Interval Censored Data Analysis

Michael P. Fay

National Institute of Allergy and Infectious Diseases

Tutorial: Interval Censored Data Analysis
useR! 2010
July 20, 2010
Outline

- Part 1:
 - Description of Interval Censoring
 - Nonparametric Maximum Likelihood Estimation of Distribution

- Part 2:
 - Testing
 - Parametric Regression
 - Semi-parametric Regression
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{im_i}]$ is the vector of assessment times.
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{im_i}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{im_i}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
 - G_{i1}, first assessment after study begins
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{im_i}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
 - G_{i1}, first assessment after study begins
 - \vdots
 - G_{im_i}, last assessment done on ith subject.
- $(L_i, R_i]$ interval in which event is known to occur.
 - L_i left endpoint (may be 0)
 - R_i right endpoint (may be ∞)
- Usually only observe $(L_i, R_i]$ not G_i.
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{im_i}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
 - G_{i1}, first assessment after study begins
 - \vdots
 - G_{im_i}, last assessment done on ith subject.
- $(L_i, R_i]$ interval in which event is known to occur.
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{imi}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
 - G_{i1}, first assessment after study begins
 - \vdots
 - G_{imi}, last assessment done on ith subject.
- $(L_i, R_i]$ interval in which event is known to occur.
 - L_i left endpoint (may be 0)
 - R_i right endpoint (may be ∞)
Notation

- X_i is the time from start of the study until the event of interest for the ith subject.
- $G_i = [G_{i0}, G_{i1}, \ldots, G_{imi}]$ is the vector of assessment times.
 - $G_{i0} = 0$, initial assessment at start of study
 - G_{i1}, first assessment after study begins
 - \vdots
 - G_{imi}, last assessment done on ith subject.
- $(L_i, R_i]$ interval in which event is known to occur.
 - L_i left endpoint (may be 0)
 - R_i right endpoint (may be ∞)
 - Usually only observe $(L_i, R_i]$ not G_i.

Time Until Event

\[X_i \]

Observation Times

\[G_{i0}, G_{i1}, G_{i2}, G_{i3}, G_{i4}, G_{i5}, G_{i6}, G_{i7} \]

Observed Interval

\[L_i = G_{i3}, \quad R_i = G_{i4} \]
Some Assumptions

- Non-informative Censoring

Example: $G_i(\text{assessment times})$ independent of $X_i(\text{event times})$. Regularly scheduled assessment, changes in schedule not related to event time. For example, must get blood draw to know if disease has occurred, but follow regular blood draw schedule regardless of true disease status.

With Progression-Free Survival (time to first of disease progression or death) this assumption is not likely to be met. Deaths will change assessment schedule, because assess death in near-continuous time not at next scheduled appointment (more on that later).

We will often assume independent censoring to start. Later talk about how bad the violation of the assumption can be.

- Informative Censoring

Assessment schedule may be related to event.
Some Assumptions

- Non-informative Censoring
 - Example: G_i (assessment times) independent of X_i (event times)
 - Regularly scheduled assessment, changes in schedule not related to event time. For example, must get blood draw to know if disease has occurred, but follow regular blood draw schedule regardless of true disease status.

- Informative Censoring
Some Assumptions

- **Non-informative Censoring**
 - Example: G_i (assessment times) independent of X_i (event times)
 - Regularly scheduled assessment, changes in schedule not related to event time. For example, must get blood draw to know if disease has occurred, but follow regular blood draw schedule regardless of true disease status.
 - with Progression-Free Survival (time to first of disease progression or death) this assumption is not likely to be met. Deaths will change assessment schedule, because assess death in near-continuous time not at next scheduled appointment (more on that later).
Some Assumptions

- **Non-informative Censoring**
 - Example: G_i (assessment times) independent of X_i (event times)
 - Regularly scheduled assessment, changes in schedule not related to event time. For example, must get blood draw to know if disease has occurred, but follow regular blood draw schedule regardless of true disease status.
 - with Progression-Free Survival (time to first of disease progression or death) this assumption is not likely to be met. Deaths will change assessment schedule, because assess death in near-continuous time not at next scheduled appointment (more on that later).
 - We will often assume independent censoring to start. Later talk about how bad the violation of the assumption can be.
Some Assumptions

- **Non-informative Censoring**
 - Example: G_i (assessment times) independent of X_i (event times)
 - Regularly scheduled assessment, changes in schedule not related to event time. For example, must get blood draw to know if disease has occurred, but follow regular blood draw schedule regardless of true disease status.
 - with Progression-Free Survival (time to first of disease progression or death) this assumption is not likely to be met. Deaths will change assessment schedule, because assess death in near-continuous time not at next scheduled appointment (more on that later).
 - We will often assume independent censoring to start. Later talk about how bad the violation of the assumption can be.

- **Informative Censoring**
 - Assessment schedule may be related to event.
Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status data.

Case 2: Only 2 observation times.

Case K: Arbitrary number of observation times.
Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status data.

Case 2: Only 2 observation times.
- Do not confuse with many observation times, but only keeping the interval, \((L_i, R_i]\).

Case K: Arbitrary number of observation times.
Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status data.

Case 2: Only 2 observation times.
- Do not confuse with many observation times, but only keeping the interval, \((L_i, R_i]\).
- Rare in Practice.

Case K: Arbitrary number of observation times.
Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status data.

Case 2: Only 2 observation times.
- Do not confuse with many observation times, but only keeping the interval, $(L_i, R_i]$.
- Rare in Practice.
- Used for theoretical work with continuous time inspection processes.

Case K: Arbitrary number of observation times.
Types of Independent Interval Censoring:

Case 1: Only 1 observation time. Also called current status data.

Case 2: Only 2 observation times.
- Do not confuse with many observation times, but only keeping the interval, \((L_i, R_i]\).
- Rare in Practice.
- Used for theoretical work with continuous time inspection processes

Case K: Arbitrary number of observation times.
- Usually will assume Case K interval censoring.
Nonparametric Maximum Likelihood of Survival

Right-Censored Data

- NPMLE is Kaplan-Meier estimate
Nonparametric Maximum Likelihood of Survival

Right-Censored Data

- NPMLE is Kaplan-Meier estimate
- Usually assume event time is measured continuously. In practice it is measured discretely (e.g., nearest day, or minute).
Nonparametric Maximum Likelihood of Survival

Right-Censored Data

- NPMLE is Kaplan-Meier estimate
- Usually assume event time is measured continuously. In practice it is measured discretely (e.g., nearest day, or minute).
- To start we will treat event times as continuous.
Example: No censoring

Consider 7 observed event times:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
<th>X_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>44</td>
<td>76</td>
<td>118</td>
<td>123</td>
<td>289</td>
</tr>
</tbody>
</table>

For presentation order data by event times

Derive Kaplan-Meier estimate graphically.
Event Times: 14, 15, 44, 76, 118, 123, 289

time
0 50 100 150 200 250 300
0.0 0.2 0.4 0.6 0.8 1.0
\[\int_{n}^{1} \]
Event Times: 14, 15, 44, 76, 118, 123, 289

time
0 50 100 150 200 250 300
0.0 0.2 0.4 0.6 0.8 1.0
Example: Right-censoring

Original: 14 15 44 76 118 123 289
Modification 1: 14 15 44 55+ 118 123 289

Modification 1: Fourth subject right-censored at 55.

Graphically show Efron’s (1967) redistribution-to-the-right algorithm.
Event Times: 14, 15, 44, 55+, 118, 123, 289

Subj. 1
Subj. 2
Subj. 3
Subj. 4
Subj. 5
Subj. 6
Subj. 7

Time (in seconds)
Event Times: 14, 15, 44, 55+, 118, 123, 289

Subj. 1
Subj. 2
Subj. 3
Subj. 4
Subj. 5
Subj. 6
Subj. 7

0 50 100 150 200 250 300

time
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289
Event Times: 14, 15, 44, 55+, 118, 123, 289

Time
0 50 100 150 200 250 300
0.0 0.2 0.4 0.6 0.8 1.0
Event Times: 14, 15, 44, 55+, 118, 123, 289
Example: Right-censoring

Consider 5 observed event times, 2 right-censored:

Original: 14 15 44 76 118 123 289
Modification 1: 14 15 44 55+ 118 123 289
Modification 2: 14 15 44 55+ 118 123 201+

Modification 2: first subject right-censored at 55 and sixth subject right-censored at 201.
Event Times: 14, 15, 44, 55+, 118, 123, 201+
Kaplan-Meier (Product-Limit) Estimator

Continuity Assumption:

- For mathematical convenience we assume event times are continuous.
Kaplan-Meier (Product-Limit) Estimator

Continuity Assumption:

- For mathematical convenience we assume event times are continuous.
- With continuity assumption, Kaplan-Meier estimate is uniquely defined everywhere except after last observation if censored.
Kaplan-Meier (Product-Limit) Estimator

Continuity Assumption:

- For mathematical convenience we assume event times are continuous.
- With continuity assumption, Kaplan-Meier estimate is uniquely defined everywhere except after last observation if censored.
- Without continuity assumption, NPMLE is undefined also within intervals of unit one.
Kaplan-Meier (Product-Limit) Estimator

Bias:

- Assuming non-informative censoring...
- Kaplan-Meier estimate is approximately unbiased.
Kaplan-Meier (Product-Limit) Estimator

Bias:

- Assuming non-informative censoring...
- Kaplan-Meier estimate is approximately unbiased.
 - Asymptotically unbiased in $(0, \tau]$, where τ is largest possible observed event.
Kaplan-Meier (Product-Limit) Estimator

Bias:

- Assuming non-informative censoring...
- Kaplan-Meier estimate is approximately unbiased.
 - Asymptotically unbiased in $(0, \tau]$, where τ is largest possible observed event.
 - Bias comes entirely from how define region of K-M estimator after last observation if censored (see Gillespie, et al, 1992, Biometrika, 149-55).
Kaplan-Meier (Product-Limit) Estimator

Bias:

- Assuming non-informative censoring...
- Kaplan-Meier estimate is approximately unbiased.
 - Asymptotically unbiased in $(0, \tau]$, where τ is largest possible observed event.
 - Bias comes entirely from how define region of K-M estimator after last observation if censored (see Gillespie, et al, 1992, Biometrika, 149-55).
- If define that region as 0 (Efron, 1967), then negative bias.
Kaplan-Meier (Product-Limit) Estimator

Bias:

- Assuming non-informative censoring...
- Kaplan-Meier estimate is approximately unbiased.
 - Asymptotically unbiased in $(0, \tau]$, where τ is largest possible observed event.
 - Bias comes entirely from how define region of K-M estimator after last observation if censored (see Gillespie, et al, 1992, Biometrika, 149-55).
- If define that region as 0 (Efron, 1967), then negative bias.
- If define that region as continuing with K-M unchanged after last observation if censored (Gill, 1980), then positive bias.
Interval Censoring: NPMLE

Likelihood:

$$\ell = \prod_{i=1}^{n} \{F(R_i) - F(L_i)\}$$

where F is the cumulative distribution function. Survival distribution is $S(t) = 1 - F(t)$.

Interval Censoring

Example, Regular Observation Times:

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
E-M (Expectation-Maximization) Algorithm for NPMLE

Notation:

- X_i event time for ith subject
- $(L_i, R_i]$ observed interval for ith subject
- t_1, t_2, \ldots, t_m, set of possible observation times where NPMLE may change. (Describe with pictures).
Irregular Observation Times

Data (sorted by L_i):

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>∞</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>∞</td>
</tr>
</tbody>
</table>

Possible change times (later discuss how we do not need all):

\[t_0 = 0, \ t_1 = 6, \ t_2 = 7, \ t_3 = 8, \ t_4 = 10, \ t_5 = 14, \ t_6 = 16, \ t_7 = 17, \ t_8 = 37, \ t_9 = 44, \ t_{10} = 45, \ t_{11} = 46, \ t_{12} = \infty \]
E-M Algorithm for NPMLE

1. Mathematical Notation (for clarity, precision)
2. Graphically (for intuition)
E-M Algorithm for NPMLE

Notation:

- X_i: event time for ith subject
- $(L_i, R_i]$: observed interval for ith subject
- t_1, t_2, \ldots, t_m: set of possible observation times where NPMLE may change.
E-M Algorithm for NPMLE

Notation:

- X_i event time for ith subject
- $(L_i, R_i]$ observed interval for ith subject
- t_1, t_2, \ldots, t_m, set of possible observation times where NPMLE may change.
- Let $t_0 \equiv 0$ and $t_{m+1} \equiv \infty$.
- $p(t_j) = Pr[t_{j-1} < X \leq t_j]$
- $p = [p(t_1), p(t_2), \ldots, p(t_{m+1})]$
E-M Algorithm for NPMLE

Notation:

- X_i event time for ith subject
- $(L_i, R_i]$ observed interval for ith subject
- t_1, t_2, \ldots, t_m, set of possible observation times where NPMLE may change.
- Let $t_0 \equiv 0$ and $t_{m+1} \equiv \infty$.
- $p(t_j) = Pr[t_{j-1} < X \leq t_j]$
- $p = [p(t_1), p(t_2), \ldots, p(t_{m+1})]$
- $p_i(t_j) = Pr[t_{j-1} < X_i \leq t_j \mid X_i \in (L_i, R_i)]$
E-M Algorithm for NPMLE

- start with initial estimate of \hat{p}.
 - Each of $m + 1$ elements should be positive, and all should sum to 1.
 - Example: $\hat{p} = \left[\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1} \right]$

 \[\hat{p}_j(t) = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_i(t_j) \]

- Iterate until convergence.
E-M Algorithm for NPMLE

- start with initial estimate of $\hat{\mathbf{p}}$.
 - Each of $m + 1$ elements should be positive, and all should sum to 1.
 - Example: $\hat{\mathbf{p}} = \left[\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1} \right]$
- E-step: for each i
 - $\hat{p}_i(t_j) = \frac{\hat{p}(t_j) I\{t_j \in (L_i, R_i]\}}{\sum_{t_k \in (L_i, R_i]} \hat{p}(t_k)}$
E-M Algorithm for NPMLE

- start with initial estimate of \hat{p}.
 - Each of $m + 1$ elements should be positive, and all should sum to 1.
 - Example: $\hat{p} = [\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1}]$
- E-step: for each i
 - $\hat{p}_i(t_j) = \frac{\hat{p}(t_j) I\{t_j \in (L_i, R_i]\}}{\sum_{t_k \in (L_i, R_i]} \hat{p}(t_k)}$
 - Example: $L_i = t_1, R_i = t_3$,
 \[
 \hat{p}_i = \left[0, \frac{\hat{p}(t_2)}{\hat{p}(t_2) + \hat{p}(t_3)}, \frac{\hat{p}(t_3)}{\hat{p}(t_2) + \hat{p}(t_3)}, 0, \ldots, 0\right]
 \]
E-M Algorithm for NPMLE

- start with initial estimate of \hat{p}.
 - Each of $m+1$ elements should be positive, and all should sum to 1.
 - Example: $\hat{p} = [\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1}]$
- E-step: for each i
 - $\hat{p}_i(t_j) = \frac{\hat{p}(t_j)I\{t_j\in(L_i,R_i]\}}{\sum_{t_k\in(L_i,R_i]} \hat{p}(t_k)}$
 - Example: $L_i = t_1, R_i = t_3,$
 \[
 \hat{p}_i = \left[0, \frac{\hat{p}(t_2)}{\hat{p}(t_2) + \hat{p}(t_3)}, \frac{\hat{p}(t_3)}{\hat{p}(t_2) + \hat{p}(t_3)}, 0, \ldots, 0\right]
 \]
- M-step: update \hat{p}. For each j
 - $\hat{p}(t_j) = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_i(t_j)$
E-M Algorithm for NPMLE

- start with initial estimate of \hat{p}.
 - Each of $m + 1$ elements should be positive, and all should sum to 1.
 - Example: $\hat{p} = \left[\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1} \right]$

- E-step: for each i
 - $\hat{p}_i(t_j) = \frac{\hat{p}(t_j) I\{t_j \in (L_i, R_i]\}}{\sum_{t_k \in (L_i, R_i]} \hat{p}(t_k)}$
 - Example: $L_i = t_1$, $R_i = t_3$,

 $$\hat{p}_i = \left[0, \frac{\hat{p}(t_2)}{\hat{p}(t_2) + \hat{p}(t_3)}, \frac{\hat{p}(t_3)}{\hat{p}(t_2) + \hat{p}(t_3)}, 0, \ldots, 0 \right]$$

- M-step: update \hat{p}. For each j
 - $\hat{p}(t_j) = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_i(t_j)$
 - Iterate until convergence.
Irregular Observation Times

Data (sorted by L_i):

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>∞</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>∞</td>
</tr>
</tbody>
</table>
iteration=1, E-step
iteration=1, M-step
iteration=2, E-step
iteration=2, E-step

\[\hat{f}_1, \hat{f}_2, \hat{f}_3, \hat{f}_4, \hat{f}_5, \hat{f}_6, \hat{f}_7, \hat{f}_8, \hat{f}_9, \hat{f}_{10} \]
iteration=2, E-step
iteration=3, E-step
iteration=6, E-step
iteration=7, E-step
iteration=8, E-step
Turnbull intervals

Turnbull (1976, JRSS-B, 290-295)

Turnbull intervals:

- Also called innermost intervals and real representations of maximal cliques.
- Set of disjoint intervals whose left endpoints are in $L = \{L_1, L_2, \ldots, L_n\}$ and right endpoints are in $R = \{R_1, R_2, \ldots, R_n\}$ but contain no other members of L or R except the endpoints.
Turnbull intervals

<table>
<thead>
<tr>
<th>Subj #</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
<th>t_8</th>
<th>t_9</th>
<th>t_{10}</th>
<th>t_{11}</th>
<th>t_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>46</td>
<td></td>
<td>∞</td>
</tr>
</tbody>
</table>

$(6, 7] (7, 8] (37, 44] (46, \infty)$
iteration=2, E-step
iteration=3, E-step
iteration=4, E-step
R code

```r
library(interval)
data(bcos)
L<-bcos[1:10,"left"]
R<-bcos[1:10,"right"]

plot(icfit(L,R))
```
Continuous Inspection Processes: Theory

- If you have a continuous inspection process, how fast does the NPMLE converge?
- Case 1 Censoring (only 1 inspection for each subject)
- NPMLE converges at $n^{1/3}$ rate.
Continuous Inspection Processes: Theory

- If you have a continuous inspection process, how fast does the NPMLE converge?
- Case 1 Censoring (only 1 inspection for each subject)
- NPMLE converges at $n^{1/3}$ rate.
- Details: As $n \to \infty$

$$n^{1/3} \frac{\hat{S}(t) - S(t)}{(\frac{1}{2}S(t)(1 - S(t))f(t)/g(t))^{1/3}}$$

converges in distribution to a (non-normal) random variable. Here $f(t)$ and $g(t)$ are density functions of event time and inspection time respectively.

- Groeneboom and Wellner (1992, Information Bounds and NPMLE, Birkhäuser)
Continuous Inspection Processes: Theory

- If you have a continuous inspection process, how fast does the NPMLE converge?
- Case 1 Censoring (only 1 inspection for each subject)
- NPMLE converges at \(n^{1/3} \) rate.
- Details: As \(n \to \infty \)

\[
n^{1/3} \frac{\hat{S}(t) - S(t)}{\left(\frac{1}{2} S(t)(1 - S(t))f(t)/g(t) \right)^{1/3}}
\]

converges in distribution to a (non-normal) random variable. Here \(f(t) \) and \(g(t) \) are density functions of event time and inspection time respectively.

- Groeneboom and Wellner (1992, Information Bounds and NPMLE, Birkhäuser)
- Case K Censoring (hard problem, see e.g., Schick and Yu, 2000, Scan. J. Stat 45-55).
Algorithms for NPMLE of Interval Censored Data

Gentleman and Vandal (2001, JCGS, 403-421, Icens R package)

Vector Exchange Algorithm (Böhning, 1986, Metrika, 337-347)

Intra-simplex direction (Lesperance and Kalbfleisch, 1992, JASA, 120-6).

Support Reduction Algorithm (Groeneboom, Jongbloed, Wellner, 2008, Scan J Stat, 385-, MLEcens R package)
Algorithms for NPMLE of Interval Censored Data

Algorithms for NPMLE of Interval Censored Data

 - Vector Exchange Algorithm (Böhning, 1986, Metrika, 337-347)
 - Intra-simplex direction (Lesperance and Kalbfleisch, 1992, JASA, 120-6).
Algorithms for NPMLE of Interval Censored Data

- Gentleman and Vandal (2001, JCGS, 403-421, Icens R package)
 - Vector Exchange Algorithm (Böhning, 1986, Metrika, 337-347)
 - Intra-simplex direction (Lesperance and Kalbfleisch, 1992, JASA, 120-6).
- Support Reduction Algorithm (Groeneboom, Jongbloed, Wellner, 2008, Scan J Stat, 385-, MLEcens R package)
R package: interval

```r
> library(interval)
> data(bcos)
> head(bcos)
```

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>Inf</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>Inf</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>Inf</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Two treatments for breast cancer, radiation (Rad, n=46) and radiation with chemotherapy (RadChem, n=48). Response is time in months until breast retraction. Finkelstein and Wolfe (1985, Biometrics, 845-).
icfit function calculates NPMLE by E-M algorithm
default calls MLEcens package to calculate initial estimate.
 MLEcens developed for bivariate interval censored data, but can be used in univariate case
 uses Support Reduction algorithm, written in C (very fast).
icfit checks the Kuhn-Tucker conditions
R package: interval

```r
> fit<-icfit(Surv(left,right,type="interval2")~treatment, data=bcos)
> summary(fit)

treatment=Rad:
    Interval       Probability
    1  (4,5]      0.0463
    2  (6,7]      0.0334
    3  (7,8]      0.0887
    4  (11,12]    0.0708
    5  (24,25]    0.0926
    6  (33,34]    0.0818
    7  (38,40]    0.1209
    8  (46,48]    0.4656

treatment=RadChem:
    Interval       Probability
    1  (4,5]      0.0433
    2  (5,8]      0.0433
    3  (11,12]    0.0692
    4  (16,17]    0.1454
    5  (18,19]    0.1411
    6  (19,20]    0.1157
    7  (24,25]    0.0999
    8  (30,31]    0.0709
    9  (35,36]    0.1608
   10  (44,48]    0.0552
   11  (48,60]    0.0552
```

> plot(fit)
> plot(fit, shade=FALSE)
> plot(fit, dtype="cdf")

```
> plot(fit, dtype="cdf")
```
> fit[1]

$strata
treatment=Rad
 8

$error
[1] 2.067097e-09

$numit
[1] 1

$pf
 (4,5] (6,7] (7,8] (11,12] (24,25] (33,34] (38,40]
0.04634677 0.03336337 0.08866737 0.07075292 0.09264584 0.08178576 0.12087983
 (46,48]
0.46555814

$intmap
[1,] 4 6 7 11 24 33 38 46
[2,] 5 7 8 12 25 34 40 48
attr("LRin")
[1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$converge
[1] TRUE

$message
[1] "normal convergence"

...
```r
> summary(fit[1])

<table>
<thead>
<tr>
<th>Interval</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4,5]</td>
<td>0.0463</td>
</tr>
<tr>
<td>(6,7]</td>
<td>0.0334</td>
</tr>
<tr>
<td>(7,8]</td>
<td>0.0887</td>
</tr>
<tr>
<td>(11,12]</td>
<td>0.0708</td>
</tr>
<tr>
<td>(24,25]</td>
<td>0.0926</td>
</tr>
<tr>
<td>(33,34]</td>
<td>0.0818</td>
</tr>
<tr>
<td>(38,40]</td>
<td>0.1209</td>
</tr>
<tr>
<td>(46,48]</td>
<td>0.4656</td>
</tr>
</tbody>
</table>
```
Using Different Starting Functions

```r
> formula <- Surv(left, right, type="interval2") ~ treatment
> system.time(icfit(formula, data = bcos))

    user  system elapsed
       0.02     0.00     0.02

Warning: default calls MLEcens 0.1-3, can crash R!

> system.time(icfit(formula, data = bcos, initfit = NULL))

    user  system elapsed
       0.10     0.00     0.09

> system.time(icfit(formula, data = bcos, initfit = "initEMICM"))

    user  system elapsed
       0.17     0.00     0.17
```
Icens package

```r
library(Icens)
library(interval)
data(bcos)
bcosRad <- bcos[bcos$treatment == "Rad", c("left", "right")]
fitRad <- EMICM(bcosRad)
bcosRadChem <- bcos[bcos$treatment == "RadChem", c("left", "right")]
fitRadChem <- EMICM(bcosRadChem)
```
> plot(fitRad, surv=TRUE)
> plot(fitRadChem, surv=TRUE, new=FALSE, shade=2)
survival package

- Can calculate NPMLE for interval censored data using E-M (i.e., Turnbull) algorithm, but ...
- assumes drop in survival occurs at midpoints,
- for confidence intervals of survival uses methods developed for right censored data (not sure of properties for interval censored data).
Distribution Estimation: Other Issues

- For these issues there are no R packages to solve them at this time.
Confidence Intervals on Survival Function

- Vandal, Gentleman, and Liu (2005, Can J. Stat, 71-83)
 - Bootstrap
 - Empirical likelihood
 - When inspection times are fixed, -2 times log-empirical likelihood ratio \rightarrow Chi-square with 1 degree of freedom
 - when number of inspection times grows with sample size, more theory needed.
Interval Censoring with Truncation

- The event time, X, is truncated in B if the researcher would not have been aware of the existence of X had X not been in B.

\[\ell_i = n \prod_{i=1}^{r_i} F(R_i) - F(L_i) F(r_i) - F(l_i) \]

Frydman (1994, JRSS-B, 71-74) showed Turnbull (1976, JRSSB 290-295) intervals need to be modified for truncation.

See Hudgens (2005, JRSSB 573-587) for existence conditions for NPMLE in presence of left truncation.
Interval Censoring with Truncation

- The event time, X, is truncated in B if the researcher would not have been aware of the existence of X had X not been in B.

- Example (left-truncation): If the event time is length of time from diagnosis of cancer until death. Only individuals who live long enough after diagnosis to get in study are observed.
Interval Censoring with Truncation

- The event time, X, is truncated in B if the researcher would not have been aware of the existence of X had X not been in B.
- Example (left-truncation): If the event time is length of time from diagnosis of cancer until death. Only individuals who live long enough after diagnosis to get in study are observed.

\[
\ell = \prod_{i=1}^{n} \frac{F(R_i) - F(L_i)}{F(r_i) - F(l_i)}
\]

where $(l_i, r_i]$ is the truncating interval.
Interval Censoring with Truncation

- The event time, X, is truncated in B if the researcher would not have been aware of the existence of X had X not been in B.

- Example (left-truncation): If the event time is length of time from diagnosis of cancer until death. Only individuals who live long enough after diagnosis to get in study are observed.

\[\ell = \prod_{i=1}^{n} \frac{F(R_i) - F(L_i)}{F(r_i) - F(l_i)} \]

where $(l_i, r_i]$ is the truncating interval.

- Frydman (1994, JRSS-B, 71-74) showed Turnbull (1976, JRSSB 290-295) intervals need to be modified for truncation.
Interval Censoring with Truncation

- The event time, X, is truncated in B if the researcher would not have been aware of the existence of X had X not been in B.
- Example (left-truncation): If the event time is length of time from diagnosis of cancer until death. Only individuals who live long enough after diagnosis to get in study are observed.

\[
\ell = \prod_{i=1}^{n} \frac{F(R_i) - F(L_i)}{F(r_i) - F(l_i)}
\]

where $(l_i, r_i]$ is the truncating interval.
- Frydman (1994, JRSS-B, 71-74) showed Turnbull (1976, JRSSB 290-295) intervals need to be modified for truncation.
- See Hudgens (2005, JRSSB 573-587) for existence conditions for NPMLE in presence of left truncation.
Informative Censoring

- Observation times depend on event time
- Strategies
 - Estimate frailty (random effects):
 - from frequency of observation times (Farrington and Gay, 1999, Stat in Med, 1235-48)
 - Nonparametric (when regular observation times, and can observe observation process after event)
Why Progression-Free Survival Is Different

- Usually different observation times for death than for progression.
- We do not have one set of observation times that are independent of event time.
- Which observation process we observe depends on event.
Time Until Death

Death Observation Times

\(X^D_i \)

Progression Observation Times

\(X^P_i \)

Observed PFS Interval

\(L_i, R_i \)
Time Until Death

X_i^D

Death Observation Times

$G_i^D \ G_{i+1}^D \ G_{i+2}^D \ G_{i+3}^D \ G_{i+4}^D \ G_{i+5}^D \ G_{i+6}^D \ G_{i+7}^D \ G_{i+8}^D \ G_{i+9}^D \ G_{i+10}^D \ G_{i+11}^D \ G_{i+12}^D \ G_{i+13}^D \ G_{i+14}^D \ G_{i+15}^D \ G_{i+16}^D \ G_{i+17}^D \ G_{i+18}^D \ G_{i+19}^D \ G_{i+20}^D$

Time Until Progression

X_i^P

Progression Observation Times

$G_{i+6}^P \ G_{i+11}^P \ G_{i+12}^P \ G_{i+13}^P \ G_{i+14}^P \ G_{i+15}^P$

Observed PFS Interval

$L_i \ R_i$
Is this Dual Inspection Process a Big Problem?

- More work needs to be done to explore problems applying usual interval NPMLE to this problem.
Is this Dual Inspection Process a Big Problem?

- More work needs to be done to explore problems applying usual interval NPMLE to this problem.
- Simple solution when scheduled progression observation times: if observe a death, use progression observation times to define interval. Lose information.
Is this Dual Inspection Process a Big Problem?

- More work needs to be done to explore problems applying usual interval NPMLE to this problem.
- Simple solution when scheduled progression observation times: if observe a death, use progression observation times to define interval. Lose information.
- Better solution: illness-death model.
Illness-Death Model

Entry State (State 1) → Disease Progression (State 2) → Death (State 3)
Illness-Death Model

- Illness-Death Markov model (knowledge of current state [including time since start of study] supplies all prediction information)

- Frydman and Szarek (Biometrics, 2009, 143-151)

- Assumes observation scheme non-informative

- Allows interval-censoring of progression, right-censoring of death, properly handles death before observed progression

- Uses self-consistent (i.e., E-M) algorithm

- Notation very difficult

- No readily available software
Illness-Death Model

- Illness-Death Markov model (knowledge of current state [including time since start of study] supplies all prediction information)
- S is time leave entry state from start of study
- $F_{12}(s) = Pr[S \leq s \text{ and Progress}]$
- $F_{13}(s) = Pr[S \leq s \text{ and Die before Progress}]$
- $F(s) = F_{12}(s) + F_{13}(s)$ (distribution for progression-free survival)
Illness-Death Model

- Illness-Death Markov model (knowledge of current state [including time since start of study] supplies all prediction information)
- S is time leave entry state from start of study
- $F_{12}(s) = Pr[S \leq s \text{ and Progress}]$
- $F_{13}(s) = Pr[S \leq s \text{ and Die before Progress}]$
- $F(s) = F_{12}(s) + F_{13}(s)$ (distribution for progression-free survival)
- Frydman and Szarek (Biometrics, 2009, 143-151)
 - Assumes observation scheme non-informative
 - Allows interval-censoring of progression, right-censoring of death, properly handles death before observed progression
 - Uses self-consistent (i.e., E-M) algorithm
 - Notation very difficult
 - No readily available software
End of Part 1: Questions?
Types of 2-sample Tests

- Common tests, No censoring
 - t-test (difference in means)
 - Wilcoxon-Mann-Whitney test (rank test)
Types of 2-sample Tests

- **Common tests, No censoring**
 - t-test (difference in means)
 - Wilcoxon-Mann-Whitney test (rank test)

- **Common tests, censoring**
 - logrank test (rank test)
 - Wilcoxon-type test (rank test)

Difference in means tests with censoring:

Do not usually use difference in means tests because means affected by large tails, and with right censoring cannot estimate observations in tail well.

Types of 2-sample Tests

- Common tests, No censoring
 - t-test (difference in means)
 - Wilcoxon-Mann-Whitney test (rank test)

- Common tests, censoring
 - logrank test (rank test)
 - Wilcoxon-type test (rank test)

- Difference in means tests with censoring
 - Do not usually use difference in means tests because means effected by large tails, and with right censoring cannot estimate observations in tail well
Rank Testing with Censoring: Overview

1. Choose Likelihood/Process
 - Marginal Likelihood of Ranks (integrate over all ranks possible given censoring)
 - Grouped Continuous Model (estimate baseline distribution)
 - Counting Process
 - Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
 - Proportional odds/ Wilcoxon-type
 - Proportional hazards (continuous)/ Logrank-type
 - Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
 - Permutation test on efficient scores (exact or asymptotic)
 - Score Test
 - Imputation

Cover first
Permutation Tests

Data:

- x responses
- z covariates (treatment indicators)
Permutation Tests

Data:
- x responses
- z covariates (treatment indicators)

Choose test statistic, $T(x, z)$, larger indicates farther from the null hypothesis
- e.g.: $T(x, z) = \hat{P}r[X(1) > X(0)] + \frac{1}{2} \hat{P}r[X(1) = X(0)]$
 where $X(a) = X$ when $z = a$
Permutation Tests

- **Data:**
 - \mathbf{x} responses
 - \mathbf{z} covariates (treatment indicators)

- **Choose test statistic**, $T(\mathbf{x}, \mathbf{z})$, larger indicates farther from the null hypothesis
 - e.g.: $T(\mathbf{x}, \mathbf{z}) = \hat{P}r[X(1) > X(0)] + \frac{1}{2} \hat{P}r[X(1) = X(0)]$
 - where $X(a) = X$ when $z = a$

- **Permute**
 - $T_0 = T(\mathbf{x}, \mathbf{z})$
 - $T_i = T(\mathbf{x}, \pi_i(\mathbf{z})), i = 1, \ldots, n!$

- **p-value**
 - $\frac{\sum_{i=1}^{n!} I\{T_i \geq T_0\}}{n!}$
Permutation Tests

Data:
- x responses
- z covariates (treatment indicators)

Choose test statistic, $T(x, z)$, larger indicates farther from the null hypothesis
- e.g.: $T(x, z) = \hat{P}r[X(1) > X(0)] + \frac{1}{2} \hat{P}r[X(1) = X(0)]$
 where $X(a) = X$ when $z = a$

Permute
- $T_0 = T(x, z)$
- $T_i = T(x, \pi_i(z)), i = 1, \ldots, n!$

p-value = $\frac{\sum_{i=1}^{n!} I\{T_i \geq T_0\}}{n!}$

Assumption: strong null (e.g.: treatment labels do not matter)
Permutation Tests

- **Permute**
 - \(T_0 = T(x, z) \)
 - \(T_i = T(x, \pi(z)), \ i = 1, \ldots, n! \)
- **p-value** = \(\frac{\sum_{i=1}^{n!} I\{T_i \geq T_0\}}{n!} \)
Permutation Tests

- **Permute**
 - \(T_0 = T(x, z) \)
 - \(T_i = T(x, \pi(z)), i = 1, \ldots, n! \)

- **p-value**
 \[
 p-value = \frac{\sum_{i=1}^{n!} I\{T_i \geq T_0\}}{n!}
 \]

- **p-values invariant to monotonic transformations of** \(T \)
 - e.g.: \(T^*(x, z) = b_0 + b_1 T(x, z) \)
 where \(b_0, b_1 \) do not change with permutations
 - Then p-values same for \(T \) and \(T^* \) since,
 - \(I\{T_i \geq T_0\} = I\{T_i^* \geq T_0^*\} \) for all \(i \).
 - Call \(T \) and \(T^* \) equivalent test statistics
Following equivalent test statistics (all give the Wilcoxon-Mann-Whitney test):

- $T = \text{Difference in mean ranks}$
- $T = \text{Sum of ranks from one group}$
- $T = \text{Sum of scores from one group, where } i^{\text{th}} \text{ score represents } \hat{Pr}[X_i > X] + \frac{1}{2} \hat{Pr}[X_i = X]$ where X is a random response regardless of group
- $T = \text{Sum of scores from one group, where } i^{\text{th}} \text{ score represents } \hat{Pr}[X_i \geq X] + \hat{Pr}[X_i > X] - 1$ where X is a random response regardless of group
Following equivalent test statistics (all give the Wilcoxon-Mann-Whitney test):

- $T = \text{Difference in mean ranks}$
Following equivalent test statistics (all give the Wilcoxon-Mann-Whitney test):

- $T = \text{Difference in mean ranks}$
- $T = \text{Sum of ranks from one group}$
Following equivalent test statistics (all give the Wilcoxon-Mann-Whitney test):

- $T = \text{Difference in mean ranks}$
- $T = \text{Sum of ranks from one group}$
- $T = \text{sum of scores from one group, where } i\text{th score represents } \hat{Pr}[X_i > X] + \frac{1}{2} \hat{Pr}[X_i = X]$
 where X random response regardless of group
Following equivalent test statistics (all give the Wilcoxon-Mann-Whitney test):

- $T = \text{Difference in mean ranks}$
- $T = \text{Sum of ranks from one group}$
- $T = \text{sum of scores from one group, where } i^\text{th score represents } \hat{P}_r[X_i > X] + \frac{1}{2} \hat{P}_r[X_i = X]
where X \text{ random response regardless of group}$
- $T = \text{sum of scores from one group, where } i^\text{th score represents } \hat{P}_r[X_i \geq X] + \hat{P}_r[X_i > X] - 1
where X \text{ random response regardless of group scores sum to 0 in this case}$
Different scores just linear functions of ranks:

<table>
<thead>
<tr>
<th>Rank</th>
<th>$\hat{Pr}[X_i \geq X]$</th>
<th>$\hat{Pr}[X_i > X]$</th>
<th>$\hat{Pr}[X_i \geq X] + \hat{Pr}[X_i > X] - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/n$</td>
<td>$0/n$</td>
<td>$\frac{1}{n} - 1$</td>
</tr>
<tr>
<td>2</td>
<td>$2/n$</td>
<td>$1/n$</td>
<td>$\frac{3}{n} - 1$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>j</td>
<td>j/n</td>
<td>$(j-1)/n$</td>
<td>$\frac{2j-1}{n} - 1$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>n</td>
<td>n/n</td>
<td>$(n-1)/n$</td>
<td>$\frac{2n-1}{n} - 1$</td>
</tr>
</tbody>
</table>

$$\sum c_i = \sum \frac{2i - 1 - n}{n} = 0$$
Generalizing Wilcoxon-Mann-Whitney for Censoring

- Peto and Peto (1972, JRSS-A, 185-207).
 - paper included possibility of interval censoring
 - can also be derived as permutation test on score statistic (more on that later)
- Permutation test on sum of scores, \(c_i \), from one group

\[
c_i = \hat{Pr}[X_i \geq X] + \hat{Pr}[X_i > X] - 1
= \hat{S}(L_i) + \hat{S}(R_i) - 1
\]
Generalizing Wilcoxon-Mann-Whitney for Censoring

- Peto and Peto (1972, JRSS-A, 185-207).
 - paper included possibility of interval censoring
 - can also be derived as permutation test on score statistic
 (more on that later)
- Permutation test on sum of scores, c_i, from one group
 -

 $$c_i = \hat{P}r[X_i \geq X] + \hat{P}r[X_i > X] - 1$$

 $$= \hat{S}(L_i) + \hat{S}(R_i) - 1$$

- Peto and Peto (1972) introduced another rank test, the logrank test (more on logrank test later)
Right Censoring

- Turnbull intervals are point masses at observed event times, plus interval from last censored observation to ∞ if last censored observation is larger than largest observed event time.

- $c_i = \hat{S}(L_i) + \hat{S}(R_i) - 1$
 - Observed event time at R_i: let $L_i = R_i$ then $c_i = \hat{S}(R_i-) + \hat{S}(R_i) - 1$
 - Right censored at L_i: let $R_i = \infty$ then $c_i = \hat{S}(L_i) - 1$
Inference from a Permutation Test

- Assumptions:
 - Under null hypothesis treatment (z_i values) are independent of failure time and assessment times.
 - Therefore, for permutation test: No information on treatment (z_i values) used in creating scores.
 - Non-informative censoring
Inference from a Permutation Test

- Assumptions:
 - Under null hypothesis treatment \((z_i)\) values are independent of failure time and assessment times.
 - Therefore, for permutation test: No information on treatment \((z_i)\) values used in creating scores.
 - Non-informative censoring

- Exact tests
 - complete enumeration
 - network algorithm (StatXact)
 - many other algorithms
 - Monte Carlo approximation to exact
Inference from a Permutation Test

- Assumptions:
 - Under null hypothesis treatment \((z_i\) values) are independent of failure time and assessment times.
 - Therefore, for permutation test: No information on treatment \((z_i\) values) used in creating scores.
 - Non-informative censoring

- Exact tests
 - complete enumeration
 - network algorithm (StatXact)
 - many other algorithms
 - Monte Carlo approximation to exact

- Asymptotic tests
 - see ”Permutational central limit theorems” (Ency of Stat., Sen, 1985).
Rank Testing with Censoring: Overview

Colors: covered, Next

1. Choose Likelihood/Process
 - Marginal Likelihood of Ranks (integrate over all ranks possible given censoring)
 - Grouped Continuous Model (estimate baseline distribution)
 - Counting Process
 - Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
 - Proportional odds/ Wilcoxon-type
 - Proportional hazards (continuous)/ Logrank-type
 - Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
 - Permutation test on efficient scores (exact or asymptotic)
 - Score Test
 - Imputation
Choosing a Model

Parametric Model: Accelerated Failure Time Model

\[
\log(X_i) = \alpha + z_i \beta + \sigma \epsilon
\]

where

- \(z_i\) is a vector of covariates
- \(\beta\) is a vector of parameters
- \(\alpha\) and \(\sigma\) are location and scale parameters
- \(\epsilon\) is the error, where \(\epsilon \sim F\) where \(F\) is a known distribution.
Choosing a Model

Semi-Parametric Model

\[g(X_i) = z_i \beta + \epsilon \]

where

- \(g(\cdot) \) is an UNKNOWN monotonic transformation of the failure time
- \(z_i \) is a vector of covariates
- \(\beta \) is a vector of parameters
- \(\epsilon \) is the error, where \(\epsilon \sim F \) where \(F \) is a known distribution with convenient mean and variance (not necessarily mean=0 and variance=1).
Choosing a Model

Choose \(F \)

- \(F \) is logistic
 - Proportional Odds Model
 - Let \(S(t; \beta, H) = 1 - F(t; \beta, H) \) and \(S_0(t) = S(t; 0, H) \), where \(H \) is a vector of nuisance parameters, and

\[
\frac{S(t; \beta, H)}{1 - S(t; \beta, H)} = \frac{S_0(t)}{1 - S_0(t)} \exp(-z_i'\beta)
\]

\[
\Rightarrow S(t; \beta, H) = \left[1 + \left(\frac{1 - S_0(t)}{S_0(t)}\right) \exp(z_i\beta)\right]^{-1}
\]

- \(F \) is extreme minimum value
 - Proportional Hazards Model
 - \(S(t; \beta, H) = S_0(t)^{\exp(z_i\beta)} \)
 - \(\lambda(t; \beta, H) = \lambda_0(t) \exp(z_i\beta) \)
Two Logrank Models

- Finkelstein (1986, Biometrics, 845-854)
 - grouped continuous model on continuous proportional hazards model.
 - \(\lambda(t; \beta, H) = \lambda_0(t) \exp(z_i\beta) \)

- Sun (1996, Stat in Med, 1387-1395)
 - follow discrete approximation to proportional hazards used in Cox (1972, JRSSB 187-220).

\[
\frac{\lambda(t; \beta, H)}{1 - \lambda(t; \beta, H)} = \frac{\lambda_0(t)}{1 - \lambda_0(t)} \exp(z_i\beta)
\]

\[
S(t; \beta, H) = \prod_{\ell=1}^{j} \left[1 + \left(\frac{S_0(t_{\ell-1}) - S_0(t_{\ell})}{S_0(t_{\ell})}\right) \exp(z_i\beta)\right]^{-1}
\]
Rank Testing with Censoring: Overview

Colors: covered, Next

1. Choose Likelihood/Process
 - Marginal Likelihood of Ranks (integrate over all ranks possible given censoring)
 - Grouped Continuous Model (estimate baseline distribution)
 - Counting Process
 - Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
 - Proportional odds/ Wilcoxon-type
 - Proportional hazards (continuous)/ Logrank-type
 - Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
 - Permutation test on efficient scores (exact or asymptotic)
 - Score Test
 - Imputation
Choosing Likelihood/Process: Marginal Likelihood of Ranks

Semi-Parametric Model

\[g(X_i) = z_i \beta + \epsilon \]

where \(\epsilon \sim F \).

- Since \(g(\cdot) \) is unknown and monotonic, ranks have all information. So use marginal likelihood of ranks.

\[
\sum_{r \in \mathcal{R}} \int_{A(r)} \prod_{i=1}^{n} f(u_i - z_i \beta) \, du_i
\]

where \(\mathcal{R} \) is set of ranks, \(r \), consistent with censoring
\(A(r) \) is region corresponding to rank vector \(r \)
Choosing Likelihood/Process: Marginal Likelihood of Ranks

- Score test: Self and Grossman (1986, Biometrics, 521-30)
 - Theoretically nice and clean
 - Difficult to calculate scores
- Marginal likelihood of ranks (MLR) can be used for semi-parametric regression
 - Return to this in regression section.
Choosing Likelihood/Process: Grouped Continuous Model

Semi-Parametric Model

\[g(X_i) = z_i \beta + \epsilon \]

where \(\epsilon \sim F \).

Likelihood:

\[\ell = \prod_{i=1}^{n} \{ F(g(R_i) - z_i \beta) - F(g(L_i) - z_i \beta) \} \]

where \(z_i \) = vector of treatment indicators
\(\beta \) = treatment parameters
\(g(\cdot) \) = infinite dimensional nuisance parameter

Only need to estimate \(g(X) \) at inspection times.
Choosing Likelihood/Process: Grouped Continuous Model

Recall the Likelihood:

\[\ell = \prod_{i=1}^{n} \{ F(g(R_i) - z_i \beta) - F(g(L_i) - z_i \beta) \} \]

Reparametrize:

\[\ell = \prod_{i=1}^{n} \{ F \left(F^{-1} [H(R_i)] - z_i \beta \right) - F \left(F^{-1} [H(L_i)] - z_i \beta \right) \} \]

here \(H = 1 - S_0 \) is a baseline distribution function.
Choosing Likelihood/Process: Grouped Continuous Model

Efficient Score Vector (ignore Math if you want):

\[
U = \left[\frac{\partial \log \ell}{\partial \beta} \right]_{\beta=0}
\]

\[
= \frac{\partial}{\partial \beta} \left[\sum_{i=1}^{n} \log \left\{ F \left(F^{-1} \left[\hat{H}(R_i) \right] - z_i \beta \right) \right\} \right]_{\beta=0}
\]

\[
= \sum_{i=1}^{n} \frac{\partial}{\partial \beta} \left\{ F \left(F^{-1} \left[\hat{H}(R_i) \right] - z_i \beta \right) - F \left(F^{-1} \left[\hat{H}(L_i) \right] - z_i \beta \right) \right\} \right\} _{\beta=0}
\]

\[
= \sum_{i=1}^{n} \frac{z_i}{\hat{H}(R_i) - \hat{H}(L_i)} - \left\{ f \left(F^{-1} \left[\hat{H}(R_i) \right] \right) - f \left(F^{-1} \left[\hat{H}(L_i) \right] \right) \right\}
\]

\[
= \sum_{i=1}^{n} z_i C_i
\]

Bottom line: scores \(c_i \) function of NPMLE of distribution only.
Efficient Score Vector (bottom line):

\[U = \sum_{i=1}^{n} z_i c_i \]

where \(c_i \) is a function of \(F \) and NPMLE of survival function,
\(\hat{S} = 1 - \hat{H} \)
Scores:

- Proportional odds (Wilcoxon-type)
 \[c_i = \hat{S}(L_i) + \hat{S}(R_i) - 1 \]

- Proportional Hazards (logrank, Finkelstein, 1986)
 \[c_i = \frac{\hat{S}(L_i) \log \hat{S}(L_i) - \hat{S}(R_i) \log \hat{S}(R_i)}{\hat{S}(L_i) - \hat{S}(R_i)} \]

- Proportional Hazards (discrete version) (logrank, Sun, 1996)
 \[c_i = \frac{\hat{S}(L_i) \log \tilde{S}(L_i) - \hat{S}(R_i) \log \tilde{S}(R_i)}{\tilde{S}(L_i) - \tilde{S}(R_i)} \]

 where \(\tilde{S} \) is like a Nelson-Aalen estimator,

 \[
 \tilde{S}(t_j) = \exp \left(- \sum_{k=1}^{j} \hat{\lambda}_k \right)
 \]

 where

 \[
 \hat{\lambda}_k = \frac{\hat{S}(t_{k-1}) - \hat{S}(t_k)}{\hat{S}(t_{k-1})}
 \]
Alternate Expression for Weighted Logrank Tests

- Consider ℓth element of score vector, U representing treatment ℓ:

$$U_\ell = \sum_{j=1}^{m} w_j \left(D_{j\ell} - \frac{N_{j\ell}D_j}{N_j} \right)$$

- $D_j = \text{expected number of total deaths in } (t_{j-1}, t_j]$
- $D_{j\ell} = \text{expected number of deaths in } (t_{j-1}, t_j], \text{ treatment group } \ell$
- N_j and $N_{j\ell}$ expected number at risk in $(t_{j-1}, t_j]$
- Sun’s (1996) test: $w_j = 1$
- Finkelstein’s (1986) test:

$$w_j = \frac{\hat{S}(t_{j-1}) \left\{ \log \hat{S}(t_{j-1}) - \log \hat{S}(t_j) \right\}}{\hat{S}(t_{j-1}) - \hat{S}(t_j)} \approx 1$$

- Fay (1999, Stat in Med, 273-285) shows equivalence between score tests in weighted logrank form (above) and permutation form ($\sum z_i c_i$).
Alternate Expression for Weighted Logrank Tests

- Consider ℓth element of score vector, U representing treatment ℓ:

$$U_\ell = \sum_{j=1}^{m} w_j \left(D_{j\ell} - \frac{N_{j\ell}D_j}{N_j} \right)$$

- Sun's (1996) test: $w_j = 1$

- Finkelstein's (1986) test:

$$w_j = \frac{\hat{S}(t_{j-1}) \left\{ \log \hat{S}(t_{j-1}) - \log \hat{S}(t_j) \right\}}{\hat{S}(t_{j-1}) - \hat{S}(t_j)} \approx 1$$

- Proportional Odds (Wilcoxon-type test):

$$w_j = \hat{S}(t_{j-1})$$
1. Choose Likelihood/Process
 ▶ Marginal Likelihood of Ranks (integrate over all ranks possible given censoring)
 ▶ Grouped Continuous Model (estimate baseline distribution)
 ▶ Counting Process
 ▶ Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
 ▶ Proportional odds/ Wilcoxon-type
 ▶ Proportional hazards (continuous)/ Logrank-type
 ▶ Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
 ▶ Permutation test on efficient scores (exact or asymptotic)
 ▶ Score Test
 ▶ Imputation
Why not Use MidPoint Imputation then usual Right Censoring Methods?

Before considering formal interval censoring inference methods, show there is a problem with using midpoint imputation on intervals then using usual right censoring methods.
Inferences when Treatment Related to Inspection Process Only

Examples:

- Treatment A scheduled every 2 weeks, treatment B scheduled every 4 weeks.
- Treatment A causes side effects which lead to more frequent inspections, but does not change time to progression or death.
Simple Methods When Inspection Times Differ Between Treatments

- Midpoint imputation, then treat data like right censored data
 - Law and Brookmeyer (1992, Stat in Med, 1569-1578) showed type I error for nominal 0.05 can be as large as 0.19
 - See also recent work by Sun and Chen (unpublished manuscript JSM, 2009).
Interval-Censoring Inference Methods

- $H_0 : \beta = 0$
- Recall efficient score vector,

\[U = \sum_{i=1}^{n} z_i c_i \]

where c_i are function of NPMLE of distribution
- Inference options
 - Permutation of treatment vector z_i
 - Require no treatment information used in calculating scores, c_i.
 - Assumption: Non-informative censoring... inspection times independent of event time
 - Assumption: inspection times independent of treatment
Interval-Censoring Inference Methods

- $H_0 : \beta = 0$
- Recall efficient score vector,

$$U = \sum_{i=1}^{n} z_i c_i$$

where c_i are function of NPMLE of distribution

- Inference options
 - Permutation of treatment vector z_i
 - Require no treatment information used in calculating scores, c_i.
 - Assumption: Non-informative censoring... inspection times independent of event time
 - Assumption: inspection times independent of treatment
 - Score Test
 - Require number of nuisance parameters (dimension of NPMLE) to be fixed as $n \to \infty$.
 - Assumption: Non-informative censoring... inspection times independent of event time
 - Likelihood-based, so inspection times may depend on treatment
Exponential Example

- $X \sim \text{Exponential}(1)$
- Inspection Schedule for Treatment A: 0, 1, 2
- Inspection Schedule for Treatment B: 0, 2
- $n = 1000$ in each group
- Treatment A:
 - $(0, 1]$: expect $n=632$, expected logrank score 0.368
 - $(1, 2]$: expect $n=233$, expected logrank score -0.265
 - $(2, \infty)$: expect $n=135$, expected logrank score -1.265
- Treatment B:
 - $(0, 2]$: expect $n=632+233$, expected logrank score
 $$\frac{632 \times 0.368 + 233 \times (-0.265)}{632 + 233} = 0.197$$
 - $(2, \infty)$: expect $n=135$, expected logrank score -1.265
Exponential Example

Problem with Midpoint Imputation:

- \(X \sim \text{Exponential}(1) \)
- Inspection Schedule for Treatment A: 0, 1, 2
- Inspection Schedule for Treatment B: 0, 2
- \(n = 1000 \) in each group
- Treatment A:
 - \((0, 1] \Rightarrow 0.5: \text{expect } n=632, \text{expected logrank score } 0.648\)
 - \((1, 2] \Rightarrow 1.5: \text{expect } n=233, \text{expected logrank score } -0.411\)
 - \((2, \infty): \text{expect } n=135, \text{expected logrank score } -1.411\)
- Treatment B:
 - \((0, 2] \Rightarrow 1: \text{expect } n=632+233, \text{expected logrank score } 0.0517 \neq \frac{632 \times 0.648 + 233 \times (-0.411)}{632 + 233} = 0.389\)
 - \((2, \infty): \text{expect } n=135, \text{expected logrank score } -1.411\)
Rewriting Scores as Weighted Sums

Notation:

- t_1, t_2, \ldots, t_m, set of possible observation times where NPMLE (all groups combined) may change.
- Let $t_0 \equiv 0$ and $t_{m+1} \equiv \infty$.
- $p(t_j) = Pr[t_{j-1} < X \leq t_j]$
- NPMLE of probability mass function:
 $\hat{p} = [\hat{p}(t_1), \hat{p}(t_2), \ldots, \hat{p}(t_{m+1})]$
- $\hat{p}_i(t_j) = \hat{Pr}[t_{j-1} < X_i \leq t_j | X_i \in (L_i, R_i)]$

Rewrite scores:

$$c_i = c(L_i, R_i, \hat{p})$$
$$= \sum_{j=1}^{m+1} \hat{p}_i(t_j) c(t_{j-1}, t_j, \hat{p})$$
Permutation Method when Inspection Process Different Between Treatment Groups

- Although variances of scores, c_i, may be different by changing the inspection process, expected value of score c_i is zero regardless of inspection process.
Permutation Method when Inspection Process Different Between Treatment Groups

- Although variances of scores, c_i, may be different by changing the inspection process, expected value of score c_i is zero regardless of inspection process.
- So it is hard to think of two inspection processes (one for each treatment group) that would give a bad type I error.
Permutation Method when Inspection Process Different Between Treatment Groups

- Although variances of scores, c_i, may be different by changing the inspection process, expected value of score c_i is zero regardless of inspection process.
- So it is hard to think of two inspection processes (one for each treatment group) that would give a bad type I error.
- That is why generally, permutation test does not perform badly even when the inspection processes are different between groups.
Score Method when Inspection Process Different Between Treatment Groups

- Theoretically, score method does not require that the two treatment groups have the same inspection process.
Score Method when Inspection Process Different Between Treatment Groups

- Theoretically, score method does not require that the two treatment groups have the same inspection process.
- The problem with score method is that the number of nuisance parameters may grow with n. Further, nuisance parameters may be on boundary of parameter space.
Score Method when Inspection Process Different Between Treatment Groups

- Theoretically, score method does not require that the two treatment groups have the same inspection process.
- The problem with score method is that the number of nuisance parameters may grow with n. Further, nuisance parameters may be on boundary of parameter space.
- Fay (1996, Biometrics, 811-22) redefines nuisance parameters, any part of distribution with estimated mass of 0 is set to 0. Then do usual score test. This is how \textit{interval} R package does score test.
Score Method when Inspection Process Different Between Treatment Groups

- Theoretically, score method does not require that the two treatment groups have the same inspection process.
- The problem with score method is that the number of nuisance parameters may grow with n. Further, nuisance parameters may be on boundary of parameter space.
- Fay (1996, Biometrics, 811-22) redefines nuisance parameters, any part of distribution with estimated mass of 0 is set to 0. Then do usual score test. This is how interval R package does score test.
- Because of ad hoc nature, prefer permutation methods for inferences when very many nuisance parameters (i.e., almost continuous inspection processes).
1. Choose Likelihood/Process
 ▶ Marginal Likelihood of Ranks (integrate over all ranks possible given censoring)
 ▶ Grouped Continuous Model (estimate baseline distribution)
 ▶ Counting Process
 ▶ Partial Likelihood (only useful for right censoring, logrank)

2. Choose model or scores
 ▶ Proportional odds/ Wilcoxon-type
 ▶ Proportional hazards (continuous)/ Logrank-type
 ▶ Approximate Proportional hazards (discrete)/ Logrank-type

3. Choose inference method
 ▶ Permutation test on efficient scores (exact or asymptotic)
 ▶ Score Test
 ▶ Imputation
Testing: Imputation

- Imputation
 - Calculate Non-parametric MLE of survival function
 - Sample from NPMLE, impute into usual right-censored weighted logrank equations \(m \) times, average \(m \) score vectors, \(U_j \), but correct average of \(m \) variances by within cluster resampling method:

\[
V = \frac{\sum_{j=1}^{m} V_j}{m} - \frac{\sum_{j=1}^{m} (U_j - \bar{U})(U_j - \bar{U})^T}{m - 1}
\]

- Motivation, letting \(D \) be data

\[
Var \left[E(U|D) \right] = Var(U) - E \left[Var(U|D) \right]
\]

- Huang, Lee, and Yu (2008, Statistics in Medicine, 3217-3226).
- Variance estimation similar to within cluster resampling (Hoffman, Sen, Weinberg, Biometrika, 2001, 1121-1134) also called Multiple Outputation (Follmann, Proschan, and Leifer, Biometrics, 2003, 420-429).
Overview of Type I Error Problems

- Data: Inspection process independent of treatment and response.
 - No problems for any methods.

- Data: Inspection process related to treatment not response
 - Type I error problem: Midpoint imputation

- Data: Informative censoring, but same for all groups
 - Permutation method no type I error problem
 - Score test and midpoint imputation

- Data: Informative censoring and differential between treatment groups.
 - Problem with all methods.

- Data: Continuous inspection process but same for all treatment groups
 - Score test (theory not known, perhaps type I error problem?)
 - Permutation test (OK)
Overview of Type I Error Problems

- Data: Inspection process independent of treatment and response.
 - No problems for any methods.
- Data: Inspection process related to treatment not response
 - Type I error problem: Midpoint imputation
 - No type I error problem: score test
 - Probably not much type I error problem: permutation test
Overview of Type I Error Problems

- Data: Inspection process independent of treatment and response.
 - No problems for any methods.
- Data: Inspection process related to treatment not response
 - Type I error problem: Midpoint imputation
 - No type I error problem: score test
 - Probably not much type I error problem: permutation test
- Data: Informative censoring, but same for all groups
 - Permutation method no type I error problem
 - Score test and midpoint imputation ?
Overview of Type I Error Problems

- Data: Inspection process independent of treatment and response.
 - No problems for any methods.
- Data: Inspection process related to treatment not response
 - Type I error problem: Midpoint imputation
 - No type I error problem: score test
 - Probably not much type I error problem: permutation test
- Data: Informative censoring, but same for all groups
 - Permutation method no type I error problem
 - Score test and midpoint imputation ?
- Data: Informative censoring and differential between treatment groups.
 - Problem with all methods.
Overview of Type I Error Problems

- Data: Inspection process independent of treatment and response.
 - No problems for any methods.

- Data: Inspection process related to treatment not response
 - Type I error problem: Midpoint imputation
 - No type I error problem: score test
 - Probably not much type I error problem: permutation test

- Data: Informative censoring, but same for all groups
 - Permutation method no type I error problem
 - Score test and midpoint imputation?

- Data: Informative censoring and differential between treatment groups.
 - Problem with all methods.

- Data: Continuous inspection process but same for all treatment groups
 - score test (theory not known, perhaps type I error problem?)
 - permutation test (OK)
Testing: Stratification

Three methods all maintain type I error when strata effects present:

1. Weighted logrank test ignoring strata
 ▶ when small strata effects, this is more powerful than method 2
Testing: Stratification

Three methods all maintain type I error when strata effects present:

1. Weighted logrank test ignoring strata
 - when small strata effects, this is more powerful than method 2

2. Separate ranking (i.e., separate baseline hazard) within each strata, then either permute accounting for strata or combine separate weighted logrank tests (e.g. stratified logrank test)
 - when large strata effects this is more powerful than method 1

Shih and Fay (1999, Biometrics, 1156-1161)
Testing: Stratification

Three methods all maintain type I error when strata effects present:

1. Weighted logrank test ignoring strata
 - when small strata effects, this is more powerful than method 2

2. Separate ranking (i.e., separate baseline hazard) within each strata, then either permute accounting for strata or combine separate weighted logrank tests (e.g. stratified logrank test)
 - when large strata effects this is more powerful than method 1

3. Automatic adjustment
 - measure within versus between variance using ranks only
 - shrinkage estimator of distribution for each strata, if within variance large shrink a lot, if between variance large shrink little
 - rank subjects based on shrinkage estimator
 - automatically gives good power regardless of whether strong or weak strata effect
 - Shih and Fay (1999, Biometrics, 1156-1161)
Recall breast cosmesis data:

```r
> library(interval)
> data(bcos)
> fit<-icfit(Surv(left,right,type="interval2")~treatment, +       data=bcos)
> plot(fit)
```
> plot(fit)
logrank: Sun’s scores

> test <- ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos)
> test

Asymptotic Logrank two-sample test (permutation form), Sun's scores

data: Surv(left, right, type = "interval2") by treatment
Z = -2.6684, p-value = 0.007622
alternative hypothesis: survival distributions not equal

<table>
<thead>
<tr>
<th>n</th>
<th>Score</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment=Rad 46</td>
<td>-9.141846</td>
<td></td>
</tr>
<tr>
<td>treatment=RadChem 48</td>
<td>9.141846</td>
<td></td>
</tr>
</tbody>
</table>

* like Obs-Exp, positive implies earlier failures than expected
 Asymptotic Logrank two-sample test (permutation form), Finkelstein's scores

data: Surv(left, right, type = "interval2") by treatment
Z = -2.6839, p-value = 0.007277
alternative hypothesis: survival distributions not equal

 n Score Statistic*
treatment=Rad 46 -9.944182
 treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected
Wilcoxon-type tests

\[
\text{ictest(Surv(left, right, type="interval2")~treatment, data=bcos,}\n\text{ + scores="wmw")}
\]

Asymptotic Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment
Z = -2.1672, p-value = 0.03022
alternative hypothesis: survival distributions not equal

<table>
<thead>
<tr>
<th>n</th>
<th>Score</th>
<th>Statistic*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad</td>
<td>46</td>
<td>-5.656724</td>
</tr>
<tr>
<td>RadChem</td>
<td>48</td>
<td>5.656724</td>
</tr>
</tbody>
</table>

* like Obs-Exp, positive implies earlier failures than expected
> ictest(Surv(left, right, type="interval2") ~ treatment, data=bcos, + scores="wmw", exact=TRUE)

Exact Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment
p-value = 0.026
alternative hypothesis: survival distributions not equal

 n Score Statistic*
 treatment=Rad 46 -5.656724
 treatment=RadChem 48 5.656724
* like Obs-Exp, positive implies earlier failures than expected
p-value estimated from 999 Monte Carlo replications
99 percent confidence interval on p-value:
 0.009926283 0.048044749

(took 0.08 seconds on my desktop).
> test<-ictest(Surv(left,right,type="interval2")~treatment,data=bcos,+
+ scores="wmw", exact=TRUE, mcontrol=mControl(nmc=10^6-1))

Exact Wilcoxon two-sample test (permutation form)

data: Surv(left, right, type = "interval2") by treatment
p-value = 0.02967
alternative hypothesis: survival distributions not equal

<table>
<thead>
<tr>
<th>n</th>
<th>Score</th>
<th>Statistic*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad</td>
<td>46</td>
<td>-5.656724</td>
</tr>
<tr>
<td>RadChem</td>
<td>48</td>
<td>5.656724</td>
</tr>
</tbody>
</table>

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from 999999 Monte Carlo replications
99 percent confidence interval on p-value:
 0.02905283 0.03030048

(took 32 seconds on my desktop).
test <- ictest(Surv(left, right, type="interval2") ~ treatment, data=bcos, scores="wmw", exact=TRUE, method="exact.network")

Error: cannot allocate vector of size 244.7 Mb

So, network algorithm is only feasible for quite small sample sizes (about 10 per group).
score method

> ictest(Surv(left,right,type="interval2")~treatment,data=bcos, + method="scoretest")

Asymptotic Logrank two-sample test (score form), Sun's scores

data: Surv(left, right, type = "interval2") by treatment
Chi Square = 7.6177, p-value = 0.00578
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.141846
treatment=RadChem 48 9.141846
* like Obs-Exp, positive implies earlier failures than expected
imputation: within subject resampling

```r
> ictest(Surv(left, right, type="interval2") ~ treatment, data=bcos, +     method="wsr.HLY")
```

Asymptotic Logrank 2-sample test (WSR HLY), Sun's scores

data: Surv(left, right, type = "interval2") by treatment
Chi Square = 7.1912, p-value = 0.007326
alternative hypothesis: survival distributions not equal

```
n Score Statistic*
treatment=Rad 46  -9.141846
treatment=RadChem 48  9.141846
* like Obs-Exp, positive implies earlier failures than expected
p-value estimated from Monte Carlo replications
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
  - Proportional Hazards: Satten (1996, Biometrika, 355-370)

- Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data Analysis, 473-488)
- E-M on Proportional Hazards (Goetghebeur, Ryan, 2000, Biometrics, 1139-1144)
- Iterative Convex Minorant algorithm for Proportional Hazards (Pan, 1999, J. Comp Graph Stat, 109-120) intcox R package (package not written by Pan, I could not get results to match coxph when data right censored).
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
    - Proportional Hazards: Satten (1996, Biometrika, 355-370)
    - Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data Analysis, 473-488)
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
    - Proportional Hazards: Satten (1996, Biometrika, 355-370)
    - Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data Analysis, 473-488)
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
    - Proportional Hazards: Satten (1996, Biometrika, 355-370)
    - Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data Analysis, 473-488)
  - E-M on Proportional Hazards (Goetghebeur, Ryan, 2000, Biometrics, 1139-1144)
Regression: Semi-parametric approaches

- Marginal likelihood of ranks
  - can be solved by stochastic integration (Markov Chain Monte Carlo)
    - Proportional Hazards: Satten (1996, Biometrika, 355-370)
    - Proportional odds: Gu, Sun, Zuo (2005, Lifetime Data Analysis, 473-488)
- E-M on Proportional Hazards (Goetghebeur, Ryan, 2000, Biometrics, 1139-1144)
- Iterative Convex Minorant algorithm for Proportional Hazards (Pan, 1999, J. Comp Graph Stat, 109-120) intcox R package (package not written by Pan, I could not get results to match coxph when data right censored).
Regression: Semi-parametric approaches (continued)

- Estimate non-parametric part with many parameters
  - Piecewise constant intensity model, then use GLM methods for Bernoulli (Farrington, 1996, Stat in Med, 283-292, Carstensen, 1996, Stat in Med, 2177-2189)
  - Icens function in Epi R package
Regression: Semi-parametric approaches (continued)

- Estimate non-parametric part with many parameters
  - Piecewise constant intensity model, then use GLM methods for Bernoulli (Farrington, 1996, Stat in Med, 283-292, Carstensen, 1996, Stat in Med, 2177-2189)
  - Icens function in Epi R package
Parametric Models

Accelerated Failure Time Models

\[ \log(X_i) = \alpha + z_i \beta + \sigma \epsilon \]

where

- \( z_i \) is a vector of covariates
- \( \beta \) is a vector of parameters
- \( \alpha \) and \( \sigma \) are location and scale parameters
- \( \epsilon \) is the error, where \( \epsilon \sim F \) where \( F \) is a known distribution.
Parametric Models: AFT

\[ \log(X_i) = \alpha + z_i\beta + \sigma \epsilon_i \]

where \( \epsilon_i \) is the error, where \( \epsilon_i \sim F \) and \( F \) is known.

Creating Likelihood:

\[ \epsilon_i = \frac{\log(X_i) - (\alpha + z_i\beta)}{\sigma} \]

so

\[ Pr[X_i \leq x] = F \left[ \frac{\log(X_i) - (\alpha + z_i\beta)}{\sigma} \right] \]

but \( X_i \in (L_i, R_i] \) so

\[ L = \prod_{i=1}^{n} \left\{ \right. \left. F \left[ \frac{\log(R_i) - (\alpha + z_i\beta)}{\sigma} \right] - F \left[ \frac{\log(L_i) - (\alpha + z_i\beta)}{\sigma} \right] \right\} \]
Parametric Models: AFT

\( X_i \in (L_i, R_i] \) so

\[
L = \prod_{i=1}^{n} \left\{ F \left[ \frac{\log(R_i) - (\alpha + z_i \beta)}{\sigma} \right] - F \left[ \frac{\log(L_i) - (\alpha + z_i \beta)}{\sigma} \right] \right\}
\]

Special cases:

- Right censoring, \( R_i = \infty \) and since \( F(\infty) = 1 \),

\[
L = \prod_{i=1}^{n} \left\{ 1 - F \left[ \frac{\log(L_i) - (\alpha + z_i \beta)}{\sigma} \right] \right\}
\]

- Left censoring, \( L_i = 0 \) and since \( F(0) = 0 \),

\[
L = \prod_{i=1}^{n} \left\{ F \left[ \frac{\log(R_i) - (\alpha + z_i \beta)}{\sigma} \right] \right\}
\]
Inference from Parametric Model

- Usual asymptotic methods
  - Wald test
  - Score test
  - Likelihood ratio test
- Regularity Conditions
  - Number of parameters does not increase as $n$ increases
  - Nuisance parameters not on boundary of parameter space. For parametric models this is not a problem.
Frailty (Random effects)

We can handle frailty in interval censored data:

- **Parametric**

- **Semi-parametric**
R Software for Interval Censoring: Overview

- **NPMLE**
  - Icens package: many algorithms
  - survival package: survfit (E-M algorithm)
  - interval package: icfit (E-M, polish using Kuhn-Tucker)
  - MLEcens package: does bivariate NPMLE, can be used for univariate

- **Smoothing of Distribution**
  - ICE package: uses Kernel smooth (reduces to NPMLE as bandwidth gets small)
  - polspline package: oldlogspline (spline estimator of density)

- **Testing**
  - interval package: ictest (weighted logrank tests, using permutation [exact, asymptotic], score test, or imputation)

- **Regression**
  - survival package: survreg (parametric survival models)
  - Epi package: Icens (Piecewise constant intensity model)
R Software for Interval Censoring: Overview

▶ NPMLE
  ▶ Icens package: many algorithms
  ▶ survival package: survfit (E-M algorithm)
  ▶ interval package: icfit (E-M, polish using Kuhn-Tucker)
  ▶ MLEcens package: does bivariate NPMLE, can be used for univariate

▶ Smoothing of Distribution
  ▶ ICE package: uses Kernel smooth (reduces to NPMLE as bandwidth gets small)
  ▶ polsplines package: oldlogspline (spline estimator of density)
R Software for Interval Censoring: Overview

▶ NPMLE
  ▶ Icens package: many algorithms
  ▶ survival package: survfit (E-M algorithm)
  ▶ interval package: icfit (E-M, polish using Kuhn-Tucker)
  ▶ MLEcens package: does bivariate NPMLE, can be used for univariate

▶ Smoothing of Distribution
  ▶ ICE package: uses Kernel smooth (reduces to NPMLE as bandwidth gets small)
  ▶ polsplline package: oldlogspline (spline estimator of density)

▶ Testing
  ▶ interval package: ictest (weighted logrank tests, using permutation [exact, asymptotic], score test, or imputation)
R Software for Interval Censoring: Overview

- **NPMLE**
  - Icens package: many algorithms
  - survival package: survfit (E-M algorithm)
  - interval package: icfit (E-M, polish using Kuhn-Tucker)
  - MLEcens package: does bivariate NPMLE, can be used for univariate

- **Smoothing of Distribution**
  - ICE package: uses Kernel smooth (reduces to NPMLE as bandwidth gets small)
  - polspline package: oldlogspline (spline estimator of density)

- **Testing**
  - interval package: ictest (weighted logrank tests, using permutation [exact, asymptotic], score test, or imputation)

- **Regression**
  - survival package: survreg (parametric survival models)
  - Epi package: Icens (Piecewise constant intensity model)
Example Data Set for Regression

> library(Epi)
> data(hivDK)
Data Set: HIV in Danish men from 1983 to 1989 (see Carstensen, 1996, Stat in Med, 2177-2189)

- Data in Epi R package: hivDK
- **Modify Data:** Treat as if known to be well (HIV antibody negative) at start of study. This mimics most clinical trials.
- Time to event: event is HIV antibody positive. Start of study, 12/31/1980
- Time measured in days since start of study
- Sample size: n=297
  - Right censored: n=232
  - Left censored: n=26
  - Interval censored: n=39
- Covariate: traveled to U.S.? (No, n= 190), (Yes, n= 107)
hivDK data: Original form

```r
> hivDK[1:10,]

 id entry well ill bth pyr us
 1 101 1980-12-31 1987-03-15 <NA> 0 0 0
 2 104 1980-12-31 1989-05-15 <NA> 9 20 0
 3 105 1980-12-31 1981-11-15 <NA> 8 3 0
 4 106 1980-12-31 1989-05-15 <NA> -5 8 0
 6 108 1980-12-31 1987-03-15 <NA> -9 25 0
 7 109 1980-12-31 1984-08-15 <NA> -8 3 0
 8 110 1980-12-31 1987-03-15 <NA> -3 6 0
 9 111 1980-12-31 1984-08-15 <NA> -3 4 0
 10 112 1980-12-31 1981-11-15 <NA> 8 7 0
```
R code: setup/modify hivDK data

```r
> library(Epi)
> data(hivDK)
> d<-hivDK
> left<-as.numeric(d$well-d$entry)
> left.na<-left
> left[is.na(left)]<-0
> right<- as.numeric(d$ill - d$entry)
> right.na<-right
> right[is.na(right)]<-Inf
> d<-data.frame(left,left.na,right,
+ right.na,us=d$us,
+ year.of.birth=d$bth+1950,
+ age.at.entry=d$bth+30,
+ partners.per.year=d$pyr)
```
hivDK data

## for survreg, need left and right in different format
## created variables left.na and right.na such that
## left censoring has left.na=NA
## right censoring has right.na=NA

d[1:3,]

<table>
<thead>
<tr>
<th>left</th>
<th>left.na</th>
<th>right</th>
<th>right.na</th>
<th>year.of.birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2265</td>
<td>2265</td>
<td>Inf</td>
<td>NA</td>
<td>1950</td>
</tr>
<tr>
<td>3057</td>
<td>3057</td>
<td>Inf</td>
<td>NA</td>
<td>1959</td>
</tr>
<tr>
<td>319</td>
<td>319</td>
<td>Inf</td>
<td>NA</td>
<td>1958</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>age.at.entry</th>
<th>partners.per.year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
</tr>
</tbody>
</table>
```r
fit <- icfit(Surv(left, right, type="interval2") ~ us, data=d)
summary(fit)

us=0:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 319]</td>
<td>0.0636</td>
</tr>
<tr>
<td>(319, 439]</td>
<td>0.0342</td>
</tr>
<tr>
<td>(439, 804]</td>
<td>0.0197</td>
</tr>
<tr>
<td>(804, 1323]</td>
<td>0.0370</td>
</tr>
<tr>
<td>(1323, 2265]</td>
<td>0.0463</td>
</tr>
<tr>
<td>(2265, 3057]</td>
<td>0.0317</td>
</tr>
<tr>
<td>(3057, Inf)</td>
<td>0.7675</td>
</tr>
</tbody>
</table>

us=1:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 319]</td>
<td>0.1215</td>
</tr>
<tr>
<td>(319, 439]</td>
<td>0.0577</td>
</tr>
<tr>
<td>(439, 804]</td>
<td>0.1058</td>
</tr>
<tr>
<td>(804, 1323]</td>
<td>0.0391</td>
</tr>
<tr>
<td>(1323, 2265]</td>
<td>0.0521</td>
</tr>
<tr>
<td>(2265, 3057]</td>
<td>0.6237</td>
</tr>
</tbody>
</table>
```
> plot(fit)
Asymptotic Logrank two-sample test (permutation form), Sun's scores

data:  Surv(left, right, type = "interval2") by us
Z = -2.7393, p-value = 0.006156
alternative hypothesis: survival distributions not equal

 n  Score  Statistic*
 0   190   -10.26357
 1   107    10.26357
* like Obs-Exp, positive implies earlier failures than expected
Rank Permutation Test for Trend

> ictest(Surv(left,right,type="interval2")~partners.per.year, + score="wmw",data=d)

Asymptotic Wilcoxon trend test (permutation form)

data: Surv(left, right, type = "interval2") by partners.per.year
Z = 3.0424, p-value = 0.002347
alternative hypothesis: survival distributions not equal

   n Score Statistic*
[1,] 297 514.0171
* positive so larger covariate values give earlier failures than expected
Other details outlined in vignette of interval software. In R, after loading interval package type:
vignette("intervalPaper")

- You can output scores, $c_1, \ldots, c_n$, that may then be used in other permutation software (e.g., coin R package, StatXact).
- You can estimate the NPMLE from another package (e.g., Icens) and input the results into ictest through the initfit option. Recall Icens has many options for calculating the NPMLE (e.g., E-M, Iterative Convex Minorant, Vector Exchange Algorithm).
## first try Weibull
## for survreg, need left and right in different format
## created variables left.na and right.na such that
## left censoring has left=NA
## right censoring has right=NA
> sreg<-survreg(Surv(left.na,right.na,type="interval2")~us,+
+        data=d)
summary(sreg)

Call:
survreg(formula = Surv(left.na, right.na, type = "interval2") ~
        us, data = d)

        Value  Std. Error    z   p
(Intercept) 10.36      0.507 20.43 8.74e-93
us           -1.17     0.463 -2.54 1.11e-02
Log(scale)    0.56      0.141 3.98 6.79e-05

Scale= 1.75

Weibull distribution
Loglik(model)= -214.7  Loglik(intercept only)= -218.3
   Chisq= 7.2 on 1 degrees of freedom, p= 0.0073
Number of Newton-Raphson Iterations: 8
n= 297
Interpretation of Weibull parameter

Fold-change in Time: $e^\beta = e^{-1.17} = .309$
95% Confidence Interval: $e^{\beta \pm 1.96 \times se}$

The time to HIV seroconversion in Danish men who went to US is about 0.309 fold shorter than the time to HIV seroconversion of those who did not go to US.

$$> \text{exp}(\text{cbind}(\text{sreg$coef,confint(sreg)})["us",,])$$

2.5 %  97.5 %  
0.3088391  0.1246499  0.7651960

Or opposite, time to HIV seroconversion is about 3.24 fold longer for those who never when to US compared to those who did:

$$> \text{exp}(-\text{cbind}(\text{sreg$coef,confint(sreg)})["us",,])$$

2.5 %  97.5 %  
3.237932  8.022471  1.306855
Interpretation of Weibull parameter

For Weibull, also interpret as a hazard ratio. The hazard of HIV seroconversion in Danish men who went to US is about 0.309 fold smaller than the hazard of HIV seroconversion in those who did not go to US.

\[
\text{exp(cbind(sreg$coef,confint(sreg))['us',])}
\]

2.5 % 97.5 %
0.3088391 0.1246499 0.7651960
R code for plotting results

```r
> fit<-icfit(Surv(left,right,type="interval2")~us,
+ data=d)
> plot(fit,LTY=c(1,1),XLAB="days since 12/31/1980",
+ main="NPMLEs with Weibull fit in color")
> pct<-1:999/1000
> ptime<-predict(sreg,newdata=data.frame(us=0),
+ type='quantile',p=pct)
> lines(ptime,1-pct,col="red",lty=2)
> ptime<-predict(sreg,newdata=data.frame(us=1),
+ type='quantile',p=pct)
> lines(ptime,1-pct,col="blue",lty=2)
```
NPMLEs with Weibull fit in color

Survival

us=0

us=1

days since 12/31/1980

0 500 1000 1500 2000 2500 3000

0.0 0.2 0.4 0.6 0.8 1.0
sreg2 <- survreg(Surv(left.na, right.na, type = "interval2") ~ us, dist = "loglogistic", data = d)
summary(sreg2)

Call:
survreg(formula = Surv(left.na, right.na, type = "interval2") ~ us, data = d, dist = "loglogistic")

            Value  Std. Error   z      p
(Intercept) 9.862       0.457 21.56 4.35e-103
us          -1.229      0.466 -2.64 8.31e-03
Log(scale)   0.439       0.138  3.17 1.52e-03

Scale= 1.55

Log logistic distribution
Loglik(model) = -214.2    Loglik(intercept only) = -217.9
                 Chisq= 7.56 on 1 degrees of freedom, p= 0.006
Number of Newton-Raphson Iterations: 4
n = 297
Interpretation of Log-logistic Model

Fold-change in Time: \( e^\beta = e^{-1.23} = .293 \)

95\% Confidence Interval: \( e^{\beta \pm 1.96 \times se} \)

The time to HIV seroconversion in Danish men who went to US is about 0.293 fold shorter than the time to HIV seroconversion of those who did not go to US.

\[
\exp(\text{cbind(sreg2$coef,confint(sreg2))['us',\]})
\]

<table>
<thead>
<tr>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2927120</td>
<td>0.7289639</td>
</tr>
</tbody>
</table>

Or opposite, those who did not go to US compared to those who did:

\[
\exp(-\text{cbind(sreg2$coef,confint(sreg2))['us',\]})
\]

<table>
<thead>
<tr>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.416327</td>
<td>8.507951</td>
</tr>
</tbody>
</table>
> plot(fit,LTY=c(1,1),XLAB="days since 12/31/1980",
+     main="NPMLEs with log-Logistic (solid) and
+     Weibull (dotted) fit in color")
> pct<-1:999/1000
> ptime<-predict(sreg,newdata=data.frame(us=0),
+     type='quantile',p=pct)
> lines(ptime,1-pct,col="red",lty=2)
> ptime<-predict(sreg,newdata=data.frame(us=1),
+     type='quantile',p=pct)
> lines(ptime,1-pct,col="blue",lty=2)
> ptime2<-predict(sreg2,newdata=data.frame(us=0),
+     type='quantile',p=pct)
> lines(ptime2,1-pct,col="red",lty=1)
> ptime2<-predict(sreg2,newdata=data.frame(us=1),
+     type='quantile',p=pct)
> lines(ptime2,1-pct,col="blue",lty=1)
NPMLEs with log-Logistic (solid) and Weibull (dotted) fit in color

days since 12/31/1980
Survival
us=0
us=1
Weibull Regression with More than One Term

sreg.both<-survreg(
  Surv(left.na,right.na,type="interval2")~us+
  partners.per.year,data=d)
summary(sreg.both)
Call:
survreg(formula = Surv(left.na, right.na, type = "interval2") ~
          us + partners.per.year, data = d)

                     Value Std. Error  z      p
(Intercept)    10.5018     0.52097 20.16 2.29e-90
us              -0.8557     0.45988 -1.86 6.28e-02
partners.per.year -0.0183     0.00741 -2.47 1.33e-02
Log(scale)       0.5356     0.13974  3.83 1.27e-04

Scale= 1.71

Weibull distribution
Loglik(model)= -212  Loglik(intercept only)= -218.3
Chisq= 12.58 on 2 degrees of freedom, p= 0.0019
Number of Newton-Raphson Iterations: 8
n= 297
Weibull Regression: Likelihood Ratio Test

```r
> sreg.ppy<-survreg(
+ Surv(left.na,right.na,type="interval2")~partners.per.year,
+ data=d)
> sreg.both<-survreg(
+ Surv(left.na,right.na,type="interval2")~us+
+ partners.per.year,data=d)
> anova(sreg.ppy,sreg.both)

Terms Resid. Df -2*LL Test Df
1 partners.per.year 294 427.7760 NA
2 us + partners.per.year 293 424.0726 +us 1

Deviance P(|Chi|)
1 NA NA
2 3.703415 0.05430123
```
End of Tutorial: Questions?
Getting R and R Packages

- R is freeware (available for PC, Mac, Unix): go to www.r-project.org
- To install packages for Windows version: Packages -> Install Packages (select CRAN mirror) (select package)
- Load in R program (for example, interval package): library(interval)
SAS Software for Interval Censoring: Overview

- NPMLE
  - Proc LIFEREG (E-M, polish using Kuhn-Tucker conditions)
- Regression
  - Proc LIFEREG: parametric survival models
What is Nelson-Aalen Estimator?

Review:

- Survival function:
  \[ S(t) = Pr[T > t] \]

- Density function:
  \[ f(t) = \frac{-\partial S(t)}{\partial t} \]

- Hazard rate:
  \[ \lambda(t) = \lim_{\Delta \to 0} \frac{Pr[t \leq T \leq t + \Delta | T \geq t]}{\Delta} = \frac{f(t)}{S(t^-)} \]

- Solve differential equation:
  \[ \frac{-\partial S(t)}{\partial t} = \lambda(t)S(t^-) \]
  \[ \Rightarrow S(t^-) = \exp\left(-\int_0^t \lambda(t)\right) \]
What is Nelson-Aalen Estimator?

\[ S(t-) = \exp \left( - \int_0^t \lambda(t) \right) \]

- Nelson-Aalen estimator (right censored data):
  \[ \tilde{S}(t-) = \exp \left( - \int_0^t \hat{\lambda}(t) \right) \]
  \[ = \exp \left( - \sum_{j: t_j < t} \hat{\lambda}(t_j) \right) \]

- Kaplan-Meier estimator (right censored data):
  \[ \hat{S}(t-) = \mathcal{P}_{s<t} \left( 1 - d\hat{\Lambda}(s) \right) \]
  \[ = \prod_{j: t_j < t} \left( 1 - \hat{\lambda}(t_j) \right) \]