
Some possible directions for the R engine

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

July 22, 2010

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 1 / 34

Introduction

This talk outlines a few possible directions for development in the core R
engine over the next 12 to 18 months:

Taking advantage of multiple cores for vectorized operations and
simple matrix operations.

Byte code compilation of R code.

Further developments in error handling.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 2 / 34

Why Parallel Computing?

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

A common question:

How can I make R use more than one core for my
computation?

There are many easy answers.
But this is the wrong question.

The right question:

How can we take advantage of having more than one
core to get our computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 3 / 34

Some Approaches to Parallel Computing

Two possible approaches:

Implicit parallelization:

automatic, no user action needed

Explicit parallelization:

uses some form of annotation to specify parallelism

I will focus on implicit parallelization of

basic vectorized math functions

basic matrix operations (e.g. colSums)

BLAS

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 4 / 34

Parallelizing Vectorized Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Parallel

Sequential n

n/2

n/2

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 5 / 34

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 6 / 34

Parallelizing Vectorized Operations
Some Experimental Results

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Mac OS X/Intel/i386

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Mac OS X/Intel/i386

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 7 / 34

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.

Intercepts on a given platform are roughly the same for all functions.

If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.

For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 8 / 34

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 is not yet clear.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 9 / 34

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 10 / 34

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 11 / 34

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 12 / 34

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Simple Matrix Operations

Very preliminary results for colSums on an 8-core Linux machine:

0 100 200 300 400 500

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

n

sp
ee

du
p

Speedups for colSums of a Square Matrix

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 13 / 34

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 14 / 34

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 15 / 34

Byte Code Compilation

The current R implementation

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 16 / 34

Byte Code Compilation

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 17 / 34

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

Current R implementations include a byte code interpreter, and a
preliminary compiler is available from my web page.

The current compiler and virtual machine produce good
improvements in a number of cases.

However, better results should be possible with a new virtual machine
design.

This redesign is currently in progress.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 18 / 34

A Simple Example

Here is an example that example has appeared in discussions of language
performance in the R mailing lists:

p1 <- function(x) {

for (i in seq_along(x))

x[i] <- x[i] + 1

x

}

A few comments:

There is no good reason to write code like this in R; the expression

x + 1

is more general, simpler, and much, much faster.

This sort of code does appear often in benchmark discussions.

Quantitative improvements obtained for such benchmarks do not
usually carry over to real code.

Qualitative results can be useful.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 19 / 34

Some Performance Results

Some timings from

x <- rep(1, 1e7)

system.time(p1(x))

on an x86_64 Ubuntu laptop:

Method Time Speedup

Interpreted 32.730 1.0
Byte compiled 9.530 3.4
Ra 1.647 19.9
Experimental 1.128 29.0
x+1 0.119 275.0

Ra is Stephen Milborrow’s Ra/jit system.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 20 / 34

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special opcodes for most SPECIALs, many BUILTINs
inlines simple .Internal calls: dnorm(y, 2, 3) is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special opcodes for many .Internals

Currently the compiler has to be called explicitly to compile single
functions or files of code.

An alternative design would have code compiled automatically at
parse time or at time of first use.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 21 / 34

Compiler Operation

The new virtual machine will support additional optimizations, including

avoiding the allocation of intermediate values when possible

more efficient variable lookup mechanisms

more efficient function calls

possibly improved handling of lazy evaluation

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 22 / 34

Future Directions

Some possible directions that may also be explored:

Partial evaluation when some arguments are constants

Intra-procedural optimizations and inlining

Run-time specialization and threaded code generation

Vectorized opcodes

Declarations (sealing, scalars, types, strictness)

Advice to programmer on possible inefficiencies

Machine code generation using LLVM or other toolkits

Replacing the interpreter entirely

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 23 / 34

Further Developments in Error Handling

Errors can occur in many situations, for example

extreme random number values may result in square roots of negative
numbers in simulations

code depending on network connections can fail due to network issues

Other situations may be suspect but not necessarily always errors; these
can be signaled as warnings.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 24 / 34

Further Developments in Error Handling

Being able to catch and continue after errors is very useful, and R has a
rich set of mechamisms for this:

Code executed in a tryCatch expression will jump back to the level of
the tryCatch and continue with the handler defined there.

The older try function is a special case.

Code executed in a withCallingHandlers expression will call the
specified handler from within the error signaler; this allows errors or
warnings to be ignored or a debugger to be entered.

A useful idiom is

withCallingHandlers(<<some suspect code>>,

error = function(e) recover())

will enter the debugger provided by recover if an error occurs in the
suspect code.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 25 / 34

Further Developments in Error Handling

Some additional features:

Handlers can chose to deal with an error, have an error ignored, or
defer to another handler.

Continuation points, called restarts can be established that allow a
computation to continue after an error.

These restarts can be invoked with arguments to provide new data to
use.

For example, an optimizer can provide a restart that accepts an
alternative function value to use if the computation of the optimized
function generates an error.

A few areas are currently lacking:

Documentation

A hierarchy of error and warning classes that can be used for
computing appropriate responses.‘

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 26 / 34

Error Handling Documentation

The error handling mechanism is currently documented in the help
pages.

More extensive documentation is needed, with extended examples
showing the use of the different mechanisms in different contexts

The first step of course is writing such a document.

The best way to make such a document accessible is not clear;
perhaps as a vignette in one of the core packages.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 27 / 34

Error and Warning Classes

Currently the core C code raises errors in nearly 2,400 places.

All these are currently signaled as errors of class as simpleError.

Error handling code should be able to respond to different errors in
different ways.

But there is currently no way to distinguish among different errors
other than by reading the error messages, and these vary based on the
language locale used.

In addition, to be able to handle errors appropriately, handling code
needs to have relevant data.

For example, a handler for a failed http request would need the URL
and the error code.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 28 / 34

Error and Warning Classes

What is needed is

A careful study of the error situations currently signaled
To classify these into an appropriate hierarchy
To design the classes in the hierarchy to contain appropriate
information relevant to the error.

A number of other languages use an object oriented approach to error
handling and can serve as examples.

The approach will have to be incremental, perhaps starting with
input/output and networking related errors.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 29 / 34

Increasing the Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 30 / 34

Some Considerations

The current limit represents the largest possible 32-bit signed integer.

For all practical purposes on all current architectures the C int type
and the Fortran integer type are 32 bit signed integers.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int

would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Reliance on BLAS may limit individual dimensions to 231 − 1 but not
necessarily restrict total abject size to that value.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 31 / 34

Changing the R Integer Data Type

Changes would be needed to the R integer data type and/or to return
values of functions that currently return integer values, such a the
length function.

Changes to the R integer type would create some issues with saved
workspaces.

Using a wider integer type on 64 bit platforms than on 32 bit ones is
possible but creates issues with porting workspaces.

Using a 64 bit integer on all platforms may be a better choice.

One possibility is using double precision floating point numbers to
internally represent R integers as well as reals. This would have the
advantage of allowing better handling of integer NA values.

If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 32 / 34

Status of Explorations

Exploration of this issue is still at a very preliminary stage.

The constraints and limitations are not yet fully understood.

The magnitude of the effort is also not yet clear.

The next year or so will likely see some significant effort to
understand the constrains and the options.

Once that point has been reached, directions for moving forward, and
time frames for doing so, should become clearer.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 33 / 34

Summary

This talk has outlined several areas I believe are important and to
which I hope I can make some contributions during the next 12 to 18
months.

The R development model is quite distributed: other R developers are
working on a wide range of other areas.

Fortunately conflicts are rare and the different efforts, so far at least,
have merged together quite very successfully.

Luke Tierney (U. of Iowa) Directions for the R engine July 22, 2010 34 / 34

	Introduction
	Parallelizing Vector and Matrix Operations
	Parallelizing Vectorized Operations
	Parallelizing Simple Matrix Operations
	Using a Parallel BLAS

	Byte Code Compilation
	Further Developments in Error Handling
	Increasing the Limit on Vector Object Size
	Summary

