The SHOGUN Machine Learning Toolbox
(and its R interface)

Sören Sonnenburg1,2, Gunnar Rätsch2, Sebastian Henschel2, Christian Widmer2, Jonas Behr2, Alexander Zien2, Fabio De Bona2, Alexander Binder1, Christian Gehl1, and Vojtech Franc3

1 Berlin Institute of Technology, Germany
2 Friedrich Miescher Laboratory, Max Planck Society, Germany
3 Center for Machine Perception, Czech Republic
Outline

1. Introduction
2. Features
3. Code Example
4. Summary
What can you do with the SHOGUN Machine Learning Toolbox [6]?

- **Types of problems:**
 - Clustering (no labels)
 - **Classification** (binary labels)
 - Regression (real valued labels)
 - Structured Output Learning (structured labels)

- Main focus is on **Support Vector Machines** (SVMs)
- Also implements a number of other ML methods like
 - Hidden Markov Models (HMMs)
 - Linear Discriminant Analysis (LDA)
 - Kernel Perceptrons
Support Vector Machine

- Given: Points \(x_i \in \mathcal{X} \ (i = 1, \ldots, N) \) with labels \(y_i \in \{-1, +1\} \)
- Task: Find hyperplane that maximizes margin

Decision function \(f(x) = w \cdot x + b \)
SVM with Kernels

SVM decision function in kernel feature space:

\[
f(x) = \sum_{i=1}^{N} y_i \alpha_i \Phi(x) \cdot \Phi(x_i) + b = k(x, x_i)
\]

Training: Find parameters \(\alpha \)

Corresponds to solving quadratic optimization problem (QP)
Large-Scale SVM Implementations

- Different SVM solvers employ different strategies
- Provides generic interface to 11 SVM solvers
- Established implementations for solving SVMs with kernels
 - LibSVM
 - SVM$^{\text{light}}$
- More recent developments: Fast linear SVM solvers
 - LibLinear
 - SvmOCAS [1]
- Support of Multi-Threading

⇒ We have trained SVMs with up to 50 million training examples
Large Scale Computations

- Training time vs sample size
Large Scale Computations

- Training time vs sample size

![Graph showing training time vs sample size]

- 12k
- 1 min
Large Scale Computations

- Training time vs sample size

![Graph showing training time vs sample size](image)
Large Scale Computations

- Training time vs sample size

![Graph showing training time vs sample size.](image)
Various Kernel Functions

- Kernels for real-valued data

(a) Linear
(b) Polynomial
(c) Gaussian

⇒ What if my data looked like...
Various Kernel Functions

- Kernels for real-valued data

(d) Linear
(e) Polynomial
(f) Gaussian

⇒ What if my data looked like...
...this?!
Various Kernel Functions

- **String Kernels**
 - Applications in Bioinformatics [3, 5, 7], Intrusion Detection
 - Idea of Weighted Degree String Kernel
 \[
 k(s_1, s_2) = w_7 + w_1 + w_2 + w_2 + w_3
 \]

- **Heterogeneous Data Sources**
 - CombinedKernel class to construct kernel from weighted linear combination of subkernels
 \[
 K(x, z) = \sum_{i=1}^{M} \beta_i \cdot K_i(x, z)
 \]
 - \(\beta_i\) can be learned using Multiple Kernel Learning [4, 2]
Interoperability

- Supports many programming languages
 - Core written in C++ (> 130,000 lines of code)
 - R-bindings using SWIG (Simple Wrapper Interface Generator)
 - Additional bindings: Python, Matlab, Octave
 - More to come, e.g. Java

- Supports many data formats
 - SVMlight, LibSVM, CSV
 - HDF5

- Community Integration
 - Documentation available, many many examples (> 600)
 - Source code is freely available
 - There is a Debian Package, MacOSX
 - Mailing-List, public SVN repository (read-only)
 - Part of MLOSS.org
Simple Code Example

Simple code example: SVM Training

```r
# given: features, labels, test as R-data structures
lab <- Labels(labels)
train <- RealFeatures(features)
gk <- GaussianKernel(train, train, 1.0)
svm <- LibSVM(10.0, gk, lab)
svm$train()
out <- svm$predict(test)
```

- It's easy to train & predict
- Generic interface to many solvers (e.g. LibSVM → SVMLight)
- SVM accepts any kernel (e.g. GaussianKernel → PolyKernel)
When is SHOGUN for you?

- You want to work with SVMs (11 solvers to choose from)
- You want to work with Kernels (35 different kernels)
 ⇒ Esp.: String Kernels / combinations of Kernels
- You have large scale computations to do (up to 50 million)
- You use one of the following languages:
 R, Python, octave/MATLAB, C++
- Community matters: mloss.org, mldata.org
Thank you!

Thank you for your attention!!

For more information, visit:

- Implementation http://www.shogun-toolbox.org
- More machine learning software http://mloss.org
- Machine Learning Data http://mldata.org
References I

V. Franc and S. Sonnenburg.
Optimized cutting plane algorithm for large-scale risk minimization.

Efficient and accurate lp-norm multiple kernel learning.

mGene: Accurate SVM-based gene finding with an application to nematode genomes.

Large scale multiple kernel learning.
S. Sonnenburg, A. Zien, and G. Rätsch.

The SHOGUN machine learning toolbox.

Journal of Machine Learning Research, 2010.
(accepted).

C. Widmer, J. Leiva, Y. Altun, and G. Raetsch.
Leveraging Sequence Classification by Taxonomy-based Multitask Learning.