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1 . Motivation and focus of the paper 

i. No closed form solution is available for pricing  basket of 
options;

ii. Quite often it is assumed that Monte Carlo techniques are 
not suitable for multivariate option pricing problems.

Market economies hinge heavily on the use of derivative 
securities for achieving an optimal risk management.

Firms are confronted with different financial risks and look for 
the most efficient way to edge their risks.

Employment of basket options is a very efficient avenue for 
achieving the wished hedging position.



2. Mathematical framework

Pricing an option boils down to the computation of the following 
discounted expectation:

( )( )
( )[ ]STgEeP Q

dtTr

t

T

t ,
)∫

=
−− τ

where:
g(T,S) is the option’s payoff at expiration when the underlying 
stock has value S;
EQ is  the expectation operator w.r.t. expiration stock value 
distribution.  



2. Mathematical framework
In the paper we focus on pricing an option on a portfolio of the 
following kind:

each stock Si follow a geometric brownian 
motion. The pool of stocks shows a given 
correlation structure. 
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2. Mathematical framework
The system of Brownian motions is transformed into a recursive 
system by employing the Cholesky decomposition of the 
correlation matrix.

A set of M sample paths is generated for each stock.
Now it is possible to compute the option’s payoff for each path 
of the sample: ( )VTg s ,

The option price and its standard 
deviation are computed according to: ( ) ( )
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3. The Monte Carlo Simulator

The simulator is based on a set of R functions:

1) Generation of the gaussian innovations for all the 
Brownian paths (RNG),

2) Generation of the replications for every stock 
composing the portfolio,

3) Computation of the portfolio value,
4) Evaluation of the elements for path dependent 

options,
5) Computation of the basket option value



3. The Monte Carlo Simulator
As example we consider the model required for an arithmetic Asian option:

MODEL
FUNCTION> DIVBYT 1
PARAMETER> RFREE, SIGMA, DT, TMATU, STRIKE
COMMENT> Stock Price dynamics of the asset
IDENTITY> Stock1
EQ>Stock1 = Lag(Stock1)*EXP((RFREE-SIGMA**2/2)*DT+(SIGMA*EPSIL1)*SQRT(DT))
COMMENT> Partial sum of the portfolio
IDENTITY> PARPORT
EQ> PARPORT = Lag(PARPORT) + Stock1
COMMENT> arithmetic average
IDENTITY> AVEPORT
EQ> AVEPORT = DIVBYT(PARPORT)
COMMENT> pricing the Asian call on the arithmetic average.
IDENTITY> CASIAF
EQ> CASIAF = EXP(-RFREE*TMATU)*max(0.0,AVEPORT-STRIKE)



3. The Monte Carlo Simulator

The variable EPSIL1 is used to feed in the stochastic disturbances.

The previous MODEL is initially translated into an executable 
Fortran module,
in a second phase the MODEL is simultaneously solved for all 
the required replications,
means and standard deviations are automatically generated, 
higher order statistics can be computed by the user.



3. The Monte Carlo Simulator
For the goal of reducing the sampling variance of the replications  
the simulation engine provides three techniques:

1) antithetic variates
2) Quasi Monte Carlo methods (Low Discrepancy Sequences)
3) Control Variates

The first two methods are implemented by generating particular 
values for the stochastic disturbances.
Implementation of the Control Variates methods requires the 
modification of the MODEL equations.
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Basic code example
## begin simulation
for(j in 1:trials){

for(i in 2:(m+1)){
z1 <- rnorm(1,0,1)
z2 <- rnorm(1,0,1)
z3 <- rnorm(1,0,1)

ds1 <- s1[i-1]*(r[i-1]*dt + s1.vol*sqrt(dt)*z1)
ds2 <- s2[i-1]*(r[i-1]*dt + s2.vol*sqrt(dt)*(rho*z1 + sqrt(1-rho^2)*z2))
dr  <- k*(theta - r[i-1])*dt + beta*sqrt(dt)*z3

s1[i] <- s1[i-1] +  ds1
s2[i] <- s2[i-1] +  ds2
r[i]  <- r[i-1]  +  dr

}
ss <- sum(r[2:(m+1)]*dt)
c[j] <- ifelse(s1[m+1]>K1 && s2[m+1]>K2, exp(-ss), 0)

}

cat("Option Price Estimate:", round(mean(c),3), "\n")
cat("Standard Error:", round(sd(c)/sqrt(trials),3), "\n")
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Basic code example

The previous Monte Carlo simulation code is based on a double 
loop:
1) the innermost loop generates one simulation path for two 
stocks and the riskless interest rate
2) the outermost loop runs over the trials numbers generating 
different random paths

Option price and its  standard error is computed at the end by 
averaging the option values of each replication.

Here there is no saving for the different simulation paths  
A different option requires the insertion of code into the 
outermost loop 
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Basic code example
## begin simulation
z1 <- matrix(rnorm(trials*m,mean=0,sd=1), trials,m)
z2 <- matrix(rnorm(trials*m,mean=0,sd=1), trials,m)
z3 <- matrix(rnorm(trials*m,mean=0,sd=1), trials,m)

for (i in 2:(m+1)){
ds1[,i-1] <- s1[,i-1]*(r[,i-1]*dt+s1.vol*sqrt(dt)*z1[,i-1])
ds2[,i-1] <- s2[,i-1]*(r[,i-1]*dt+s2.vol*sqrt(dt)*(rho*z1[,i-1]+sqrt(1-rho^2)*z2[,i-1]))
dr[,i-1]  <- k*(theta- r[,i-1])*dt + beta*sqrt(dt)*z3[,i-1]
s1[,i] <- s1[,i-1] +  ds1[,i-1]
s2[,i] <- s2[,i-1] +  ds2[,i-1]
r [,i] <- r [,i-1] +  dr [,i-1]

}
ss <- rowSums(r[,seq(2,(m+1))]*dt)
c <- ifelse(s1[,m+1]>K1 & s2[,m+1]>K2, exp(-ss), 0)

cat("Option Price Estimate:", round(mean(c),10), "\n")
cat("Standard Error:", round(sd(c)/sqrt(trials),10), "\n")
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Basic code example

This version of the Monte Carlo simulation code is based on a 
single loop (time) and the use of two dimensional matrices:
the loop generates all simulation paths  for the two stocks and the 
riskless interest rate at each time period.

The results are stored in matrices with rows referring to 
replications and the columns referring to time periods.

Option price and its  standard error is computed at the end by 
averaging the option values of each replication.

All the different simulation paths  are available for other statistics. 
Different options price can be evaluated outside of the loop
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Performance Comparison

SINGLE LOOP EXECUTION

Time range subdivided in 200 intervals.
104 Monte Carlo trials takes 3 seconds
105 Monte Carlo trials takes 26 seconds
106 Monte Carlo trials takes 4’ 42  seconds

DOUBLE LOOP EXECUTION

Time range subdivided in 200 intervals.
104 Monte Carlo trials takes 1’ 37 seconds
105 Monte Carlo trials takes 15’ 54 seconds
106 Monte Carlo trials takes 3h 9’ 38 seconds

AMD OPTERON 4 proc 4 core 2.7 GHz  X86_64 platform with RHEL 5.4 RAM 32 GB



4. Computing the Greeks of the Options
Computing derivatives approximations is always a tricky business

In our Monte Carlo simulation software the following three 
methods for the estimation of the greeks have been implemented 
and tested: 

1)  resimulation 
2)  the pathwise method 
3)  the likelihood ratio method

All these methods requires some modifications in the MODEL for 
providing the option price sensitivities.



5. Implementing the Longstaff-Schwarz 
method for American Options

Efficient pricing of American option is still a thorny issue in both 
algorithmic complexity and computational burden.

Given the availability of our Monte Carlo simulation engine, the 
implementation of the Least Squares Monte Carlo (LSM) method, 
proposed by Longstaff and Schwarz (2001), is seemed a simple 
solution.

American option can be exercised any time prior expiration, 
therefore these derivatives embeds an optimal stopping time 
problem.



5. Implementing the Longstaff-Schwarz 
method for American Options

At each simulation time we compare the immediate exercise 
value with the expectation of the continuation holding policy.

The value of continuing the option life at time tj is given by:
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( )TttC jk ,;,ω is the cash flow conditional on the option existence 

at time tk and optimal behaviour up to tj



5. Implementing the Longstaff-Schwarz 
method for American Options

The expected value from continuing the option’s life is computed 
by regressing the realized cash flows on a set of orthogonal basis 
functions.

In our examples we have employed the Laguerre polynomials:
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5. Implementing the Longstaff-Schwarz 
method for American Options

Different orthogonal polynomials have been proposed in the 
literature (Hermite, Legendre, Chebyshev)

The number of polynomials and their coefficients can be easily 
adjusted by the user.



6. Some numerical examples
European basket option: price of a call and a put on a weighted 
average of 3, 5 and 10 assets.



6. Some numerical examples
Asian basket option: price of a call on a weighted average of 3, 5 
and 10 assets.



6. Some numerical examples
American option: price of a put on a single asset and a basket of 3 
assets  (preliminary results).



7. Concluding remarks

We have shown a software tool for employing Monte Carlo 
simulation methods for pricing European and American basket 
options and many kind of path dependent options. 
A very critical role is played by the Random Number Generator 
(found relevant differences with MATLAB) 
The software tool is based on a set of R functions. 
It allows end users to mathematically describe their multi asset 
portfolio. 
The same technical apparatus has been adopted for the computation 
of the greeks of the options. 
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