
Tools Measure Faster Compile ImplP ExplP OoMem

Introduction to
High-Performance Computing with R

Tutorial at useR! 2010

Dirk Eddelbuettel, Ph.D.
Dirk.Eddelbuettel@R-Project.org

edd@debian.org

useR! 2010
National Institute of Standards and Technology (NIST)

Gaithersburg, Maryland, USA

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem

Motivation: What describes our current situation?

Source: http://en.wikipedia.org/wiki/Moore’s_law

Moore’s Law: Processors
keep getting faster and
faster

Yet our datasets get
bigger and bigger and an
even faster rate.

So we’re still waiting and
waiting . . .

Result: An urgent need
for high(er) performance
computing with R.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Dirk.Eddelbuettel@R-Project.org
edd@debian.org
http://en.wikipedia.org/wiki/Moore's_law
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem

Motivation: Data sets keep growing

There are a number of reasons behind ’big data’:

more collection: from faster DNA sequencing to larger
experiments to per-item RFID scanning to complex social
networks — our ability to originate data keeps increasing
more networking: (internet) capacity, transmission speeds
and usage keep growing leading to easier ways to
assemble data sets from different sources
more storage as what used to be disk capacity is now
provided by USB keychains, while data warehousing / data
marts are aiming beyond petabytes

Of course, not all large data sets are suitable for R, and data is
frequently pruned, filtered or condensed down to manageable
size (and the meaning of manageable will vary by user).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem

Motivation: Presentation Roadmap

We look at ways to ’script’ running R code which is helpful for
both automation and debugging.

We will measure using profiling tools to analyse and visualize
performance; we will also glance at debugging tools and tricks.

We will look at vectorisation, a key method for speed as well as
various ways to compile and use code before a brief discussion
and example of GPU computing.

Next, we will discuss several ways to get more things done at
the same time by using simple parallel computing approaches.

We will then look at computations beyond the memory limits.

A discussion and question sesssion finishes.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem

Typographics conventions

R itself is highlighted, packages like Rmpi get a different color.

External links to e.g. Wikipedia are clickable in the pdf file.

R input and output in different colors, and usually set flush-left
so that can show long lines:

cat("Hello\n")

Hello

Source code listings are boxed and with lines numbers

1 cubed <− function (n) {
2 m <− n^3
3 return (m)
4 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem

Resources

This tutorial has been given at useR! 2008 (Dortmund,
Germany) and useR! 2009 (Rennes, France).

It has also been adapated to full-day invited tutorials /
workshops at the Bank of Canada (Ottawa, Canada) and the
Institute for Statistical Mathematics (Tokyo, Japan).

Shorter one-hour versions were presented at R/Finance 2009
and R/Finance 2010, both held in Chicago, USA.

Past (and possible future) presentation slides can be found at
http://dirk.eddelbuettel.com/presentations.html

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.wikipedia.org
http://www.r-project.org
http://dirk.eddelbuettel.com/presentations.html

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

Tools: Using R in batch mode

Non-interactive use of R is possible:
Using R in batch mode:
$ R --slave < cmdfile.R
$ cat cmdfile.R | R --slave
$ R CMD BATCH cmdfile.R

Using R in here documents is awkward:
#!/bin/sh
cat << EOF | R --slave

a <- 1.23; b <- 4.56
cat("a times b is", a*b, "\n")

EOF

These approaches feels cumbersome. Variable expansion by
the shell may interfere as well.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

Tools: littler

The r frontend provided by the littler package was released by
Horner and Eddelbuettel in September 2006 based on Horner’s
work on rapache.

execute scripts:
$ r somefile.R

run Unix pipelines:
$ echo ’cat(pi^2, "\n")’ | r

use arguments:
$ r -lboot -e’example(boot.ci)’

write Shebang scripts such as install.r (see next slide)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://en.wikipedia.org/wiki/Here_document
http://dirk.eddelbuettel.com/code/littler.htnl
http://biostat.mc.vanderbilt.edu/rapache/index.html
http://en.wikipedia.org/wiki/Shebang_(Unix)

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

littler ’Shebang’ example

Consider the following code from the littler examples
directory:
#!/usr/bin/env r
a simple example to install one or more packages
if (is.null(argv) | length(argv)<1) {

cat("Usage: installr.r pkg1 [pkg2 pkg3 ...]\n")
q()

}
adjust as necessary, see help(’download.packages’)
repos <- "http://cran.us.r-project.org"
lib.loc <- "/usr/local/lib/R/site-library"
install.packages(argv, lib.loc, repos)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

Tools: littler cont.

If saved as install.r, we can call it via
$ install.r ff bigmemory

The getopt and optparse packages make it easy for r and
Rscript to support command-line options.

For simple use and debugging, direct evalualtions are useful:
r --package pkgA,pkgB --eval "someFunction(1,2)"

We will use a combination of these commands throughout the
tutorial.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

Tools: littler cont.

A simple example about using pipes:
$ du -csk /usr/local/lib/R/site-library/* | \

awk ’!/total$/ {print $1}’ | \
~/svn/littler/examples/fsizes.r

Min. 1st Qu. Median Mean 3rd Qu. Max.
4 218 540 864 972 3620

The decimal point is 3 digit(s) to the right of the |

0 | 0112335689
1 | 079
2 |
3 | 6

This shows that I have a number of small packages installed,
as well as one larger one.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview littler Rscript

Tools: Rscript

Rscript, which was first released with R 2.5.0 in April 2007,
can be used in a similar fashion.

Due to implementation details, r starts up faster than Rscript.

On the other hand, Rscript is also available on Windows
whereas r is limited to Linux and OS X.

By providing r and Rscript, we can now write ’R scripts’ that
are executable. This allows for automation in cron jobs,
Makefile, job queues, ...

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling

We need to know where our code spends the time it takes to
compute our tasks.
Measuring—using profiling tools—is critical.
R already provides the basic tools for performance analysis.

the system.time function for simple measurements.
the Rprof function for profiling R code.
the Rprofmem function for profiling R memory usage.

In addition, the profr and proftools package on CRAN can
be used to visualize Rprof data. rbenchmark is useful for
comparisons.
We will also look at a script from the R Wiki for additional
visualization.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling cont.

The chapter Tidying and profiling R code in the R Extensions
manual is a good first source for documentation on profiling and
debugging.

Simon Urbanek has a page on benchmarks (for Macs) at
http://r.research.att.com/benchmarks/

One can also profile compiled code, either directly (using the
gcc option -pg) or by using e.g. the Google perftools
library.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://r.research.att.com/benchmarks/

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example

Consider the problem of repeatedly estimating a linear model,
e.g. in the context of Monte Carlo simulation.

The lm() workhorse function is a natural first choice.

However, its generic nature as well the rich set of return
arguments come at a cost. For experienced users, lm.fit()
provides a more efficient alternative.

But how much more efficient?

We will use both functions on the longley data set.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example cont.

This code runs both approaches 2000 times:
data(longley)

using lm()
Rprof("longley.lm.out")
invisible(replicate(2000,

lm(Employed ~ ., data=longley)))
Rprof(NULL)

using lm.fit()
longleydm <- data.matrix(data.frame(intcp=1, longley))
Rprof("longley.lm.fit.out")
invisible(replicate(2000,

lm.fit(longleydm[,-8], # X
longleydm[,8]))) # y

Rprof(NULL)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example cont.

We can analyse the output two different ways. First, directly
from R into an R object:
data <- summaryRprof("longley.lm.out")
print(str(data))

Second, from the command-line (on systems having Perl)
R CMD Rprof longley.lm.out | less

The CRAN package / function profr by Hadley Wickham can
profile, evaluate, and optionally plot, an expression directly. Or
we can use parse_profr() to read the previously recorded
output:
plot(parse_rprof("longley.lm.out"),

main="Profile of lm()")
plot(parse_rprof("longley.lm.fit.out"),

main="Profile of lm.fit()")

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example cont.

0 2 4 6 8 10 12 14

0
5

10
15

Profile of lm()

time

replicate
sapply
lapply
FUN
lm

inherits is.factor
mode inherits inherits

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10

Profile of lm.fit()

replicate
sapply
lapply
FUN
lm.fit

%in%

is.factor
inherits

Source: Our calculations.

Notice the different x
and y axis scales

For the same number
of runs, lm.fit() is
about fourteen times
faster as it makes
fewer calls to other
functions.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example cont.

In addition, the proftools package by Luke Tierney can read
profiling data and summarize directly in R.

The flatProfile function aggregates the data, optionally
with totals.
lmfitprod <- readProfileData("longley.lm.fit.out"))
plotProfileCallGraph(lmfitprof)

And plotProfileCallGraph() can be used to visualize
profiling information using the Rgraphviz package (which is
no longer on CRAN).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProf example cont.

<

−

!

array as.vector

colnames

colnames<− dimnames<−

.FortranFUN

%in%

inherits

is.data.frame

is.factor

lapply

list

lm.fit

match

mat.or.vec

NCOL

NROW

numeric

rep.int

replicate sapply

structure

unlist

vector

Color is used to
indicate which nodes
use the most of
amount of time.

Use of color and other
aspects can be
configured.

(The deprecated
Rgraphviz is
needed for the
visualization.)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Another profiling example

Both packages can be very useful for their quick visualisation of
the RProf output. Consider this contrived example:
sillysum <- function(N) {s <- 0;

for (i in 1:N) s <- s + i; s}
ival <- 1/5000
plot(profr(a <- sillysum(1e6), ival))

and for a more efficient solution where we use a larger N:
efficientsum <- function(N) {
sum(as.numeric(seq(1,N))) }
ival <- 1/5000
plot(profr(a <- efficientsum(1e7), ival))

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Another profiling example (cont.)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

time

le
ve

l

force

sillysum

+

0.000 0.001 0.002 0.003 0.004

1
2

3
4

5

time

le
ve

l

force

efficientsum

seq as.numeric sum

seq.default

:

+sillysum :

as.numeric

efficientsum seq seq.default

sum

profr and
proftools
complement each
other.

Numerical values in
profr provide
information too.

Choice of colour is
useful in proftools.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Additional profiling visualizations

Romain François has contributed a Perl script1 which can be
used to visualize profiling output via the dot program (part of
graphviz):
./prof2dot.pl longley.lm.out | dot -Tpdf \

> longley_lm.pdf
./prof2dot.pl longley.lm.fit.out | dot -Tpdf \

> longley_lmfit.pdf

Its key advantages are the ability to include, exclude or restrict
functions.

1http://wiki.r-project.org/rwiki/doku.php?id=tips:
misc:profiling:current

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Additional profiling visualizations (cont.)

For lm(), this yields:

[[
1.64 seconds

[[.data.frame
1.14 seconds

1.14s

na.omit.data.frame
1.74 seconds

0.46s

[
1.66 seconds

1.06s

pmatch
0.46 seconds

model.frame.default
6.48 seconds

0.42s

sapply
19.46 seconds

2.26s

na.omit
1.8 seconds

1.8s

identical
0.26 seconds

0.14s

makepredictcall
0.52 seconds

0.52s

terms
0.28 seconds0.28s

unique
1.2 seconds

1.2s

array
0.32 seconds

0.32s

lapply
18.66 seconds

17.5s

[.data.frame
1.64 seconds

1.64s

model.frame
6.54 seconds

6.48s

duplicated
0.16 seconds

1.74s

unique.default
0.46 seconds

0.46s

unlist
0.7 seconds0.52s

%in%
1.44 seconds

match
2.52 seconds

1.32s

as.vector
0.24 seconds

0.16s

match.call
0.12 seconds

inherits
2.5 seconds

1.04s

mode
0.24 seconds

0.22s

as.list
0.42 seconds

as.list.data.frame
0.2 seconds

0.2s

as.list.default
0.14 seconds

0.14s

replicate
13.72 seconds

13.72s

is.factor
2.44 seconds 2.18s

is.data.frame
0.12 seconds

model.matrix.default
2.24 seconds

0.26s

0.62s

0.12s

1.06s

deparse
0.14 seconds

0.14s

dim
0.18 seconds

structure
0.42 seconds

0.12s!
0.1 seconds

length
0.1 seconds

FUN
17.08 seconds

1.26s

0.22s

lm
13.36 seconds

13.36s

.deparseOpts
1.2 seconds

1.14s

makepredictcall.default
0.2 seconds

0.2s

match.fun
0.1 seconds

eval
13.18 seconds

6.54s

6.54s

0.44s

0.16s

0.34s

terms.formula
0.22 seconds

0.22s

is.vector
0.72 seconds

0.6s

model.matrix
2.28 seconds

2.24s

is.na
0.12 seconds

model.response
0.24 seconds

<Anonymous>
0.46 seconds

.getXlevels
2.68 seconds1.82s

0.84s

$<-
0.18 seconds

NextMethod
0.1 seconds

-
0.16 seconds

0.32s 0.42s

17.06s

0.72s

2.14s 0.12s

6.54s

2.28s

0.24s

2.68s

0.18s

lm.fit
0.9 seconds

0.9s

0.46s

0.46s

and for lm.fit(), this yields:

replicate
1 seconds

sapply
1 seconds

1s lapply
0.94 seconds

0.94s

structure
0.22 seconds

FUN
0.94 seconds

0.94s lm.fit
0.94 seconds

0.94s

0.22s

.Fortran
0.12 seconds

0.12s

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:profiling:current
http://wiki.r-project.org/rwiki/doku.php?id=tips:misc:profiling:current

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

RProfmem

When R has been built with the enable-memory-profiling
option, we can also look at use of memory and allocation.

To continue with the R Extensions manual example, we issue
calls to Rprofmem to start and stop logging to a file as we did
for Rprof. This can be a helpful check for code that is
suspected to have an error in its memory allocations.

We also mention in passing that the tracemem function can log
when copies of a (presumably large) object are being made.
Details are in section 3.3.3 of the R Extensions manual.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling compiled code

Profiling compiled code typically entails rebuilding the binary
and libraries with the -pg compiler option. In the case of R, a
complete rebuild is required as R itself needs to be compiled
with profiling options.

Add-on tools like valgrind and kcachegrind can be very
helpful and may not require rebuilds.

Two other options for Linux are mentioned in the R Extensions
manual. First, sprof, part of the C library, can profile shared
libraries. Second, the add-on package oprofile provides a
daemon that has to be started (stopped) when profiling data
collection is to start (end).

A third possibility is the use of the Google Perftools which we
will illustrate.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools

The Google Perftools provide four modes of performance
analysis / improvement:

a thread-caching malloc (memory allocator),
a heap-checking facility,
a heap-profiling facility and
cpu profiling.

Here, we will focus on the last feature.

There are two possible modes of running code with the cpu
profiler.

The preferred approach is to link with -lprofiler.
Alternatively, one can dynamically pre-load the profiler library.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools (cont.)

turn on profiling and provide a profile log file
LD_PRELOAD="/usr/lib/libprofiler.so.0" \
CPUPROFILE=/tmp/rprof.log \
r profilingSmall.R

We can then analyse the profiling output in the file. The profiler
(renamed from pprof to google-pprof on Debian / Ubuntu)
has a large number of options. Here just use two different
formats:
show text output
google-pprof --cum --text \

/usr/bin/r /tmp/rprof.log | less

or analyse call graph using gv
google-pprof --gv /usr/bin/r /tmp/rprof.log

The shell script googlePerftools.sh runs the complete
example.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools

This can generate complete (yet complex) graphs.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools

Another output format is used by the callgrind analyser that is
part of valgrind—a frontend to a variety of analysis tools such
as cachegrind (cache simulator), callgrind (call graph tracer),
helpgrind (race condition analyser), massif (heap profiler), and
memcheck (fine-grained memory checker).

For example, the KDE frontend kcachegrind can be used to
visualize the profiler output as follows:
google-pprof --callgrind \

/usr/bin/r /tmp/gpProfile.log \
> googlePerftools.callgrind

kcachegrind googlePerftools.callgrind

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools

Kcachegrind running on the the profiling output looks as follows:

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Profiling with Google Perftools

One problem with the ’global’ approach to profiling is that a
large number of internal functions are being reported as
well—this may obscure our functions of interest.

An alternative is to re-compile the portion of code that we want
to profile, and to bracket the code with
ProfilerStart()

// ... code to be profiled here ...

ProfilerEnd()

which are defined in google/profiler.h which needs to be
included. One uses the environment variable CPUPROFILE to
designate an output file for the profiling information, or
designates a file as argument to ProfilerStart().

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview RProf RProfmem Profiling Summary

Section Summary

We covered
basic profiling functions in R : Rprof
CRAN packages profr and proftools for visualization
along with a contributed script
memory profiling
profiling compiled code in general and using Google’s
perftools
the valgrind front-end kcachegrind for visualization /
exploration

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Vectorisation

Revisiting our trivial trivial example from the preceding section:
> sillysum <- function(N) { s <- 0;

for (i in 1:N) s <- s + i; return(s) }
> system.time(print(sillysum(1e7)))

[1] 5e+13
user system elapsed

13.617 0.020 13.701
>

> system.time(print(sum(as.numeric(seq(1,1e7)))))

[1] 5e+13
user system elapsed

0.224 0.092 0.315
>

Replacing the loop yielded a gain of a factor of more than fourty.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Vectorisation cont.

A more interesting example is provided in a case study on the
Ra (c.f. next section) site and taken from the S Programming
book:

Consider the problem of finding the distribution of the
determinant of a 2 x 2 matrix where the entries are
independent and uniformly distributed digits 0, 1, . . .,
9. This amounts to finding all possible values of
ac − bd where a, b, c and d are digits.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Vectorisation cont.

The brute-force solution is using explicit loops over all
combinations:
dd.for.c <- function() {

val <- NULL
for (a in 0:9)

for (b in 0:9)
for (d in 0:9)

for (e in 0:9)
val <- c(val, a*b - d*e)

table(val)
}

The naive time is
> mean(replicate(10, system.time(dd.for.c())["elapsed"]))

[1] 0.2678

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.milbo.users.sonic.net/ra/dist-of-dets8.html

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Vectorisation cont.

The case study discusses two important points that bear
repeating:

pre-allocating space helps with performance:
val <- double(10000)
and using val[i <- i + 1] as the left-hand side
reduces the time to 0.1204, or less than half.
switching to faster functions can help as well as tabulate
outperforms table and reduced the time further to 0.1180.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Vectorisation cont.

However, by far the largest improvement comes from
eliminating the four loops with two calls each to outer:
dd.fast.tabulate <- function() {

val <- outer(0:9, 0:9, "*")
val <- outer(val, val, "-")
tabulate(val)

}

The time for the most efficient solution is:
> mean(replicate(10,

system.time(dd.fast.tabulate())["elapsed"]))

[1] 0.0014

which is orders of magnitude faster than the initial naive
approach.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Accelerated R with just-in-time compilation

Stephen Milborrow created “Ra”, a set of patches to R that
allow ’just-in-time compilation’ of loops and arithmetic
expressions. Together with his jit package on CRAN, this can
be used to obtain speedups of standard R operations.

Our trivial example run in Ra:
library(jit)
sillysum <- function(N) { jit(1); s <- 0; \

for (i in 1:N) s <- s + i; return(s) }

> system.time(print(sillysum(1e7)))
[1] 5e+13

user system elapsed
1.548 0.028 1.577

which gets a speed increase of a factor of five—not bad at all.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Accelerated R with just-in-time compilation

The last looping example can be improved with jit:
dd.for.pre.tabulate.jit <- function() {

jit(1)
val <- double(10000)
i <- 0
for (a in 0:9) for (b in 0:9)

for (d in 0:9) for (e in 0:9) {
val[i <- i + 1] <- a*b - d*e

}
tabulate(val)

}

> mean(replicate(10,
+ system.time(dd.for.pre.tabulate.jit())["elapsed"]))
[1] 0.0053

or only about three to four times slower than the non-looped
solution using ’outer’—a rather decent improvement.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Accelerated R with just-in-time compilation

naive naive+prealloc n+p+tabulate outer

Comparison of R and Ra on 'dd' example
tim

e
in

 s
ec

on
ds

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

R
Ra

Source: Our calculations

Ra achieves very good
decreases in total
computing time in these
examples but cannot
improve the efficient
solution any further.

Ra and jit are not
widely deployed (and no
longer updated since R
2.9.0) but available in
Debian and Ubuntu.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Optimised BLAS

BLAS (’basic linear algebra subprogram’) are standard building
blocks for linear algebra. Highly-optimised libraries exist that
can provide considerable performance gains.

R can be built using so-called optimised BLAS such as Atlas
(open source), Goto (not ’free’), or the Intel MKL or AMD
AMCL; see the ’R Admin’ manual, section A.3 ’Linear Algebra’.

The speed gains can be noticeable. For Debian/Ubuntu, one
can simply install one of the atlas-base-* packages.

An example follows, making use of MKL libraries made
available by Revolution for Ubuntu 9.10, and the Goto BLAS
from U Texas.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://en.wikipedia.org/wiki/Blas
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Optimised BLAS Benchmarking

RefBlas Atlas MKL Goto

BLAS Level 3 crossproduct of size 2800x2800
Ubuntu 10.4, Intel i7 920 cpu (4 hyperthreaded cores @ 2.67 GHz)

T
im

e
in

 s
ec

on
ds

, t
rim

m
ed

 m
ea

n
fr

om
 1

0
ru

ns

0
2

4
6

8
10

12
14

Source: Our calculations.

The Intel MKL and
Goto BLAS perform
well on multi-core
machines.

Atlas is the current
Ubuntu default
(3.6.*) and is
single-core.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Optimised BLAS Benchmarking

RefBlas Atlas MKL Goto

BLAS Level 3 crossproduct of size 2800x2800
Ubuntu 10.4, Intel i7 920 cpu (4 hyperthreaded cores @ 2.67 GHz)

R
el

at
iv

e
to

 r
ef

er
en

ce
 B

la
s,

 u
si

ng
 tr

im
m

ed
 m

ea
n

fr
om

 1
0

ru
ns

0
5

10
15

20

Source: Our calculations.

Relative
performance is
equally impressive –
a speed-up of factor
twenty-three.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Optimised BLAS Benchmarking

RefBlas Atlas MKL Goto

R−Benchmark−2.5 Performance
Ubuntu 10.4, Intel i7 920 cpu (4 hyperthreaded cores @ 2.67 GHz)

O
ve

ra
ll

av
er

ag
e

tim
es

 (
m

ea
n

of
 th

re
e

th
rim

m
ed

 g
eo

m
. m

ea
ns

)

0.
0

0.
5

1.
0

1.
5

Source: Our calculations.

But on a more
well-rounded
benchmark, the
performance
difference is
nowhere near as
dramatic.

Real work is rarely
confined to BLAS
Level operations.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

From Blas to GPUs.

The next frontier for hardware acceleration is computing on
GPUs (’graphics programming units’).
GPUs are essentially hardware that is optimised for I/O and
floating point operations, leading to much faster code execution
than standard CPUs on floating-point operations.
The key development environments that are available are

Nvidia CUDA (Compute Unified Device Architecture)
introduced in 2007 and provides C-like programming
OpenCL (Open Computing Language) introduced in 2009
provides a vendor-independent interface to GPU hardware.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://r.research.att.com/benchmarks/R-benchmark-25.R
http://en.wikipedia.org/wiki/GPU
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/OpenCL

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

GPU resources

These are some of the resources and libraries for GPU
programming:

Vendor-specific:
CUDA for NVidia hardware
ATI Stream SDL for AMD hardware

Vendor-independent: OpenCL
For CUDA / NVividia:

BLAS on GPUs: Magma for Multicore/GPU
STL-alike containers: Thrust
Commercial CUDA libraries: CULAtools

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

CUDA Example

Consider a simple vector multiplication. In C, we write

1 vo id vecMult_h (i n t ∗A, i n t ∗B, unsigned long long N) {
2 for (unsigned long long i =0; i <N; i ++) {
3 B[i] = A [i] ∗2;
4 }
5 }
6

7 / / which gets c a l l e d as . . .
8 a_h = (i n t ∗) mal loc (s i z e o f (i n t) ∗n) ;
9 b_h = (i n t ∗) mal loc (s i z e o f (i n t) ∗n) ;

10 / / . . . f i l l a_h
11 vecMult_h (a_h , b_h , n) ;

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.nvidia.com/object/cuda_learn.html
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
http://www.khronos.org/opencl/
http://icl.cs.utk.edu/magma/index.html
http://code.google.com/p/thrust/
http://www.culatools.com/

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

CUDA Example

With CUDA, we create so-called kernels which access the data
in parallel using multiple threads. The equivalent function is

1 __ g loba l __ vo id vecMult_d (i n t ∗A, i n t ∗B, i n t N) {
2 i n t i = b lock Idx . x ∗ blockDim . x + th read Idx . x ;
3 i f (i <N) {
4 B[i] = A [i] ∗2;
5 }
6 }
7

8 / / which gets c a l l e d as . . .
9 cudaMalloc ((vo id ∗∗)&a_d , n∗ s i z e o f (i n t)) ; / / a l l o c . on device

10 cudaMalloc ((vo id ∗∗)&b_d , n∗ s i z e o f (i n t)) ;
11 dim3 dimBlock (b locks i ze) ;
12 dim3 dimGrid (c e i l (f l o a t (n) / f l o a t (dimBlock . x))) ;
13 cudaMemcpy (a_d , a_h , n∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;
14 vecMult_d<<<dimGrid , dimBlock >>>(a_d , b_d , n) ;
15 cudaThreadSynchronize () ;
16 cudaMemcpy (b_h , b_d , n∗ s i z e o f (i n t) , cudaMemcpyDeviceToHost) ;

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

GPU programming for R

Currently, two packages provide GPU computing for R:

gputools by Josh Buckner and Mark Seligman provides a
number of basic routines (among them are e.g. gpuCor,
gpuDistClust, gpuFastICA, gpuGranger,
gpuHclust, gpuLm, gpuMatMult, gpuSolve, gpuSvd,
gpuSvmPredict, gpuSvmTrain).
cudaBayesreg by Adelino Ferreira da Silva reimplements
Bayesian multilevel modeling for fMRI data.

Both use the CUDA toolchain for NVidia hardware.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

GPU performance with R

A simple example, using a matrix of size 720 x 98 containing
almost three years of daily returns data on the SP100:
using R
> system.time(cor(X, method="kendall"))

user system elapsed
59.220 0.000 59.224

using GPU
> system.time(gpuCor(X, method="kendall"))

user system elapsed
8.350 0.070 8.434

This correspond to about a seven-fold increase in speed.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

GPU performance with R

Now let’s redo the example using a matrix of size 1206 x 477
containing almost five years of daily returns data on the SP500:
using R
> system.time(cor(X, method="kendall"))

user system elapsed
3925.730 0.010 3925.735

using GPU
> system.time(gpuCor(X, method="kendall"))

user system elapsed
148.650 0.070 148.716

This correspond to about a twenty-six-fold increase in speed!

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

How is GPU programming different?

As R or C/C++ programmers on modern hardware, our life is
relatively easy: flat and large memory spaces, little direct
consideration of hardware representation.

This makes for a nice level of abstraction.

With GPU, this abstraction goes away and we have to worry
(again) about memory layout, access, ...

Also, the communication versus computation trade-off is
critical: the GPU cam compute really fast, but it takes additional
time to get results to the CPU.

So while there is a clear promise of increased performance,
there is clearly ’No Free Lunch’.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Another GPU Example

RefBlas Atlas MKL Goto GPU

BLAS Level 3 crossproduct of size 2800x2800
Ubuntu 10.4, Intel i7 920 cpu (4 hyperthreaded cores @ 2.67 GHz)

Quadro FX4800 GPU, gputools 0.21

T
im

e
in

 s
ec

on
ds

, t
rim

m
ed

 m
ea

n
fr

om
 1

0
ru

ns

0
2

4
6

8
10

12
14

Source: Our calculations.

At 2800x2800,
GPUs do not yet
outperform (all
competetitors) due
to the relatively high
cost of
communication.

However, at
4000x4000 the GPU
solution beats the
Goto BLAS by a
factor of 4.8 (at
9.459 sec versus
1.939 sec).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Optimised BLAS Benchmarking

RefBlas Atlas MKL Goto GPU

BLAS Level 3 crossproduct of size 2800x2800
Ubuntu 10.4, Intel i7 920 cpu (4 hyperthreaded cores @ 2.67 GHz)

Quadro FX4800 GPU, gputools 0.21
R

el
at

iv
e

to
 r

ef
er

en
ce

 B
la

s,
 u

si
ng

 tr
im

m
ed

 m
ea

n
fr

om
 1

0
ru

ns

0
5

10
15

20

Source: Our calculations.

At 2800x2800,
GPUs do not yet
outperform (all
competetitors) due
to the relatively high
cost of
communication.

However, at
4000x4000 the GPU
solution beats the
Goto BLAS by a
factor of 4.8 (at
9.459 sec versus
1.939 sec).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Vec Ra BLAS GPUs Summary

Section Summary

In this section, we looked at
vectorisation is the first thing to look for performance
improvements,
the ’distribution of determinants’ example to measure
different approaches,
just-in-time compilation via jit and Ra
BLAS and the performance gains from different
implementations
GPU computing and some simple example

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code

Beyond smarter code (using e.g. vectorised expression and/or
just-in-time compilation), hardware-driven acceleration or
optimised libraries, the most direct speed gain comes from
switching to compiled code.

This section covers two possible approaches:
inline for automated wrapping of simple expression
Rcpp for easing the interface between R and C++

A different approach is to keep the core logic ’outside’ but to
embed R into the application. There is some documentation in
the ’R Extensions’ manual—and the RInside package offers
C++ classes to automate this.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: The Basics

R offers several functions to access compiled code: .C and
.Fortran as well as .Call and .External. (R Extensions,
sections 5.2 and 5.9; Software for Data Analysis). .C and
.Fortran are older and simpler, but more restrictive in the
long run.

The canonical example in the documentation is the convolution
function:

1 vo id convolve (double ∗a , i n t ∗na , double ∗b ,
2 i n t ∗nb , double ∗ab)
3 {
4 i n t i , j , nab = ∗na + ∗nb − 1;
5

6 for (i = 0 ; i < nab ; i ++)
7 ab [i] = 0 . 0 ;
8 for (i = 0 ; i < ∗na ; i ++)
9 for (j = 0 ; j < ∗nb ; j ++)

10 ab [i + j] += a [i] ∗ b [j] ;
11 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: The Basics cont.

The convolution function is called from R by

1 conv <− function (a , b)
2 .C(" convolve " ,
3 as . double (a) ,
4 as . integer (length (a)) ,
5 as . double (b) ,
6 as . integer (length (b)) ,
7 ab = double (length (a) + length (b) − 1)) $ab

As stated in the manual, one must take care to coerce all the
arguments to the correct R storage mode before calling .C as
mistakes in matching the types can lead to wrong results or
hard-to-catch errors.

The script convolve.C.sh compiles and links the source
code, and then calls R to run the example.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: The Basics cont.

Using .Call, the example becomes
1 #include <R. h>
2 #include <Rdefines . h>
3

4 extern "C" SEXP convolve2 (SEXP a , SEXP b)
5 {
6 i n t i , j , na , nb , nab ;
7 double ∗xa , ∗xb , ∗xab ;
8 SEXP ab ;
9

10 PROTECT(a = AS_NUMERIC(a)) ;
11 PROTECT(b = AS_NUMERIC(b)) ;
12 na = LENGTH(a) ; nb = LENGTH(b) ; nab = na + nb − 1;
13 PROTECT(ab = NEW_NUMERIC(nab)) ;
14 xa = NUMERIC_POINTER(a) ; xb = NUMERIC_POINTER(b) ;
15 xab = NUMERIC_POINTER(ab) ;
16 for (i = 0 ; i < nab ; i ++) xab [i] = 0 . 0 ;
17 for (i = 0 ; i < na ; i ++)
18 for (j = 0 ; j < nb ; j ++) xab [i + j] += xa [i] ∗ xb [j] ;
19 UNPROTECT(3) ;
20 return (ab) ;
21 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: The Basics cont.

Now the call becomes easier by just using the function name
and the vector arguments—all other handling is done at the
C/C++ level:
conv <- function(a, b) .Call("convolve2", a, b)

The script convolve.Call.sh compiles and links the source
code, and then calls R to run the example.

In summary, we see that
there are different entry points
using different calling conventions
leading to code that may need to do more work at the
lower level.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: inline

inline is a package by Oleg Sklyar et al that provides the
function cfunction that can wrap Fortran, C or C++ code.

1 ## A simple For t ran example
2 code <− "
3 i n t e g e r i
4 do 1 i =1 , n (1)
5 1 x (i) = x (i) ∗∗3
6 "
7 cubefn <− c f un c t i on (s igna tu re (n=" i n t e g e r " , x= " numeric ") ,
8 code , convent ion=" . For t ran ")
9 x <− as . numeric (1 : 1 0)

10 n <− as . integer (10)
11 cubefn (n , x) $x

cfunction takes care of compiling, linking, loading, . . . by
placing the resulting dynamically-loadable object code in the
per-session temporary directory used by R.
Run this via cat inline.Fortan.R | R -no-save.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: inline cont.

We can revisit the earlier distribution of determinants example.
If we keep it very simple and pre-allocate the temporary vector
in R , the example becomes

1 code <− "
2 i f (isNumeric (vec)) {
3 i n t ∗pv = INTEGER(vec) ;
4 i n t n = leng th (vec) ;
5 i f (n = 10000) {
6 i n t i = 0 ;
7 f o r (i n t a = 0; a < 9; a++)
8 f o r (i n t b = 0; b < 9; b++)
9 f o r (i n t c = 0 ; c < 9; c++)

10 f o r (i n t d = 0; d < 9; d++)
11 pv [i ++] = a∗b − c∗d ;
12 }
13 }
14 r e t u r n (vec) ;
15 "
16

17 funx <− c f un c t i on (s igna tu re (vec=" numeric ") , code)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: inline cont.

We can use the inlined function in a new function to be timed:
dd.inline <- function() {

x <- integer(10000)
res <- funx(vec=x)
tabulate(res)

}
> mean(replicate(100,system.time(dd.inline())["elapsed"]))

[1] 0.00051

Even though it uses the simplest algorithm, pre-allocates
memory in R and analyses the result in R , it is still more than
twice as fast as the previous best solution.

The script dd.inline.r runs this example.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp Overview

The Rcpp package facilitates integration of C++ and R code.

It features a set of C++ classes (Rcpp::IntegerVector,
Rcpp::Function, Rcpp::Environment, ...) that makes it
easier to manipulate R objects of matching types (integer
vectors, functions, environments, etc ...).

Rcpp takes advantage of C++ language features such as the
explicit constructor/destructor lifecycle of objects to manage
garbage collection automatically and transparently.

Users generally do not need to manage memory directly (via
calls to new / delete or malloc / free) as this is done by the
Rcpp classes or the corresponding STL containers.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp API

Rcpp has two APIs: the ’classic’ and a ’new’ set of classes.
Classes of the new Rcpp API belong to the Rcpp namespace.
Each class is associated to a given SEXP type.

SEXP type Rcpp class

INTSXP Rcpp::IntegerVector
REALSXP Rcpp::NumericVector
RAWSXP Rcpp::RawVector
LGLSXP Rcpp::LogicalVector
CPLXSXP Rcpp::ComplexVector
STRSXP Rcpp::CharacterVector
VECSXP Rcpp::List
EXPRSXP Rcpp::ExpressionVector
ENVSXP Rcpp::Environment
SYMSXP Rcpp::Symbol
BUILTINSXP Rcpp::Function
LANGSXP Rcpp::Language
LISTSXP Rcpp::Pairlist
S4SXP Rcpp::S4
PROMSXP Rcpp::Promise
WEAKREFSXP Rcpp::WeakReference
EXTPTRSXP template <typename T> Rcpp::XPtr

Some SEXP types do not have dedicated Rcpp classes :
NILSXP, DOTSXP, ANYSXP, BCODESXP and CHARSXP.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp Data Interchange

Data interchange between R and C++ is managed by
extensible and powerful yet simple mechanisms.

Conversion of an R object to a C++ object is managed by the
Rcpp::as<T> template which can handle:

primitive types (double, int, ...)
std::string, const char*

STL containers such as std::vector<T> or
std::map<std::string, T>

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp Data Interchange cont.

Conversion of C++ objects to R is managed by the template
function Rcpp::wrap. This function currently manages :

primitive types : int, double, bool, float, Rbyte, ...
std::string, const char*

STL containers such as std::vector<T> and STL maps
such as std::map< std::string, T> provided that
the template type T is wrappable
any class that can be implicitly converted to SEXP, through
operator SEXP()

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp Data Interchange cont.

Rcpp::wrap and Rcpp::as are often used implicitly. For
example, when assigning objects to an environment:

1 / / grab the g loba l environment
2 Rcpp : : Environment g loba l = Rcpp : : Environment : : g l oba l _env () ;
3 s td : : deque<bool> z (3) ; z [0] = fa lse ; z [1] = true ; z [3] = fa lse ;
4
5 g loba l [" x "] = 2 ; / / i m p l i c i t c a l l o f wrap< int >
6 g loba l [" y "] = " foo " ; / / i m p l i c i t c a l l o f wrap<char∗>
7 g loba l [" z "] = z ; / / impl . c a l l o f wrap<std : : deque<bool>>
8
9 i n t x = g loba l [" x "] ; / / i m p l i c i t c a l l o f as< int >

10 std : : s t r i n g y = g loba l [" y "] / / i m p l i c i t c a l l o f as<std : : s t r i n g >
11 std : : vector <bool> z1 = g loba l [" z "] ; / / impl . c a l l o f as<std : : vector <bool>>

Rcpp contains several examples that illustrate wrap and as.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp Data Interchange cont.

Separate packages illustrate how to extend this Rcpp
conversion mechanisms to third-party types:

RcppArmadillo for conversion of types from the
Armadillo C++ library.
RcppGSL (on R-Forge) for conversion of types from the
GNU Scientific Library.

We will see more of this below.

Rcpp is also used for data interchange by the RInside
package which provides and easy way of embedding an R
instance inside of C++ programs.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Compiled Code: Rcpp and inline

Inline has been extended to work with Rcpp using the .Call
interface. The cxxfunction function is the primary interface.

This allows quick prototyping of compiled code. All unit tests
are based on this and can serve as examples of how to use the
mechanism.

For example, this function defines from R a C++ (simplified)
version of lapply:

1 ## create a compiled f u n c t i o n cpp_ l a p p l y using cpp func t ion
2 cpp_lapply <− cxx func t i on (s igna tu re (x = " l i s t " , g = " f u n c t i o n ") ,
3 ’ Funct ion fun (g) ;
4 L i s t i np u t (x) ;
5 L i s t output (i np u t . s i ze ()) ;
6 s td : : t rans form (i npu t . begin () , i npu t . end () , ou tput . begin () , fun) ;
7 output . names () = i npu t . names () ;
8 r e t u r n output ;
9 ’ , p l ug in ="Rcpp")

10 ## c a l l cpp_ l a p p l y on the i r i s data w i th the R f u n c t i o n summary
11 cpp_lapply (i r i s , summary)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Rcpp example

So let us rewrite the ’distribution of determinant’ example one
more time. The simplest version can be set up as follows:

1 #include <Rcpp . h>
2
3 RcppExport SEXP dd_ rcpp (SEXP v) {
4 t ry {
5 Rcpp : : NumericVector vec (v) ; / / vec parameter viewed as vec to r o f doubles .
6 i n t i = 0 ;
7
8 for (i n t a = 0; a < 9; a++)
9 for (i n t b = 0; b < 9; b++)

10 for (i n t c = 0; c < 9; c++)
11 for (i n t d = 0; d < 9; d++)
12 vec [i ++] = a∗b − c∗d ;
13
14 return Rcpp : : wrap (vec) ; / / return updated vec to r
15
16 } catch (s td : : except ion &ex) {
17 forward_except ion_ to _ r (ex) ;
18 } catch (. . .) {
19 : : Rf_ e r r o r (" c++ except ion (unknown reason) ") ;
20 }
21 return R_ Ni lVa lue ;
22 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Rcpp example cont.

Using inline and Rcpp, we can create a compiled version:
1 suppressMessages (l i b r a r y (i n l i n e))
2 src <− ’
3 Rcpp : : NumericVector vec (v) ; / / param . as numeric vec to r
4 i n t i = 0 ;
5
6 f o r (i n t a = 0; a < 9; a++)
7 f o r (i n t b = 0; b < 9; b++)
8 f o r (i n t c = 0 ; c < 9; c++)
9 f o r (i n t d = 0; d < 9; d++)

10 vec [i ++] = a∗b − c∗d ;
11
12 r e t u r n Rcpp : : wrap (vec) ; / / r e t u r n updated vec to r
13 ’
14 fun <− cxx func t i on (s igna tu re (v=" numeric ") , src , p lug in ="Rcpp")

The try ... catch() block is automatically added by
inline.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Rcpp example cont.

We can now use our new inlined function:
dd.rcpp.inline <- function() {

x <- integer(10000)
res <- fun(x)
tabulate(res$vec)

}

mean(replicate(100,
system.time(dd.rcpp.inline())["elapsed"])))

[1] 0.00047

This beats the earlier (plain C) inline example by a small
amount.

The file dd.rcpp.sh runs the full Rcpp example.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example

Let us revisit the lm() example. How fast could compiled code
be? We use the Armadillo library to find out.

1 lmArmadi l lo <− f u n c t i o n () {
2 src <− ’
3
4 Rcpp : : NumericVector y r (Ysexp) , Xr (Xsexp) ;
5 s td : : vector < i n t > dims = Xr . a t t r (" dim ") ;
6 i n t n = dims [0] , k = dims [1] ;
7
8 arma : : mat X(Xr . begin () , n , k , f a l s e) ; / / use a rmad i l l o cons t ruc to rs
9 arma : : co lvec y (y r . begin () , y r . s i ze ()) ;

10
11 arma : : co lvec coef = solve (X, y) ; / / f i t model y ~ X
12
13 arma : : co lvec r es i d = y − X∗coef ; / / to compute s td . e r r o f coef .
14 double s ig2 = arma : : as_ sca la r (t rans (res i d)∗ r es i d) / (n−k) ;
15 arma : : mat covmat = s ig2 ∗ arma : : i nv (arma : : t rans (X)∗X) ;
16
17 Rcpp : : NumericVector coe f r (k) , s t d e r r e s t r (k) ;
18 f o r (i n t i =0; i <k ; i ++) {
19 coe f r [i] = coef [i] ;
20 s t d e r r e s t r [i] = s q r t (covmat (i , i)) ;
21 }
22
23 r e t u r n Rcpp : : L i s t : : c reate (Rcpp : : Named(" c o e f f i c i e n t s " , coe f r) ,
24 Rcpp : : Named(" s t d e r r " , s t d e r r e s t r)) ;
25 ’

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example (cont.)

We continue the function with the compilation:
26 ## tu rn i n t o a f u n c t i o n t h a t R can c a l l
27 fun <− cxx func t i on (s igna tu re (Ysexp=" numeric " , Xsexp=" numeric ") ,
28 src , p lug in =" RcppArmadil lo ")
29 }

We run the example code via
generate X and y
N <- 100
mean(replicate(N, system.time(val <-

lmArmadillo(y, X))["elapsed"]),trim=0.05)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://arma.sf.net

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Introducing RcppArmadillo

1 extern "C" SEXP fastLm (SEXP ys , SEXP Xs) {
2
3 t ry {
4 Rcpp : : NumericVector y r (ys) ; / / creates Rcpp vec to r from SEXP
5 Rcpp : : NumericMatr ix Xr (Xs) ; / / creates Rcpp mat r i x from SEXP
6 i n t n = Xr . nrow () , k = Xr . nco l () ;
7
8 arma : : mat X(Xr . begin () , n , k , fa lse) ; / / reuses memory , avoids ex t ra copy
9 arma : : co lvec y (y r . begin () , y r . s i ze () , fa lse) ;

10
11 arma : : co lvec coef = arma : : so lve (X, y) ; / / f i t model y ~ X
12 arma : : co lvec res = y − X∗coef ; / / r e s i d ua l s
13
14 double s2 = std : : i nne r _product (res . begin () , res . end () , res . begin () , double ()) / (n−k) ;
15 / / s td . e r r o r s o f c o e f f i c i e n t s
16 arma : : co lvec std_ e r r = arma : : s q r t (s2∗arma : : diagvec (arma : : i nv (arma : : t rans (X)∗X))) ;
17
18 return Rcpp : : L i s t : : c reate (Rcpp : : Named(" c o e f f i c i e n t s ") = coef ,
19 Rcpp : : Named(" s t d e r r ") = s td_err ,
20 Rcpp : : Named(" d f ") = n − k
21) ;
22
23 } catch (s td : : except ion &ex) {
24 forward_except ion_ to _ r (ex) ;
25 } catch (. . .) {
26 : : Rf_ e r r o r (" c++ except ion (unknown reason) ") ;
27 }
28 return R_ Ni lVa lue ; / / −Wall
29 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Introducing RcppArmadillo (cont.)

RcppArmadillo is a CRAN package that

grew out of the work on these ’faster lm()’ operations
makes it even easier to use Armadillo from C++ for R
by adding just a few lines of glue code to automagically
pass date between the Rcpp classes (that eases access
from R) and the Armadillo classes
as Armadillo uses clever template meta-programming
(TMP), algebra operations are fast yet concise and easy to
use
We also have a matching RcppGSL package on R-Forge.
Both provide a standard formula-based interface as well as
a bare-bones one.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://arma.sf.net
http://www.r-project.org
http://arma.sf.net
http://arma.sf.net

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example (cont.)

lm lm/GSL lm/Arma

Comparison of linear model fit routines
T

im
e

in
 m

ill
is

ec
on

ds
, a

ve
ra

ge
d

ov
er

 1
00

0
ru

ns

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Source: See the examples/FastLM/ directory in Rcpp.

We get (relatively)
small speed
improvements using
the fastLm functions
from the RcppGSL
and RcppArmadillo
packages.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example (cont.)

lm,lm.fit lm/GSL lm/Arma

Comparison of linear model fit routines

T
im

e
in

 m
ill

is
ec

on
ds

, a
ve

ra
ge

d
ov

er
 1

00
0

ru
ns

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

formula interface
column and matrix

Source: See the examples/FastLM/ directory in Rcpp.

By switching to
lm.fit and
fastLmPure (i.e.
foregoing the formula
interfaces), we get
more significant
speed increases.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example (cont.)

lm,lm.fit lm/GSL lm/Arma

Comparison of linear model fit routines
N

um
be

r
of

 m
od

el
 fi

ts
 p

er
 s

ec
on

d

0
20

00
40

00
60

00
80

00
formula interface
column and matrix

Source: See the examples/FastLM/ directory in Rcpp.

By inverting the times
to see how many
’regressions per
second’ we can fit, the
merits of the compiled
code become clearer.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Another Rcpp example (cont.)

lm,lm.fit lm/GSL lm/Arma

Comparison of linear model fit routines

R
at

io
 o

f p
er

fo
rm

an
ce

 r
el

at
iv

e
to

 lm
()

0
5

10
15

20
25

formula interface
column and matrix

Source: See the examples/FastLM/ directory in Rcpp.

We can also
normalise by looking
at the performance
relative to lm().

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

RInside and bringing R to C++

Sometimes we may want to go the other way and add R to an
existing C++ project.

This can be simplified using RInside:

1 #include <RInside . h> / / for the embedded R v ia RInside
2
3 i n t main (i n t argc , char ∗argv []) {
4
5 RInside R(argc , argv) ; / / create an embedded R ins tance
6
7 R[" t x t "] = " Hel lo , wor ld ! \ n " ; / / assign a char∗ (s t r i n g) to ’ t x t ’
8
9 R. parseEvalQ (" cat (t x t) ") ; / / eval the i n i t s t r i n g , i gno r i ng any re tu rns

10
11 e x i t (0) ;
12 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

RInside and bringing R to C++ (cont)

1 #include <RInside . h> / / for the embedded R v ia RInside
2 #include <iomanip >
3 i n t main (i n t argc , char ∗argv []) {
4 RInside R(argc , argv) ; / / create an embedded R ins tance
5 std : : s t r i n g t x t =
6 " suppressMessages (l i b r a r y (f P o r t f o l i o)) ; "
7 " lppData <− 100 ∗ LPP2005 .RET[, 1 : 6] ; "
8 "ewSpec <− p o r t f o l i o S p e c () ; "
9 " nAssets <− ncol (lppData) ; " ;

10 R. parseEvalQ (t x t) ; / / prepare problem
11
12 const double dvec [6] = { 0 .1 , 0 .1 , 0 .1 , 0 .1 , 0 .3 , 0.3 } ; / / choose any weights
13 const std : : vector <double> w(dvec , &dvec [6]) ;
14 R[" weightsvec "] = w; / / assign weights
15
16 R. parseEvalQ (" setWeights (ewSpec) <− weightsvec ") ; / / evaluate assignment
17
18 t x t = " ewPf <− f e a s i b l e P o r t f o l i o (data=lppData , spec=ewSpec , "
19 " c o n s t r a i n t s = \ " LongOnly \ ") ; "
20 " p r i n t (ewPf) ; "
21 " vec <− getCovRiskBudgets (ewPf@port fo l io) " ;
22 Rcpp : : NumericVector V((SEXP) R. parseEval (t x t)) ;
23 Rcpp : : CharacterVector names((SEXP) R. parseEval ("names(vec) ")) ;
24
25 std : : cout << " \ n \ nAnd now from C++\n \ n " ;
26 for (i n t i =0; i <names . s ize () ; i ++) {
27 std : : cout << std : : setw (16) << names [i] << " \ t " << std : : setw (11) << V[i] << " \ n " ;
28 }
29 e x i t (0) ;
30 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

RInside and bringing R to C++ (cont)
edd@max:~/svn/rinside/pkg/inst/examples/standard$./rinside_sample4

Using the GLPK callable library version 4.37
Title:
MV Feasible Portfolio
Estimator: covEstimator
Solver: solveRquadprog
Optimize: minRisk
Constraints: LongOnly

Portfolio Weights:
SBI SPI SII LMI MPI ALT
0.1 0.1 0.1 0.1 0.3 0.3

Covariance Risk Budgets:
SBI SPI SII LMI MPI ALT

-0.0038 0.1423 0.0125 -0.0058 0.4862 0.3686

Target Return and Risks:
mean mu Cov Sigma CVaR VaR

0.0548 0.0548 0.4371 0.4371 1.0751 0.6609

Description:
Mon Jul 5 12:37:33 2010 by user:

And now from C++
SBI -0.00380065
SPI 0.142261
SII 0.0125242
LMI -0.00576251
MPI 0.486228
ALT 0.368551

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview Inline Rcpp RInside Summary

Section Summary

We covered how
inline eases compiling, linking and loading C, C++ or
Fortran into R
Rcpp allows us to transfer R objects to C++ and back, and
to create or alter R objects at the C++ level
RcppArmadillo gives us linear algebra at C++ speed
RInside permits us to add R to existing C++ applications

Things we did not cover
debugging memory leaks in code: the previous tutorials
had a short valgrind example
more advanced Rcpp use: extensions, modules, sugar.
But "There is a vignette for that!"

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

Using all those cores

Multi-core hardware is now a default, and the number of cores
per cpus continues to increase. We want to advantage of these
cores.

Two (no longer recent but still ’experimental’) packages by Luke
Tierney are addressing this question:

pnmath uses OpenMP compiler directives;
pnmath0 uses pthreads to implements the same interface.

See http://www.stat.uiowa.edu/~luke/R/experimental/

Other related approaches are multicore discussed below as
well as GPU computing.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

pnmath and pnmath0

Both pnmath and pnmath0 provide parallelized vector math
functions and support routines.

Upon loading either package, a number of vector math
functions are replaced with versions that are parallelized. The
functions will be run using multiple threads if their results will be
long enough for the parallel overhead to be outweighed by the
parallel gains. On load a calibration calculation is carried out to
asses the parallel overhead and adjust these thresholds.

Profiling is probably the best way to assess the possible
usefulness. As a quick illustration, we compute the qtukey
function on a eight-core machine:

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://en.wikipedia.org/wiki/OpenMP
http://www.stat.uiowa.edu/~luke/R/experimental/

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

pnmath and pnmath0 illustration
$ r -e’N=1e3;print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
66.590 0.000 66.649

$ r -lpnmath -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
67.580 0.080 9.938

$ r -lpnmath0 -e’N=1e3; \
print(system.time(qtukey(seq(1,N)/N,2,2)))’

user system elapsed
68.230 0.010 9.983

The 6.7-fold reduction in ’elapsed’ time shows that the multithreaded
version takes advantage of the 8 available cores at a sub-linear
fashion as some communications overhead is involved.

These improvements will likely be folded into future R versions.
Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

OpenMP for shared-memory parallelism

Citing from Wikipedia on OpenMP:
OpenMP (Open Multi-Processing) is an application
programming interface (API) that supports multi-platform
shared memory multiprocessing programming in C, C++
and Fortran [...]. It consists of a set of compiler directives,
library routines, and environment variables that influence
run-time behavior.

[...] OpenMP is a portable, scalable model [...] for
developing parallel applications for platforms ranging from
the desktop to the supercomputer.

An application built with the hybrid model of parallel
programming can run on a computer cluster using both
OpenMP and Message Passing Interface (MPI), [...].

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://en.wikipedia.org/wiki/OpenMP

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

OpenMP example

A C++ example from the aforementioned Wikipedia entry:
1 #include <omp. h>
2 #include <iostream >
3 #include <sstream >
4
5 i n t main (i n t argc , char ∗argv []) {
6
7 i n t th _ id , nthreads ;
8
9 #pragma omp p a r a l l e l private (th _ i d)

10 {
11 th _ i d = omp_get_ thread_num () ;
12 std : : os t r ings t ream ss ;
13 ss << " He l lo World from thread " << th _ i d << std : : endl ;
14 std : : cout << ss . s t r () ;
15 #pragma omp b a r r i e r
16 #pragma omp master
17 {
18 nthreads = omp_get_num_ threads () ;
19 std : : cout << " There are " << nthreads << " threads " << std : : endl ;
20 }
21 }
22 return 0;
23 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

OpenMP example (cont.)

We can build and run the example:
$ g++ -fopenmp -o hello_OpenMP hello_OpenMP.cpp -lgomp
$ OMP_NUM_THREADS=4 ./hello_OpenMP

Hello World from thread 2
Hello World from thread 3
Hello World from thread 0
Hello World from thread 1
There are 4 threads

The environment variable OMP_NUM_THREAD can be used to
select the number of threads; otherwise the number of available
cores is used.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

multicore

The multicore package by Simon Urbanek provides a
convenient interface to locally running parallel computations in
R on machines with multiple cores or CPUs. Jobs can share
the entire initial workspace.

This is implemented using the fork system call available for
POSIX-compliant system (i.e. Linux and OS X but not
Windows).

All jobs launched by multicore share the full state of R when
spawned, no data or code needs to be initialized. This make
the actual spawning very fast since no new R instance needs to
be started.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

multicore

The multicore package provides two main interfaces:

mclapply, a parallel / multicore version of lapply
the functions parallel and collect to launch parallel
execution and gather results at end

For setups in which a sufficient number of cores is available
without requiring network traffic, multicore is likely to be a
very compelling package.

Given that 16 (hyper-threaded) cores are now a reality, and that
32 or more cores are on the horizon, this package is very
useful.

One thing to note is that ’anything but Windows’ is required to
take advantage of multicore (though Revolution offers a
commercial closed-source alternative doSMPI).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

multicore cont.

We can illustrate the mclapply function with a simple example:
R> system("pgrep R")

28352

R> mclapply(1:2,
+> FUN=function(x) system("pgrep R", intern=TRUE))

[[1]]
[1] "28352" "31512" "31513"

[[2]]
[1] "28352" "31512" "31513"

So two new R processes were started by multicore.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem pnmath OpenMP multicore Summary

Section Summary

We looked at
OpenMP for parallel processing via compiler-generated
directives, and the pnmath package
And pnmath0 (using threads) is an alternative
multicore for letting R schedule code on several
available cores on one computer is very compelling and
easy

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Embarassingly parallel

Several CRAN (or R-Forge) packages provide the ability to
execute R code in parallel:

NWS

Rmpi

snow (using MPI, PVM, NWS or sockets), also snowFT
and snowfall

multicore (see previous section)
foreach with doMC, doSNOW, doMPI, doRedis,
plus others (rpvm, papply, taskPR . . .)

The survey paper by Schmidberger, Morgan, Eddelbuettel, Yu,
Tierney and Mansmann (JSS, 2009) is a useful resource.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

NWS Intro

NWS ("NetWorkSpaces") is a simple alternative to MPI (see
below). It is based on Python and cross-platform, and
originates with one of the predecessor companies to Revolution
Analytics. NWS is accessible from R, Python, Matlab, Ruby,
and other languages.

NWS is available via Sourceforge and CRAN. An introductory
article appeared in Dr. Dobb’s.

On Debian/Ubuntu, one installs the python-nwsserver
package on the server node, and installs r-cran-nws on each
client. Other systems may need to install the twisted
framework for Python first.

A new implementation ’swn’ (for ’Shared Workspace
Neighborhood’, or ’Swn wasn’t NWS’, or ...) may be
forthcoming.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://nws-r.sourceforge.net
http://cran.r-project.org/web/packages/nws
http://www.ddj.com/web-development/200001971

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

NWS data store example

A simple example, adapted from demo(nwsExample)

ws <- netWorkSpace(’r place’) # create a ’value store’
nwsStore(ws, ’x’, 1) # place a value (as fifo)

cat(nwsListVars(ws), "\n") # we can list
nwsFind(ws, ’x’) # and lookup
nwsStore(ws, ’x’, 2) # and overwrite
cat(nwsListVars(ws), "\n") # now see two entries

cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsFetch(ws, ’x’), ’\n’) # we can fetch
cat(nwsListVars(ws), ’\n’) # and none left

cat(nwsFetchTry(ws,’x’,’no go’),’\n’) # can’t fetch

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

NWS sleigh example

The NWS component sleigh is an R class that makes it easy to
write simple parallel programs. Sleigh uses the master / worker
paradigm: The master submits tasks to the workers, who may
or may not be on the same machine as the master.
create a sleigh object on two nodes using ssh
s <- sleigh(nodeList=c("joe", "ron"), launch=sshcmd)

execute a statement on each worker node
eachWorker(s, function() x <<- 1)

get system info from each worker
eachWorker(s, Sys.info)

run a lapply-style funct. over each list elem.
eachElem(s, function(x) {x+1}, list(1:10))

stopSleigh(s)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Rmpi

Rmpi is a CRAN package that provides an interface between R
and the Message Passing Interface (MPI), a standard for
parallel computing. (c.f. Wikipedia for more and links to the
Open MPI and MPICH2 projects for implementations).

The preferred implementation for MPI is now Open MPI.
However, the older LAM implementation can be used on those
platforms where Open MPI is unavailable. There is also an
alternate implementation called MPICH2. Lastly, we should
also mention the similar Parallel Virtual Machine (PVM) tool;
see its Wikipedia page for more.

Rmpi allows us to use MPI directly from R and comes with
several examples. It can also be used as a building block for
higher-level suage via snow or doMPI/foreach.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

MPI Example

Let us look at the MPI variant of the ’Hello, World!’ program:
1 #include < s t d i o . h>
2 #include " mpi . h "
3

4 i n t main (i n t argc , char∗∗ argv)
5 {
6 i n t rank , s ize , nameLen ;
7 char processorName [MPI_MAX_PROCESSOR_NAME] ;
8

9 MPI_ I n i t (&argc , &argv) ;
10 MPI_Comm_ rank (MPI_COMM_WORLD, &rank) ;
11 MPI_Comm_ s ize (MPI_COMM_WORLD, &s ize) ;
12

13 MPI_Get_processor_name(processorName , &nameLen) ;
14

15 p r i n t f (" Hel lo , rank %d , s ize %d on processor %s \ n " ,
16 rank , s ize , processorName) ;
17

18 MPI_ F i n a l i z e () ;
19 return 0;
20 }

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.mpi-forum.org/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org
http://en.wikipedia.org/wiki/Parallel_Virtual_Machine
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

MPI Example: cont.

We can compile the previous example via
$ mpicc -o mpiHelloWorld mpiHelloWorld.c

If it it has been copied across several Open MPI-equipped
hosts, we can execute it N times on the M listed hosts via:
$ orterun -H ron,joe,tony,mccoy -n 8 /tmp/mpiHelloWorld

Hello, rank 0, size 8 on processor ron
Hello, rank 4, size 8 on processor ron
Hello, rank 7, size 8 on processor mccoy
Hello, rank 3, size 8 on processor mccoy
Hello, rank 2, size 8 on processor tony
Hello, rank 5, size 8 on processor joe
Hello, rank 6, size 8 on processor tony
Hello, rank 1, size 8 on processor joe

Notice how the order of execution is indeterminate.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

MPI Example: cont.

Besides orterun (which replaces the mpirun command used
by other MPI implementations), Open MPI also supplies
ompi_info to query parameter settings.

Open MPI has very fine-grained configuration options that
permit e.g. attaching particular jobs to particular cpus or cores.

Detailed documentation is provided at the web site
http://www.openmpi.org.

We will concentrate on using MPI via the Rmpi package.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.openmpi.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Rmpi

Rmpi, a CRAN package by Hao Yu, wraps many of the MPI API
calls for use by R.

The preceding example can be rewritten in R as

1 # ! / usr / bin / env r
2

3 l i b r a r y (Rmpi) # c a l l s MPI_ I n i t
4

5 rk <− mpi .comm. rank (0)
6 sz <− mpi .comm. s ize (0)
7 name <− mpi . get . processor . name ()
8 cat (" Hel lo , rank " , rk , " s i ze " , sz , " on " , name, " \ n ")

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Rmpi: cont.

$ orterun -H ron,joe,tony,mccoy -n 8 \
/tmp/mpiHelloWorld.r

Hello, rank 4 size 8 on ron
Hello, rank 0 size 8 on ron
Hello, rank 3 size 8 on mccoy
Hello, rank 7 size 8 on mccoy
Hello, rank Hello, rank 21 size 8 on joe
size 8 on tony
Hello, rank 6 size 8 on tony
Hello, rank 5 size 8 on joe

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Rmpi: cont.

We can also exectute this as a one-liner using r (which we
discuss later):
$ orterun -n 8 -H ron,joe,tony,mccoy \

r -lRmpi -e’cat("Hello", \
mpi.comm.rank(0), "of", \
mpi.comm.size(0), "on", \
mpi.get.processor.name(), "\n");
mpi.quit()’

Hello 4 of 8 on ron
Hello 3 of 8 on mccoy
Hello 7 of 8 on mccoy
Hello 0 of 8 on ron
HelloHello 2 of 8 on tony
Hello 1 of 8 on joe

Hello 5 of 8 on joe
6 of 8 on tony

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Rmpi: cont.

Rmpi offers a large number functions, mirroring the rich API
provided by MPI.

Rmpi also offers extensions specific to working with R and its
objects, including a set of apply-style functions to spread load
across the worker nodes.

However, we will use Rmpi mostly indirectly via snow, or via the
new doMPI package.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

snow

The snow package by Tierney et al provides a convenient
abstraction directly from R.

It can be used to initialize and use a compute cluster using one
of the available methods direct socket connections, MPI, PVM,
or NWS. We will focus on MPI.

A simple example:
cl <- makeCluster(4, "MPI")
print(clusterCall(cl, function() \

Sys.info()[c("nodename","machine")]))
stopCluster(cl)

which we can as a one-liner as shown on the next slide.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

snow: Example

$ orterun -n 1 -H ron,joe,tony,mccoy r -lsnow,Rmpi \
-e’cl <- makeCluster(4, "MPI"); \

res <- clusterCall(cl, \
function() Sys.info()["nodename"]); \

print(do.call(rbind,res)); \
stopCluster(cl); mpi.quit()’

4 slaves are spawned successfully. 0 failed.
nodename

[1,] "joe"
[2,] "tony"
[3,] "mccoy"
[4,] "ron"

Note that we told orterun to start on only one node – as snow
then starts four instances (which are split evenly over the four
given hosts).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

snow: Example cont.

The power of snow lies in the ability to use the apply-style
paradigm over a cluster of machines:
params <- c("A", "B", "C", "D", "E", "F", "G", "H")
cl <- makeCluster(4, "MPI")
res <- parSapply(cl, params, \

FUN=function(x) myBigFunction(x))

will ’unroll’ the parameters params one-each over the function
argument given, utilising the cluster cl. In other words, we will
be running four copies of myBigFunction() at once.

So the snow package provides a unifying framework for
parallelly executed apply functions.

We will come back to more examples with snow below.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Iterators, foreach and dopar

Revolution Analytics (and/or its predecessor companies)
released several packages to CRAN to elegantly work with
serial or parallel loops:

iterators generalized the concepts of iteration control
foreach offers to switch between serial and parallel
execution using %dopar%

available backends for %dopar% are
doMC (for multicore)
doMPI (for MPI)
doSNOW (for snow)

Also of note is the compatible doRedis package (for rredis,
a clever NoSQL backend) by Bryan Lewis.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

iterators

iterators provides an object that offers one data element at
a time by calling a method nextElem

iterators can be created using the iter method on list,
vector, matrix, or data.frame objects

iterators resemble the Java and Python constructs of the
same name.

iterators are memory-friendly: one element at a time
whereas sequences gets enumerated fully.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach

The foreach package provides a new looping construct which
scan switch transparently between serial and parallel modes.

It can be seen a mix of for loops and lapply-style functional
operation, and similar to foreach operators in other
programming languages.

We can switch foreach to execute in parallel leaning on the
existing snow or multicore (and soon Rmpi) backends

It works like lapply, but without the need for a function:
x <- foreach(i=1:10) %do% {

sqrt(i)
}
and we can switch to %dopar% for parallel execution.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Why is this interesting?

Objects used in the body of foreach are automatically
exported to remote nodes easing parallel programming:
m <- matrix(rnorm(16), 4, 4)
foreach(i=1:ncol(m)) %dopar% {

mean(m[,i]) # makes m available on nodes
}

We can nest this using the : operator:
foreach (i=1:3, .combine=cbind) %:%

foreach (j=1:3, .combine=c) %dopar%
(i+j)

See the vignette Nesting Foreach Loops for details.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach example: demo(sincSEQ)

x

y

z

Rendered via

library(foreach)
demo(sincSEQ)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://cran.r-project.org/web/packages/foreach/vignettes/nested.pdf

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach example: demo(sincSEQ)

1 l i b r a r y (foreach)
2 # f u n c t i o n t h a t creates an i t e r a t o r t h a t re tu rns subvectors
3 i v e c t o r <− function (x , chunks) {
4 n <− length (x) ; i <− 1
5 nextE l <− function () {
6 i f (chunks <= 0 | | n <= 0) stop (’ S t o p I t e r a t i o n ’)
7 m <− ce i l ing (n / chunks) ; r <− seq (i , length=m)
8 i <<− i + m; n <<− n − m; chunks <<− chunks − 1; x [r]
9 }

10 obj <− l i s t (nextElem=nextE l)
11 class (ob j) <− c (’ a b s t r a c t i t e r ’ , ’ i t e r ’) ; ob j
12 }
13 x <− seq(−10, 10 , by=0.1) # Def ine coord ina te g r i d
14 cat (’ Running s e q u e n t i a l l y \ n ’) ; ntasks <− 4
15 # Compute the value o f the s inc f u n c t i o n a t each g r i d p o i n t
16 z <− foreach (y= i v e c t o r (x , ntasks) , . combine=cbind) %do% {
17 y <− rep (y , each= length (x)) ; r <− sqrt (x ^ 2 + y ^ 2)
18 matrix (10 ∗ sin (r) / r , length (x))
19 }
20 # P lo t the r e s u l t s as a perspec t i ve p l o t
21 persp (x , x , z , y lab= ’ y ’ , t he ta =30 , ph i =30 ,expand=0.5 , col=" l i g h t b l u e ")

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach example: demo(sincSEQ) cont.

The key in the foreach demo was the line
z <- foreach(y=ivector(x,ntasks),.combine=cbind) %do% {

y <- rep(y, each=length(x))
r <- sqrt(x ^ 2 + y ^ 2)
matrix(10 * sin(r) / r, length(x))

}
where z is computed in a foreach loop using a custom
ivector iterator over the grid x with a given number of task;
results are recombined using cbind.

The actual work is being done in the code block following %do%.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach example: demo(sincMC)

In order to run this code in parallel using multicore, we
simply use
library(doMC)
registerDoMC()
[...]
nw <- getDoParWorkers()
cat(sprintf(’Running with %d worker(s)\n’, nw))
[...]
z <- foreach(y=ivector(x, nw), \

.combine=cbind) %dopar% {
[...]

as can be seen via demo(sincMC).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

foreach example: demo(sincMPI)

Similarly, in order to run this code in parallel using Rmpi, we
simply use the doMPI package (on R-Forge, soon on CRAN):
library(doMPI)

create and register a doMPI cluster
cl <- startMPIcluster(count=2)
registerDoMPI(cl)
[...]
compute the sinc function in parallel
v <- foreach(y=x, .combine="cbind") %dopar% {

r <- sqrt(x^2 + y^2) + .Machine$double.eps
sin(r) / r

}
[...]
closeCluster(cl)

as can be seen via demo(sincMPI).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Section Summary

We looked at
NWS, a simple cross-platform toolkit that can also be used
for parallel computing
Rmpi as well as MPI, the standard for parallel computing
via message passing
snow, a wrapper around sockets, MPI, PVM or NWS for
easy parallel computing with R
iterators and foreach as another alternative.

Things we did not cover
Hadoop and packages like RHIPE

different parallel computing approaches like Rdsm using
distributed shared memory

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Amdahl’s Law: An upper bound to speed gains

An upper bound to expected gains by parallelization is provided
by Amdahl’s law which relates the proportion P of total running
time which can realize a speedup S due to parallelization
(using S nodes) to the expected net speedup:

1
(1 − P) + P

S

e.g. for P = 0.75
and S = 128 we
expect a net
speedup of up to
3.9. Source: http:

//en.wikipedia.org/wiki/Amdahl’s_law

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Amdahl's_law

Tools Measure Faster Compile ImplP ExplP OoMem Overview NWS Rmpi snow iterators Summary Tips

Best practices for Parallel Computing with R

Quoting from the Schmidberger et al pager:

Communication is much slower than computation;
minimize data transfer to and from workers, maximize
remote computation.
Random number generators require extra care.
Special-purpose packages rsprng and rlecuyer are
available; snow provides an integrated interface.
R’s lexical scoping, serializing functions and the
environments they are defined in require care to avoid
transmitting unnecessary data. Functions used in
apply-like calls should be defined in the global
environment, or in a package name space. forever can
be helpful too,

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Extending physical RAM limits

Two CRAN packages ease the analysis of large datasets.

ff which maps R objects to files and is therefore only
bound by the available filesystem space
bigmemory which maps R objects to dynamic memory
objects not managed by R

Both packages can use the biglm package for out-of-memory
(generalized) linear models.
Also worth mentioning are the older packages g.data for
delayed data assignment from disk, filehash which takes a
slightly more database-alike view by ’attaching’ objects that are
still saved on disk, and R.huge which also uses the disk to
store the data.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

biglm

The biglm package operates on ’larger-than-memory’
datasets by operating on ’chunks’ of data at a time.
make.data <- function ... # see ’help(bigglm)’
dataurl <-

"http://faculty.washington.edu/tlumley/NO2.dat"
airpoll <- make.data(dataurl, chunksize=150, \

col.names=c("logno2","logcars","temp",\
"windsp","tempgrad","winddir","hour","day"))

b <- bigglm(exp(logno2)~logcars+temp+windsp, \
data=airpoll, family=Gamma(log), \
start=c(2,0,0,0),maxit=10)

summary(b)

lm() and glm() models can be estimated (and updated).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

ff: Large Objects

ff won the UseR! 2007 ’large datasets’ competition. It has
since undergone a complete rewrite for versions 2.0 and 2.1.

ff provide memory-efficient storage of R objects on disk, and
fast access functions that transparently map these in pagesize
chunks to main memory. Many native data types are supported.

ff is complex package with numerous options that offer data
access that can be tailored to be extremely memory-efficient.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

ff: Large Objects cont.

As a small example, consider
b <- 1000
n <- 100000
k <- 3
x <- ff(vmode="double", dim=c(b*n,k), \

dimnames=list(NULL, LETTERS[1:k]))
lsos()

Type Size Rows Columns
x ff_matrix 2088 1e+08 3
b numeric 32 1e+00 NA
k numeric 32 1e+00 NA
n numeric 32 1e+00 NA

We see the matrix x has 100 million elements and three
columns, yet occupies only 2088 bytes (essentially an external
pointer and some meta-data).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

ff: Large Objects cont.

We can use ff along with biglm:
ffrowapply({

l <- i2 - i1 + 1
z <- rnorm(l)
for (i in 1:k) x[i1:i2,i] <- z + rnorm(l)

}, X=x, VERBOSE=TRUE, BATCHSIZE=n)

form <- A ~ B + C
first <- TRUE
ffrowapply({
if (first){
first <- FALSE
fit <- biglm(form,as.data.frame(x[i1:i2,,drop=FALSE]))

} else
fit <- update(fit,as.data.frame(x[i1:i2,,drop=FALSE]))

}, X=x, VERBOSE=TRUE, BATCHSIZE=n)

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

bigmemory

The bigmemory project comprises several packages:
bigmemory, bigtabulate, biganalytics, bigalgebra
as well as synchronicity.

Michael Kane is the 2010 winner of the Chambers price for his
work on bigmemory.

bigmemory has undergone several rewrites and is now at
version 4.*. The package is similar to ff as it allows allocation
and access to memory managed by the operating system but
’outside’ of the view of R (and optionally mapped to disk).

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

bigmemory cont.

bigmemory implements locking and sharing which allows
multiple R sessions on the same host to access a common
(large) object managed by bigmemory.
> object.size(big.matrix(1000,1000, "double"))

[1] 372

> object.size(matrix(double(1000*1000), ncol=1000))

[1] 8000112

To R, a big.matrix of 1000 × 1000 elements occupies only
372 bytes of memory. The actual size of 8 mb is allocated by
the operating system, and R interfaces it via an ’external
pointer’ object.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

bigmemory cont.

We can illustrate bigmemory use of biglm:
x <- matrix(unlist(iris), ncol=5)
colnames(x) <- names(iris)
x <- as.big.matrix(x)

silly.biglm <- biglm.big.matrix(Sepal.Length ~ \
Sepal.Width + Species, data=x, fc="Species")

summary(silly.biglm)

As before, the memory use of the new ’out-of-memory’ object is
smaller than the actual dataset as the ’real’ storage is outside of
what the R memory manager sees.

This can of course be generalized to really large datasets and
’chunked’ access.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Example

The recent ASA dataviz competition asked for a graphical
summary of a huge dataset.

We are going to look at the entry by Jay Emerson and his
student Michael Kane as it covers several of the packages we
looked at here.

The data contains flight arrival and departure data for almost all
commercial flights within the USA from October 1987 to April
2008.

There are almost 120 million records and 29 variables, with
some recoding done by Emerson and Kane.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://stat-computing.org/dataexpo/2009/
http://www.stat.yale.edu/~jay

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Example: Sequential data access

Task: For every plane, find the month of its earliest flight in the
data set.

1 # Take one : Sequent ia l
2 #
3 date ()
4 numplanes <− length (unique (x [, " TailNum "])) − 1
5 p laneSta r t <− rep (0 , numplanes)
6 for (i i n t h e s e f l i g h t s) { ## t h e s e f l i g h t s i s a sample
7 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
8 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
9 minYear <− min (y [, " Year "] , na . rm=TRUE)

10 these <− which (y [, " Year "]== minYear)
11 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
12 p laneS ta r t [i] <− 12∗minYear + minMonth
13 cat (" TailNum " , i , minYear , minMonth , nrow (y) , p laneSta r t [i] , " \ n ")
14 }
15 p laneSta r t [p laneSta r t ! =0]
16 date () ## approx imate ly 9 hours on the Yale c l u s t e r

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Example: Sequential data access

1 # Take two : foreach () , sequen t ia l :
2 #
3 require (foreach)
4 date ()
5 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {
6 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
7 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
8 minYear <− min (y [, " Year "] , na . rm=TRUE)
9 these <− which (y [, " Year "]== minYear)

10 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
11 cat (" TailNum " , i , minYear , minMonth , nrow (y) , p laneSta r t [i] , " \

n ")
12 12∗minYear + minMonth
13 }
14 p laneSta r t
15 date () ## t ime ?

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Example: Sequential data access

1 # Take three : foreach () and mu l t i co re
2 #
3 # Master and fou r workers
4 #
5 l i b r a r y (doMC)
6 registerDoMC ()
7 date ()
8 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {
9 x <− attach . b ig . matrix (xdesc)

10 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
11 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
12 minYear <− min (y [, " Year "] , na . rm=TRUE)
13 these <− which (y [, " Year "]== minYear)
14 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
15 rm (x) ; gc ()
16 12∗minYear + minMonth
17 }
18 p laneSta r t
19 date () ## now about 2.5 hours

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Example: Sequential data access

1 # Take fou r : foreach () and snow / SOCK
2 #
3 # Master and three workers
4 #
5 l i b r a r y (doSNOW)
6 c l <− makeSOCKcluster (3)
7 registerDoSNOW (c l)
8 date ()
9 p laneSta r t <− foreach (i = t h e s e f l i g h t s , . combine=c) %dopar% {

10 require (bigmemory)
11 x <− attach . b ig . matrix (xdesc)
12 y <− x [mwhich (x , " TailNum " , i , ’ eq ’) ,
13 c (" Year " , " Month ") , drop=FALSE] # Note t h i s .
14 minYear <− min (y [, " Year "] , na . rm=TRUE)
15 these <− which (y [, " Year "]== minYear)
16 minMonth <− min (y [these , " Month "] , na . rm=TRUE)
17 12∗minYear + minMonth
18 }
19 p laneSta r t
20 s topC lus te r (c l)
21 date () ## about 3.5 hours

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem overview biglm ff bigmemory Example Summary

Section Summary

We looked at
biglm which enables (generalized) linear models to be fit
in ’chunks’,
ff which permits efficient storage of large data sets in
file-based storage,
bigmemory, part of a suite of packages, for
shared-memory (or file-backed) analysis.

We illustrate their use with examples from the ASA dataviz
competition.

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem

Wrapping up

In this tutorial session, we covered
scripting and automation using littler and Rscript
profiling and tools for visualising profiling output
gaining speed using vectorisation, Ra and just-in-time
compilation
even more speed via compiled code using tools like inline
and Rcpp, and how to embed R in C++ programs
running R code in parallel, explicitly and implicitly

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

http://www.r-project.org
http://www.r-project.org

Tools Measure Faster Compile ImplP ExplP OoMem

Wrapping up

Further questions ?

Two good resources are
the mailing list r-sig-hpc on HPC with R,
the HighPerformanceComputing task view on CRAN.

Further resources:

(Some) scripts are at
http://dirk.eddelbuettel.com/code/hpcR/

Updated versions of the tutorial may appear at http:
//dirk.eddelbuettel.com/presentations.html

Do not hesitate to email me at edd@debian.org

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

Tools Measure Faster Compile ImplP ExplP OoMem

Thank You!

Dirk Eddelbuettel Intro to High-Perf. Computing with R Tutorial @ useR! 2010

r-sig-hpc
HighPerformanceComputing
http://dirk.eddelbuettel.com/code/hpcR/
http://dirk.eddelbuettel.com/presentations.html
http://dirk.eddelbuettel.com/presentations.html
edd@debian.org

	Motivation
	Automation and scripting
	Overview
	littler
	Rscript

	Measuring and profiling
	Overview
	RProf
	RProfmem
	Profiling Compiled Code
	Summary

	Speeding up
	Vectorisation
	Just-in-time compilation
	BLAS
	GPUs
	Summary

	Compiled Code
	Overview
	Inline
	Rcpp
	RInside
	Summary

	Implicitly Parallel
	pnmath and pnmath0
	OpenMP
	multicore
	Summary

	Explicitly Parallel
	Overview
	NWS
	Rmpi
	snow
	iterators, foreach and dopar
	Summary
	Some general tips

	Out-of-memory processing
	overview
	biglm
	ff
	bigmemory
	Example
	Summary

	Summary

