li , ri ] is the truncating interval.

I Frydman (1994, JRSS-B, 71-74) showed Turnbull (1976,
JRSSB 290-295) intervals need to be modified for truncation.

I See Hudgens (2005, JRSSB 573-587) for existence conditions
for NPMLE in presence of left truncation.
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Informative Censoring

I Observation times depend on event time
I Strategies

I Estimate frailty (random effects):
I from frequency of observation times (Farrington and Gay,

1999, Stat in Med, 1235-48)
I by modeling (Zhang, Sun, Sun, Finkelstein, 2007, Stat in

Med, 2533-46)

I Nonparametric (when regular observation times, and can
observe observation process after event)

I Finkelstein, Goggins, and Schoenfeld (2002, Biometrics,
298-304).



Why Progression-Free Survival Is Different

I Usually different observation times for death than for
progression.

I We do not have one set of observation times that are
independent of event time.

I Which observation process we observe depends on event.
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Is this Dual Inspection Process a Big Problem?

I More work needs to be done to explore problems applying
usual interval NPMLE to this problem

I simple solution when scheduled progression observation times:
if observe a death, use progression observation times to define
interval. Lose information.

I better solution: illness-death model
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Illness-Death Model

Entry State Disease Progression

Death

(State 1) (State 2)

(State 3)



Illness-Death Model

I Illness-Death Markov model (knowledge of current state
[including time since start of study] supplies all prediction
information)

I S is time leave entry state from start of study

I F12(s) = Pr [S ≤ s and Progress]

I F13(s) = Pr [S ≤ s and Die before Progress]

I F (s) = F12(s) + F13(s) (distribution for progression-free
survival)

I Frydman and Szarek (Biometrics, 2009, 143-151)
I Assumes observation scheme non-informative
I Allows interval-censoring of progression, right-censoring of

death, properly handles death before observed progression
I Uses self-consistent (i.e., E-M) algorithm
I Notation very difficult
I No readily available software
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End of Part 1: Questions?



Types of 2-sample Tests

I Common tests, No censoring
I t-test (difference in means)
I Wilcoxon-Mann-Whitney test (rank test)

I Common tests, censoring
I logrank test (rank test)
I Wilcoxon-type test (rank test)

I Difference in means tests with censoring
I Do not usually use difference in means tests because means

effected by large tails, and with right censoring cannot
estimate observations in tail well

I Right censored: weighted Kaplan-Meier tests (Pepe and
Fleming, 1989, Biometrics, 497-507)

I Interval censored: integrated weighed difference tests (Petroni
and Wolf, 1994, Biometrics, 77-87, Fay and Shih, 1998, JASA,
387-396)



Types of 2-sample Tests

I Common tests, No censoring
I t-test (difference in means)
I Wilcoxon-Mann-Whitney test (rank test)

I Common tests, censoring
I logrank test (rank test)
I Wilcoxon-type test (rank test)

I Difference in means tests with censoring
I Do not usually use difference in means tests because means

effected by large tails, and with right censoring cannot
estimate observations in tail well

I Right censored: weighted Kaplan-Meier tests (Pepe and
Fleming, 1989, Biometrics, 497-507)

I Interval censored: integrated weighed difference tests (Petroni
and Wolf, 1994, Biometrics, 77-87, Fay and Shih, 1998, JASA,
387-396)



Types of 2-sample Tests

I Common tests, No censoring
I t-test (difference in means)
I Wilcoxon-Mann-Whitney test (rank test)

I Common tests, censoring
I logrank test (rank test)
I Wilcoxon-type test (rank test)

I Difference in means tests with censoring
I Do not usually use difference in means tests because means

effected by large tails, and with right censoring cannot
estimate observations in tail well

I Right censored: weighted Kaplan-Meier tests (Pepe and
Fleming, 1989, Biometrics, 497-507)

I Interval censored: integrated weighed difference tests (Petroni
and Wolf, 1994, Biometrics, 77-87, Fay and Shih, 1998, JASA,
387-396)



Rank Testing with Censoring: Overview

1. Choose Likelihood/Process
I Marginal Likelihood of Ranks (integrate over all ranks possible

given censoring)
I Grouped Continuous Model (estimate baseline distribution)
I Counting Process
I Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
I Proportional odds/ Wilcoxon-type
I Proportional hazards (continuous)/ Logrank-type
I Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
I Permutation test on efficient scores (exact or asymptotic)
I Score Test
I Imputation

Cover first



Permutation Tests

I Data:
I x responses
I z covariates (treatment indicators)

I Choose test statistic, T (x, z), larger indicates farther from the
null hypothesis

I e.g.: T (x, z) = P̂r [X (1) > X (0)] + 1
2 P̂r [X (1) = X (0)]

where X (a) = X when z = a

I Permute
I T0 = T (x, z)
I Ti = T (x, πi (z)), i = 1, . . . , n!

I p-value =
∑n!

i=1 I{Ti≥T0}
n!

I Assumption: strong null (e.g.: treatment labels do not matter)
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Permutation Tests

I Permute
I T0 = T (x, z)
I Ti = T (x, π(z)), i = 1, . . . , n!

I p-value =
∑n!

i=1 I{Ti≥T0}
n!

I p-values invariant to monotonic transformations of T
I e.g.: T ∗(x, z) = b0 + b1T (x, z)

where b0, b1 do not change with permutations
I Then p-values same for T and T ∗ since,

I I{Ti ≥ T0} = I{T ∗
i ≥ T ∗

0 } for all i .

I Call T and T ∗ equivalent test statistics
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I Following equivalent test statistics (all give the
Wilcoxon-Mann-Whitney test):

I T = Difference in mean ranks
I T = Sum of ranks from one group
I T = sum of scores from one group, where ith score represents

P̂r [Xi > X ] + 1
2 P̂r [Xi = X ]

where X random response regardless of group
I T = sum of scores from one group, where ith score represents

P̂r [Xi ≥ X ] + P̂r [Xi > X ]− 1
where X random response regardless of group
scores sum to 0 in this case
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Different scores just linear functions of ranks:
Rank P̂r [Xi ≥ X ] P̂r [Xi > X ] P̂r [Xi ≥ X ] + P̂r [Xi > X ]− 1

1 1/n 0/n 1
n -1

2 2/n 1/n 3
n - 1

...
...

...

j j/n (j-1)/n 2j−1
n - 1

...
...

...
n n/n (n-1)/n 2n−1

n -1

∑
ci =

∑ 2i − 1− n

n
= 0



Generalizing Wilcoxon-Mann-Whitney for Censoring

I Peto and Peto (1972, JRSS-A, 185-207).
I paper included possibility of interval censoring
I can also be derived as permutation test on score statistic

(more on that later)

I Permutation test on sum of scores, ci , from one group
I

ci = P̂r [Xi ≥ X ] + P̂r [Xi > X ]− 1

= Ŝ(Li ) + Ŝ(Ri )− 1

I Peto and Peto (1972) introduced another rank test, the
logrank test (more on logrank test later)
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Right Censoring

I Turnbull intervals are point masses at observed event times,
plus interval from last censored observation to ∞ if last
censored observation is larger than largest observed event
time.

I ci = Ŝ(Li ) + Ŝ(Ri )− 1
I Observed event time at Ri : let Li = Ri−

then ci = Ŝ(Ri−) + Ŝ(Ri )− 1
I Right censored at Li : let Ri =∞

then ci = Ŝ(Li )− 1



Inference from a Permutation Test

I Assumptions:
I Under null hypothesis treatment (zi values) are independent of

failure time and assessment times.
I Therefore, for permutation test: No information on treatment

(zi values) used in creating scores.

I Non-informative censoring

I Exact tests
I complete enumeration
I network algorithm (StatXact)
I many other algorithms
I Monte Carlo approximation to exact

I Asymptotic tests
I see ”Permutational central limit theorems” (Ency of Stat., Sen,

1985).
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Rank Testing with Censoring: Overview

Colors: covered, Next

1. Choose Likelihood/Process
I Marginal Likelihood of Ranks (integrate over all ranks possible

given censoring)
I Grouped Continuous Model (estimate baseline distribution)
I Counting Process
I Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
I Proportional odds/ Wilcoxon-type
I Proportional hazards (continuous)/ Logrank-type
I Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
I Permutation test on efficient scores (exact or asymptotic)
I Score Test
I Imputation



Choosing a Model

Parametric Model: Accelerated Failure Time Model

log(Xi ) = α + ziβ + σε

where

I zi is a vector of covariates

I β is a vector of parameters

I α and σ are location and scale parameters

I ε is the error, where ε ∼ F where F is a known distribution.



Choosing a Model

Semi-Parametric Model

g(Xi ) = ziβ + ε

where

I g(·) is an UNKNOWN monotonic transformation of the
failure time

I zi is a vector of covariates

I β is a vector of parameters

I ε is the error, where ε ∼ F where F is a known distribution
with convenient mean and variance (not necessarily mean=0
and variance=1).



Choosing a Model

Choose F
I F is logistic

I Proportional Odds Model
I Let S(t;β,H) = 1− F (t;β,H) and S0(t) = S(t; 0,H), where

H is a vector of nuisance parameters, and

S(t;β,H)

1− S(t;β,H)
=

S0(t)

1− S0(t)
exp(−z ′i β)

⇒ S(t;β,H) =

[
1 +

(
1− S0(t)

S0(t)

)
exp(ziβ)

]−1

I F is extreme minimum value
I Proportional Hazards Model
I S(t;β,H) = S0(t)exp(ziβ)

I λ(t;β,H) = λ0(t) exp(ziβ)



Two Logrank Models

I Finkelstein (1986, Biometrics, 845-854)
I grouped continuous model on continuous proportional hazards

model.
I λ(t;β,H) = λ0(t) exp(ziβ)

I Sun (1996, Stat in Med, 1387-1395)
I follow discrete approximation to proportional hazards used in

Cox (1972, JRSSB 187-220).
I

λ(t;β,H)

1− λ(t;β,H)
=

λ0(t)

1− λ0(t)
exp(ziβ)

I

S(t;β,H) =

j∏
`=1

[
1 +

(
S0(t`−1)− S0(t`

S0(t`)

)
exp(ziβ)

]−1
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Choosing Likelihood/Process: Marginal Likelihood of
Ranks

Semi-Parametric Model

g(Xi ) = ziβ + ε

where ε ∼ F .

I Since g(·) is unknown and monotonic, ranks have all
information. So use marginal likelihood of ranks.

I

∑
r∈R

∫
· · ·
A(r)

∫ n∏
i=1

f (ui − ziβ)dui

where R is set of ranks, r , consistent with censoring
A(r) is region corresponding to rank vector r



Choosing Likelihood/Process: Marginal Likelihood of
Ranks

I Score test: Self and Grossman (1986, Biometrics, 521-30)
I Theoretically nice and clean
I Difficult to calculate scores

I marginal likelihood of ranks (MLR) can be used for
semi-parametric regression

I Return to this in regression section.



Choosing Likelihood/Process: Grouped Continuous Model

Semi-Parametric Model

g(Xi ) = ziβ + ε

where ε ∼ F .
Likelihood:

` =
n∏

i=1

{F (g(Ri )− ziβ)− F (g(Li )− ziβ)}

where zi = vector of treatment indicators

β = treatment parameters

g(·) = infinite dimensional nuisance parameter

Only need to estimate g(X ) at inspection times.



Choosing Likelihood/Process: Grouped Continuous Model

Recall the Likelihood:

` =
n∏

i=1

{F (g(Ri )− ziβ)− F (g(Li )− ziβ)}

Reparametrize:

` =
n∏

i=1

{
F
(
F−1 [H(Ri )]− ziβ

)
− F

(
F−1 [H(Li )]− ziβ

)}

here H = 1− S0 is a baseline distribution function.



Choosing Likelihood/Process: Grouped Continuous Model
Efficient Score Vector (ignore Math if you want):

U =

[
∂ log `

∂β

]
β=0

=
∂

∂β

[
n∑

i=1

log
{
F
(
F−1

[
Ĥ(Ri )

]
− ziβ

)
−

F
(
F−1

[
Ĥ(Li )

]
− ziβ

)}]
β=0

=
n∑

i=1

∂
∂β

{
F
(
F−1

[
Ĥ(Ri )

]
− ziβ

)
− F

(
F−1

[
Ĥ(Li )

]
− ziβ

)}
β=0

Ĥ(Ri )− Ĥ(Li )

=
n∑

i=1

zi
−
{
f
(
F−1

[
Ĥ(Ri )

])
− f

(
F−1

[
Ĥ(Li )

])}
Ĥ(Ri )− Ĥ(Li )

=
n∑

i=1

zici

Bottom line: scores ci function of NPMLE of distribution only.



Choosing Likelihood/Process: Grouped Continuous Model

Efficient Score Vector (bottom line):

U =
n∑

i=1

zici

where ci is a function of F and NPMLE of survival function,
Ŝ = 1− Ĥ



Scores:
I Proportional odds (Wilcoxon-type)

I ci = Ŝ(Li ) + Ŝ(Ri )− 1

I Proportional Hazards (logrank, Finkelstein, 1986)

I ci = Ŝ(Li ) log Ŝ(Li )−Ŝ(Ri ) log Ŝ(Ri )

Ŝ(Li )−Ŝ(Ri )

I Proportional Hazards (discrete version) (logrank, Sun, 1996)

I ci = Ŝ(Li ) log S̃(Li )−Ŝ(Ri ) log S̃(Ri )

Ŝ(Li )−Ŝ(Ri )

I where S̃ is like a Nelson-Aalen estimator,

S̃(tj) = exp

(
−

j∑
k=1

λ̂k

)
where

λ̂k =
Ŝ(tk−1)− Ŝ(tk)

Ŝ(tk−1)



Alternate Expression for Weighted Logrank Tests
I Consider `th element of score vector, U representing

treatment `:

U` =
m∑
j=1

wj

(
Dj` −

Nj`Dj

Nj

)
I Dj = expected number of total deaths in (tj−1, tj ]
I Dj` = expected number of deaths in (tj−1, tj ], treatment

group `
I Nj and Nj` expected number at risk in (tj−1, tj ]
I Sun’s (1996) test: wj = 1
I Finkelstein’s (1986) test:

wj =
Ŝ(tj−1)

{
log Ŝ(tj−1)− log Ŝ(tj)

}
Ŝ(tj−1)− Ŝ(tj)

≈ 1

I Fay (1999, Stat in Med, 273-285) shows equivalence between
score tests in weighted logrank form (above) and permutation
form (

∑
zici ).
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log Ŝ(tj−1)− log Ŝ(tj)
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I Proportional Odds (Wilcoxon-type test):

wj = Ŝ(tj−1)



Rank Testing with Censoring: Overview

Colors: covered, Next

1. Choose Likelihood/Process
I Marginal Likelihood of Ranks (integrate over all ranks possible

given censoring)
I Grouped Continuous Model (estimate baseline distribution)
I Counting Process
I Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
I Proportional odds/ Wilcoxon-type
I Proportional hazards (continuous)/ Logrank-type
I Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
I Permutation test on efficient scores (exact or asymptotic)
I Score Test
I Imputation



Why not Use MidPoint Imputation then usual Right
Censoring Methods?

Before considering formal interval censoring inference methods,
show there is a problem with using midpoint imputation on
intervals then using usual right censoring methods.



Inferences when Treatment Related to Inspection Process
Only

Examples:

I Treatment A scheduled every 2 weeks, treatment B scheduled
every 4 weeks.

I Treatment A causes side effects which lead to more frequent
inspections, but does not change time to progression or death



Simple Methods When Inspection Times Differ Between
Treatments

I Midpoint imputation, then treat data like right censored data
I Law and Brookmeyer (1992, Stat in Med, 1569-1578) showed

type I error for nominal 0.05 can be as large as 0.19
I See also recent work by Sun and Chen (unpublished

manuscript JSM, 2009).



Interval-Censoring Inference Methods
I H0 : β = 0
I Recall efficient score vector,

U =
n∑

i=1

zici

where ci are function of NPMLE of distribution
I Inference options

I Permutation of treatment vector zi
I Require no treatment information used in calculating scores,

ci .
I Assumption: Non-informative censoring... inspection times

independent of event time
I Assumption: inspection times independent of treatment

I Score Test
I Require number of nuisance parameters (dimension of

NPMLE) to be fixed as n→∞.
I Assumption: Non-informative censoring... inspection times

independent of event time
I Likelihood-based, so inspection times may depend on

treatment
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Exponential Example

I X ∼ Exponential(1)

I Inspection Schedule for Treatment A: 0, 1, 2

I Inspection Schedule for Treatment B: 0, 2

I n = 1000 in each group
I Treatment A:

I (0, 1]: expect n=632, expected logrank score 0.368
I (1, 2]: expect n=233, expected logrank score -0.265
I (2,∞): expect n=135, expected logrank score -1.265

I Treatment B:
I (0, 2]: expect n=632+233, expected logrank score

632 ∗ 0.368 + 233 ∗ (−.265)

632 + 233
= .197

I (2,∞): expect n=135, expected logrank score -1.265



Exponential Example

Problem with Midpoint Imputation:

I X ∼ Exponential(1)

I Inspection Schedule for Treatment A: 0, 1, 2

I Inspection Schedule for Treatment B: 0, 2

I n = 1000 in each group
I Treatment A:

I (0, 1]⇒ .5: expect n=632, expected logrank score 0.648
I (1, 2]⇒ 1.5: expect n=233, expected logrank score -0.411
I (2,∞): expect n=135, expected logrank score -1.411

I Treatment B:
I (0, 2]⇒ 1: expect n=632+233, expected logrank score

0.0517 6= 632 ∗ 0.648 + 233 ∗ (−.411)

632 + 233
= 0.389

I (2,∞): expect n=135, expected logrank score -1.411



Rewriting Scores as Weighted Sums

Notation:

I t1, t2, . . . , tm, set of possible observation times where NPMLE
(all groups combined) may change.

I Let t0 ≡ 0 and tm+1 ≡ ∞.

I p(tj) = Pr [tj−1 < X ≤ tj ]

I NPMLE of probability mass function:
p̂ = [p̂(t1), p̂(t2), . . . , p̂(tm+1)]

I p̂i (tj) = P̂r [tj−1 < Xi ≤ tj | Xi ∈ (Li ,Ri ]]

Rewrite scores:

ci = c(Li ,Ri , p̂)

=
m+1∑
j=1

p̂i (tj)c(tj−1, tj , p̂)



Permutation Method when Inspection Process Different
Between Treatment Groups

I Although variances of scores, ci , may be different by changing
the inspection process, expected value of score ci is zero
regardless of inspection process.

I So it is hard to think of two inspection processes (one for each
treatment group) that would give a bad type I error.

I That is why generally, permutation test does not perform
badly even when the inspection processes are different
between groups.
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Score Method when Inspection Process Different Between
Treatment Groups

I Theoretically, score method does not require that the two
treatment groups have the same inspection process.

I The problem with score method is that the number of
nuisance parameters may grow with n. Further, nuisance
parameters may be on boundary of parameter space.

I Fay (1996, Biometrics, 811-22) redefines nuisance parameters,
any part of distribution with estimated mass of 0 is set to 0.
Then do usual score test. This is how interval R package
does score test.

I Because of ad hoc nature, prefer permutation methods for
inferences when very many nuisance parameters (i.e., almost
continuous inspection processes).
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Rank Testing with Censoring: Overview

Colors: covered, Next

1. Choose Likelihood/Process
I Marginal Likelihood of Ranks (integrate over all ranks possible

given censoring)
I Grouped Continuous Model (estimate baseline distribution)
I Counting Process
I Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
I Proportional odds/ Wilcoxon-type
I Proportional hazards (continuous)/ Logrank-type
I Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
I Permutation test on efficient scores (exact or asymptotic)
I Score Test
I Imputation



Testing: Imputation

I Imputation
I Calculate Non-parametric MLE of survival function
I Sample from NPMLE, impute into usual right-censored

weighted logrank equations m times, average m score vectors,
Uj , but correct average of m variances by within cluster
resampling method:

V =

∑m
j=1 Vj

m
−
∑m

j=1(Uj − Ū)(Uj − Ū)T

m − 1

I Motivation, letting D be data

Var [E (U|D)] = Var(U)− E [Var(U|D)]

I Huang, Lee, and Yu (2008, Statistics in Medicine, 3217-3226).
I Variance estimation similar to within cluster resampling

(Hoffman, Sen, Weinberg, Biometrika, 2001, 1121-1134) also
called Multiple Outputation (Follmann, Proschan, and Leifer,
Biometrics, 2003, 420-429).



Overview of Type I Error Problems

I Data: Inspection process independent of treatment and
response.

I No problems for any methods.

I Data: Inspection process related to treatment not response
I Type I error problem: Midpoint imputation
I No type I error problem: score test
I Probably not much type I error problem: permutation test

I Data: Informative censoring, but same for all groups
I Permutation method no type I error problem
I Score test and midpoint imputation ?

I Data: Informative censoring and differential between
treatment groups.

I Problem with all methods.

I Data: Continuous inspection process but same for all
treatment groups

I score test (theory not known, perhaps type I error problem?)
I permutation test (OK)
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Testing: Stratification

Three methods all maintain type I error when strata effects
present:

1. Weighted logrank test ignoring strata
I when small strata effects, this is more powerful than method 2

2. Separate ranking (i.e., separate baseline hazard) within each
strata, then either permute accounting for strata or combine
separate weighted logrank tests (e.g. stratified logrank test)

I when large strata effects this is more powerful than method 1

3. Automatic adjustment
I measure within versus between variance using ranks only
I shrinkage estimator of distribution for each strata, if within

variance large shrink a lot, if between variance large shrink little
I rank subjects based on shrinkage estimator
I automatically gives good power regardless of whether strong or

weak strata effect
I Shih and Fay (1999, Biometrics, 1156-1161)
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Recall breast cosmesis data:

> library(interval)

> data(bcos)

> fit<-icfit(Surv(left,right,type="interval2")~treatment,

+ data=bcos)

> plot(fit)



> plot(fit)
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logrank: Sun’s scores

> test<-ictest(Surv(left,right,type="interval2")~treatment,data=bcos)

> test

Asymptotic Logrank two-sample test (permutation form), Sun's scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6684, p-value = 0.007622

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected



logrank: Finkelstein’s scores

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ scores="logrank2")

Asymptotic Logrank two-sample test (permutation form), Finkelstein's

scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6839, p-value = 0.007277

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.944182

treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected



Wilcoxon-type tests

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ scores="wmw")

Asymptotic Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment

Z = -2.1672, p-value = 0.03022

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -5.656724

treatment=RadChem 48 5.656724

* like Obs-Exp, positive implies earlier failures than expected



exact Monte Carlo

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ scores="wmw", exact=TRUE)

Exact Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.026

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -5.656724

treatment=RadChem 48 5.656724

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from 999 Monte Carlo replications

99 percent confidence interval on p-value:

0.009926283 0.048044749

(took 0.08 seconds on my desktop).



exact Monte Carlo

> test<-ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ scores="wmw", exact=TRUE, mcontrol=mControl(nmc=10^6-1))

Exact Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.02967

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -5.656724

treatment=RadChem 48 5.656724

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from 999999 Monte Carlo replications

99 percent confidence interval on p-value:

0.02905283 0.03030048

(took 32 seconds on my desktop).



exact network algorithm

test<-ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

scores="wmw", exact=TRUE, method="exact.network")

Error: cannot allocate vector of size 244.7 Mb

So, network algorithm is only feasible for quite small sample sizes
(about 10 per group).



score method

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ method="scoretest")

Asymptotic Logrank two-sample test (score form), Sun's scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.6177, p-value = 0.00578

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected



imputation: within subject resampling

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos,

+ method="wsr.HLY")

Asymptotic Logrank 2-sample test(WSR HLY), Sun's scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.1912, p-value = 0.007326

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from Monte Carlo replications



Regression: Semi-parametric approaches

I Marginal likelihood of ranks
I can be solved by stochastic integration (Markov Chain Monte

Carlo)

I Proportional Hazards: Satten (1996, Biometrika, 355-370)
I Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data

Analysis, 473-488)

I Monte Carlo E-M for Proportional Hazards (Goggins,
Finkelstein, Schoenfeld, Zaslavsky, 1998, Biometrics,
1498-1507) S program at
http://hedwig.mgh.harvard.edu/biostatistics/software

I E-M on Proportional Hazards (Goetghebeur, Ryan, 2000,
Biometrics, 1139-1144)

I Iterative Convex Minorant algorithm for Proportional Hazards
(Pan, 1999, J. Comp Graph Stat, 109-120) intcox R package
(package not written by Pan, I could not get results to match
coxph when data right censored).
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Regression: Semi-parametric approaches (continued)

I Estimate non-parametric part with many parameters
I Piecewise constant intensity model, then use GLM methods for

Bernoulli (Farrington, 1996, Stat in Med, 283-292, Carstensen,
1996, Stat in Med, 2177-2189)

I Icens function in Epi R package

I Likelihood Smoothing using Kernels (Betensky, Lindsey, Ryan
and Wand, 2002, Stat in Med, 263-275)
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Parametric Models

Accelerated Failure Time Models

log(Xi ) = α + ziβ + σε

where

I zi is a vector of covariates

I β is a vector of parameters

I α and σ are location and scale parameters

I ε is the error, where ε ∼ F where F is a known distribution.



Parametric Models: AFT

log(Xi ) = α + ziβ + σεi

where εi is the error, where εi ∼ F and F is known.
Creating Likelihood:

εi =
log(Xi )− (α + ziβ)

σ

so

Pr [Xi ≤ x ] = F

[
log(Xi )− (α + ziβ)

σ

]
but Xi ∈ (Li ,Ri ] so

L =
n∏

i=1

{
F

[
log(Ri )− (α + ziβ)

σ

]
− F

[
log(Li )− (α + ziβ)

σ

]}



Parametric Models: AFT

Xi ∈ (Li ,Ri ] so

L =
n∏

i=1

{
F

[
log(Ri )− (α + ziβ)

σ

]
− F

[
log(Li )− (α + ziβ)

σ

]}
Special cases:

I Right censoring, Ri =∞ and since F (∞) = 1,

L =
n∏

i=1

{
1− F

[
log(Li )− (α + ziβ)

σ

]}
I Left censoring, Li = 0 and since F (0) = 0,

L =
n∏

i=1

{
F

[
log(Ri )− (α + ziβ)

σ

]}



Inference from Parametric Model

I Usual asymptotic methods
I Wald test
I Score test
I Likelihood ratio test

I Regularity Conditions
I Number of parameters does not increase as n increases
I Nuisance parameters not on boundary of parameter space. For

parametric models this is not a problem.



Frailty (Random effects)

We can handle frailty in interval censored data:

I Parametric
I Weibull model with Normal frailty. SAS code in appendix.

Bellamy, et al (2004, Stat in Med, 3607-3621)
I Gamma frailty. Goethals, et al (2009, JABES 1-14). Have SAS

and R code.

I Semi-parametric
I Proportional hazards with frailty. No software. Hougaard, et al

(1994, Biometrics, 1178-88).



R Software for Interval Censoring: Overview

I NPMLE
I Icens package: many algorithms
I survival package: survfit (E-M algorithm)
I interval package: icfit (E-M, polish using Kuhn-Tucker)
I MLEcens package: does bivariate NPMLE, can be used for

univariate

I Smoothing of Distribution
I ICE package: uses Kernel smooth (reduces to NPMLE as

bandwidth gets small)
I polspline package: oldlogspline (spline estimator of density)

I Testing
I interval package: ictest (weighted logrank tests, using

permutation [exact, asymptotic], score test, or imputation)

I Regression
I survival package: survreg (parametric survival models)
I Epi package: Icens (Piecewise constant intensity model)
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Example Data Set for Regression

> library(Epi)

> data(hivDK)



R examples

Data Set: HIV in Danish men from 1983 to 1989 (see Carstensen,
1996, Stat in Med, 2177-2189)

I Data in Epi R package: hivDK

I Modify Data: Treat as if known to be well (HIV
antibody negative) at start of study. This mimics most
clinical trials.

I Time to event: event is HIV antibody positive. Start of study,
12/31/1980

I Time measured in days since start of study
I Sample size: n=297

I Right censored: n=232
I Left censored: n=26
I interval censored: n=39

I Covariate: traveled to U.S. ? (No, n= 190), (Yes, n= 107)



hivDK data: Original form

> hivDK[1:10,]

id entry well ill bth pyr us

1 101 1980-12-31 1987-03-15 <NA> 0 0 0

2 104 1980-12-31 1989-05-15 <NA> 9 20 0

3 105 1980-12-31 1981-11-15 <NA> 8 3 0

4 106 1980-12-31 1989-05-15 <NA> -5 8 0

5 107 1980-12-31 1981-11-15 1987-03-15 -2 5 0

6 108 1980-12-31 1987-03-15 <NA> -9 25 0

7 109 1980-12-31 1984-08-15 <NA> -8 3 0

8 110 1980-12-31 1987-03-15 <NA> -3 6 0

9 111 1980-12-31 1984-08-15 <NA> -3 4 0

10 112 1980-12-31 1981-11-15 <NA> 8 7 0



R code: setup/modify hivDK data

> library(Epi)

> data(hivDK)

> d<-hivDK

> left<-as.numeric(d$well-d$entry)

> left.na<-left

> left[is.na(left)]<-0

> right<- as.numeric(d$ill - d$entry)

> right.na<-right

> right[is.na(right)]<-Inf

> d<-data.frame(left,left.na,right,

+ right.na,us=d$us,

+ year.of.birth=d$bth+1950,

+ age.at.entry=d$bth+30,

+ partners.per.year=d$pyr)



hivDK data

## for survreg, need left and right in different format

## created variables left.na and right.na such that

## left censoring has left.na=NA

## right censoring has right.na=NA

d[1:3,]

left left.na right right.na year.of.birth

1 2265 2265 Inf NA 1950

2 3057 3057 Inf NA 1959

3 319 319 Inf NA 1958

age.at.entry partners.per.year

1 30 0

2 39 20

3 38 3



fit<-icfit(Surv(left,right,type="interval2")~us, data=d)

summary(fit)

us=0:

Interval Probability

1 (0,319] 0.0636

2 (319,439] 0.0342

3 (439,804] 0.0197

4 (804,1323] 0.0370

5 (1323,2265] 0.0463

6 (2265,3057] 0.0317

7 (3057,Inf) 0.7675

us=1:

Interval Probability

1 (0,319] 0.1215

2 (319,439] 0.0577

3 (439,804] 0.1058

4 (804,1323] 0.0391

5 (1323,2265] 0.0521

6 (3057,Inf) 0.6237



> plot(fit)
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> test<-ictest(Surv(left,right,type="interval2")~us, data=d)

> test

Asymptotic Logrank two-sample test

(permutation form), Sun's scores

data: Surv(left, right, type = "interval2") by us

Z = -2.7393, p-value = 0.006156

alternative hypothesis: survival distributions not equal

n Score Statistic*

0 190 -10.26357

1 107 10.26357

* like Obs-Exp, positive implies earlier failures

than expected



Rank Permutation Test for Trend

> ictest(Surv(left,right,type="interval2")~partners.per.year,

+ score="wmw",data=d)

Asymptotic Wilcoxon trend test(permutation form)

data: Surv(left, right, type = "interval2") by partners.per.year

Z = 3.0424, p-value = 0.002347

alternative hypothesis: survival distributions not equal

n Score Statistic*

[1,] 297 514.0171

* postive so larger covariate values give earlier failures than expected



interval R package: Other capabilities

Other details outlined in vignette of interval software. In R, after
loading interval package type:
vignette(”intervalPaper”)

I You can output scores, c1, . . . , cn, that may then be used in
other permutation software (e.g., coin R package, StatXact).

I You can estimate the NPMLE from another package (e.g.,
Icens) and input the results into ictest through the initfit
option. Recall Icens has many options for calculating the
NPMLE (e.g., E-M, Iterative Convex Minorant, Vector
Exchange Algorithm).



## first try Weibull

## for survreg, need left and right in different format

## created variables left.na and right.na such that

## left censoring has left=NA

## right censoring has right=NA

> sreg<-survreg(Surv(left.na,right.na,type="interval2")~us,

+ data=d)



summary(sreg)

Call:

survreg(formula = Surv(left.na, right.na, type = "interval2") ~

us, data = d)

Value Std. Error z p

(Intercept) 10.36 0.507 20.43 8.74e-93

us -1.17 0.463 -2.54 1.11e-02

Log(scale) 0.56 0.141 3.98 6.79e-05

Scale= 1.75

Weibull distribution

Loglik(model)= -214.7 Loglik(intercept only)= -218.3

Chisq= 7.2 on 1 degrees of freedom, p= 0.0073

Number of Newton-Raphson Iterations: 8

n= 297



Interpretation of Weibull parameter
Fold-change in Time: eβ = e−1.17 = .309
95% Confidence Interval: eβ±1.96∗se

The time to HIV seroconversion in Danish men who went to US is
about 0.309 fold shorter than the time to HIV seroconversion of
those who did not go to US.

> exp(cbind(sreg$coef,confint(sreg))["us",])

2.5 % 97.5 %

0.3088391 0.1246499 0.7651960

Or opposite, time to HIV seroconversion is about 3.24 fold longer
for those who never when to US compared to those who did:

> exp(-cbind(sreg$coef,confint(sreg))["us",])

2.5 % 97.5 %

3.237932 8.022471 1.306855



Interpretation of Weibull parameter

For Weibull, also interpret as a hazard ratio. The hazard of HIV
seroconversion in Danish men who went to US is about 0.309 fold
smaller than the hazard of HIV seroconversion in those who did
not go to US.

exp(cbind(sreg$coef,confint(sreg))["us",])

2.5 % 97.5 %

0.3088391 0.1246499 0.7651960



R code for plotting results

> fit<-icfit(Surv(left,right,type="interval2")~us,

+ data=d)

> plot(fit,LTY=c(1,1),XLAB="days since 12/31/1980",

+ main="NPMLEs with Weibull fit in color")

> pct<-1:999/1000

> ptime<-predict(sreg,newdata=data.frame(us=0),

+ type='quantile',p=pct)

> lines(ptime,1-pct,col="red",lty=2)

> ptime<-predict(sreg,newdata=data.frame(us=1),

+ type='quantile',p=pct)

> lines(ptime,1-pct,col="blue",lty=2)
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sreg2<-survreg(Surv(left.na,right.na,type="interval2")~us,

dist="loglogistic",data=d)

summary(sreg2)

Call:

survreg(formula = Surv(left.na, right.na, type = "interval2") ~

us, data = d, dist = "loglogistic")

Value Std. Error z p

(Intercept) 9.862 0.457 21.56 4.35e-103

us -1.229 0.466 -2.64 8.31e-03

Log(scale) 0.439 0.138 3.17 1.52e-03

Scale= 1.55

Log logistic distribution

Loglik(model)= -214.2 Loglik(intercept only)= -217.9

Chisq= 7.56 on 1 degrees of freedom, p= 0.006

Number of Newton-Raphson Iterations: 4

n= 297



Interpretation of Log-logistic Model
Fold-change in Time: eβ = e−1.23 = .293
95% Confidence Interval: eβ±1.96∗se

The time to HIV seroconversion in Danish men who went to US is
about 0.293 fold shorter than the time to HIV seroconversion of
those who did not go to US.

exp(cbind(sreg2$coef,confint(sreg2))["us",])

2.5 % 97.5 %

0.2927120 0.1175371 0.7289639

Or opposite, those who did not go to US compared to those who
did:

exp(-cbind(sreg2$coef,confint(sreg2))["us",])

2.5 % 97.5 %

3.416327 8.507951 1.371810



> plot(fit,LTY=c(1,1),XLAB="days since 12/31/1980",

+ main="NPMLEs with log-Logistic (solid) and

+ Weibull (dotted) fit in color")

> pct<-1:999/1000

> ptime<-predict(sreg,newdata=data.frame(us=0),

+ type='quantile',p=pct)

> lines(ptime,1-pct,col="red",lty=2)

> ptime<-predict(sreg,newdata=data.frame(us=1),

+ type='quantile',p=pct)

> lines(ptime,1-pct,col="blue",lty=2)

> ptime2<-predict(sreg2,newdata=data.frame(us=0),

+ type='quantile',p=pct)

> lines(ptime2,1-pct,col="red",lty=1)

> ptime2<-predict(sreg2,newdata=data.frame(us=1),

+ type='quantile',p=pct)

> lines(ptime2,1-pct,col="blue",lty=1)
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Weibull Regression with More than One Term

sreg.both<-survreg(

Surv(left.na,right.na,type="interval2")~us+

partners.per.year,data=d)

summary(sreg.both)



Call:

survreg(formula = Surv(left.na, right.na, type = "interval2") ~

us + partners.per.year, data = d)

Value Std. Error z p

(Intercept) 10.5018 0.52097 20.16 2.29e-90

us -0.8557 0.45988 -1.86 6.28e-02

partners.per.year -0.0183 0.00741 -2.47 1.33e-02

Log(scale) 0.5356 0.13974 3.83 1.27e-04

Scale= 1.71

Weibull distribution

Loglik(model)= -212 Loglik(intercept only)= -218.3

Chisq= 12.58 on 2 degrees of freedom, p= 0.0019

Number of Newton-Raphson Iterations: 8

n= 297



Weibull Regression: Likelihood Ratio Test

> sreg.ppy<-survreg(

+ Surv(left.na,right.na,type="interval2")~partners.per.year,

+ data=d)

> sreg.both<-survreg(

+ Surv(left.na,right.na,type="interval2")~us+

+ partners.per.year,data=d)

> anova(sreg.ppy,sreg.both)

Terms Resid. Df -2*LL Test Df

1 partners.per.year 294 427.7760 NA

2 us + partners.per.year 293 424.0726 +us 1

Deviance P(>|Chi|)

1 NA NA

2 3.703415 0.05430123



End of Tutorial: Questions?



Getting R and R Packages

I R is freeware (available for PC, Mac, Unix): go to
www.r-project.org

I To install packages for Windows version: Packages -> Install
Packages (select CRAN mirror) (select package)

I Load in R program (for example, interval package):
library(interval)



SAS Software for Interval Censoring: Overview

I NPMLE
I Proc LIFEREG (E-M, polish using Kuhn-Tucker conditions)

I Regression
I Proc LIFEREG: parametric survival models



What is Nelson-Aalen Estimator?
Review:

I Survival function:

S(t) = Pr [T > t]

I Density function:

f (t) =
−∂S(t)

∂t
I hazard rate:

λ(t) = lim
∆→0

Pr [t ≤ T ≤ t + ∆ | T ≥ t]

=
f (t)

S(t−)

I Solve differential equation:

−∂S(t)

∂t
= λ(t)S(t−)

⇒ S(t−) = exp

(
−
∫ t

0
λ(t)

)



What is Nelson-Aalen Estimator?
I

S(t−) = exp

(
−
∫ t

0
λ(t)

)
I Nelson-Aalen estimator (right censored data):

S̃(t−) = exp

(
−
∫ t

0
λ̂(t)

)

= exp

−∑
j :tj<t

λ̂(tj)


I Kaplan-Meier estimator (right censored data):

Ŝ(t−) = Ps<t

(
1− d Λ̂(s)

)
=

∏
j :tj<t

(
1− λ̂(tj)

)
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