

A Grid Computing environment

for Design and Analysis

of Computer Experiments

Yann Richet¹, David Ginsbourger², Olivier Roustant³, Yves Deville⁴

¹ Radioprotection and Nuclear Safety Institute, France

² Institute of Geology and Hydrogeology, University of Neuchatel, Switzerland

- ³ Graduate School of Engineering, Saint-Etienne, France
- ⁴ Statistical consultant, Chambery, France

Great thanks for **Rserve** package and support: **Simon Urbanek**

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Reasons to work together Industry needs increase productivity overtake competitors Applied research needs industrial applications funding

Reasons to work together Industry needs increase productivity overtake competitors Applied research needs industrial applications funding

Resiliency against partnership Industry needs short term Rol efficient productive integration over existing practice Applied research needs "formal bridge" between theory and application mid / long term & continuous partnership

A well-suited partnership **DICE Consortium** http://www.dice-consortium.fr (Deep Inside Computer Experiments)

Industrial partners

Research partners

A well-suited partnership **DICE Consortium** http://www.dice-consortium.fr (Deep Inside Computer Experiments)

Industrial partners: applications and testing "orthogonal" high tech fields: automotive, oil, aerospace, nuclear plants & safety shared funding: 40 000 € / year.partner

Research partners: scientific and software deliverables supplementary skills contractual contribution and goals hold scientific organization (PhD, postdoc, ...)

A well-suited partnership **DICE Consortium** http://www.dice-consortium.fr (Deep Inside Computer Experiments)

Industrial partners: applications and testing "orthogonal" high tech fields: automotive, oil, aerospace, nuclear plants & safety shared funding: 40 000 € / year.partner

Research partners: scientific and software deliverables supplementary skills contractual contribution and goals hold scientific organization (PhD, postdoc, ...)

Finite term project

3 years long & every 6 month meeting focus on advances software deliverables to be released as OSS (GPL/LGPL) in the end scientific deliverables to be released in ~ public domain in the end

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer code Used as an unknown function (Maybe) heavy CPU cost Represents any <u>existing simulation solve</u>r: finite-elements, Monte Carlo, ... Fortran, C, close source, ...

Input variables

Environment, control or simulation variables Scalar, vector, time sequences, ...

Output variables Interest values Scalar, vector, time sequences, ...

From math. tools ... Design of experiments Surrogate modeling

DiceDesign, Ihs, stats, ... DiceKriging, DiceEval, tgp, ...

From math. tools ... Design of experiments Surrogate modeling

DiceDesign, Ihs, stats, ... DiceKriging, DiceEval, tgp, ...

... To engineering issues Sensitivity analysis Uncertainties propagation Optimization Inversion

DiceScreening, sensitivity, ... *DiceMRM*, lhs, boot, ... DiceOptim,?

Software continuous integration: input / code / output Wrap "Computer code" as a [R] function support computing environment (remote exec, network, grid load, ...) integrate parallel capabilities of algorithms (<u>primary</u> issue !)

Software continuous integration: input / code / output Wrap "Computer code" as a [R] function support computing environment (remote exec, network, grid load, ...) integrate parallel capabilities of algorithms (<u>primary</u> issue !)

Integrate [R] within grid computing environment language interface & objects mapping [R] / {Java, C++, C#, Python, ...} sequential access to algorithms (ask(...) & tell(...))

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Software overview

Engineering through "Computer Experiments" Allows engineer to easily apply "brute" factorial design then induces to formalize its model and goals in a DoE approach Frequently needs for supplementary features (through dedicated code plugin)

Software overview

Engineering through "Computer Experiments" Allows engineer to easily apply "brute" factorial design then induces to formalize its model and goals in a DoE approach Frequently needs for supplementary features (through dedicated code plugin)

Distributed computing

Compatible with larger set of CPU boxes:

server, workstation, grid, cluster, ... and even (Windows) office desktop ! Easy dynamic merge of heterogeneous power

Software overview

Engineering through "Computer Experiments" Allows engineer to easily apply "brute" factorial design then induces to formalize its model and goals in a DoE approach Frequently needs for supplementary features (through dedicated code plugin)

Distributed computing

Compatible with larger set of CPU boxes:

server, workstation, grid, cluster, ... and even (Windows) office desktop ! Easy dynamic merge of heterogeneous power

Application fields agnostic software Any ASCII I/O software is compatible All algorithms selectable for any computing software

Software overview

Engineering through "Computer Experiments" Allows engineer to easily apply "brute" factorial design then induces to formalize its model and goals in a DoE approach Frequently needs for supplementary features (through dedicated code plugin)

Distributed computing

Compatible with larger set of CPU boxes:

server, workstation, grid, cluster, ... and even (Windows) office desktop ! Easy dynamic merge of heterogeneous power

Application fields agnostic software

Any ASCII I/O software is compatible All algorithms selectable for any computing software

Extendability & wrapping

Basic (Groovy-DSL scripting) and extended (Java) plugins for computing code Basic ([R]) and extended (Java::Rserve or Java::*) plugins for algorithms

Network integration overview

[R] tech. overview

[R] used as a script engine for dataset parameterizing

< ,	🖉 Edit 💥 Cancel 🖋 Apply 🔩 Overwrite 🗛 🗛 🖘 🛶 🛛 🔹 Variable: \$ () Formula: @	≬ {}
448	* dHcyl_cm : hauteur du cylindre fissile en fonction de la masse de Pu par puits et de sa densite	-
449	* Si le remplissage est trop important (i.e. densite trop faible, alors la masse de Pu par conteneur est in	fe
450	*R< dHcy1_cm <- function(mPu_kg, d.Pu02) { min(0.5 * H.Cont , 0.5 * 1.0E6 * 4/pi * mPu_kg / (CPu*d.Pu02/2	3.
451		
452	ARRE	
453	ETAP ACTI 100	
454	KEFF SIGM 0.00100	
455	FINA	
456		
457		
458	SEALINK 5 AP02 5 1 2 3 4 5	
409	INCHIMIE	
460	CEON .	
401 462		
463		
464	* Reflexion nar 60 cm de heton	
465	TYPE 10 BOTT a_{1} as cm / 2. 1 # ####} a_{1} a_{1} as cm / 2. 1 # ####} a_{1} a_{2} b_{1} a (1.5 + H Cont / 2.) 1 # ####	<mark>ء</mark>
466	V01U 10 0 10 1 0. 0. $(a_{1} 2 * (1.5 + H, Cont / 2.) + #.####)$	· 📃
467	RB0IT 1 1 1 1 0 0	
468	* Interieur de la salle (brouillard de densité variable)	
469	TYPE 11 BOIT @{pas_cm / 2. #.####} @{pas_cm / 2. #.####} @{ 2 * (1.5 + H.Cont / 2.) #.####}	
470	VOLU 11 10 11 @{air_broui(d.broui(\$d.broui.scale)) #} 0. 0. @{ 2 * (1.5 + H.Cont / 2.) #.####}	
471		
472	* Puits (acier 5 mm)	
473	TYPE 20 CYLZ @{6.5 + Ep.Puits / 10. #.####} @{1.5 + H.Cont / 2. #.####}	366
474	VOLU 21 11 20 4 0. 0. @{1.5 + H.Cont / 2. #.####}	33
475	VOLU 22 11 20 4 0. 0. @{4.5 + 3 * H.Cont / 2. #.####}	
476	* Interieur Puits (air)	
477	TYPE 30 CYLZ 6.5 @{H.Cont / 2. #.####}	-
478		•

[R] tech. overview

[R] used as a script engine for dataset parameterizing[R]/Rserve used as an API inside Java DoE algorithm plugin

```
R.voidEval("km" + currentiteration + "_" + hcode + " <- km(y~" + kmodel + ","
        + "optim.method='gen',"
        + "penalty = NULL,"
        + "covtype='" + covtype + "',"
        + nuggetnoise_str
        + "design=X" + currentiteration + "_" + hcode + "."
        + "response=Y" + currentiteration + "_" + hcode + ","
        + "control=list(" + control_km + "))");
REXP exists = R.eval("exists('km" + currentiteration + "_" + hcode + "')");
if (exists == null || !(exists.asInteger() == 1)) {
    return new Status(Decision.DESIGN_OVER, "No km object built.");
}
R.savels(new File(_repository, "km" + (currentiteration) + "_" + hcode + ".Rdata"), (currentiteration) + "_" + hcode);
R.voidEval("EGO" + currentiteration + "_" + hcode + " <- max_gEI.CL(model=km" + currentiteration + "_" + hcode + ","
        + "npoints=" + batchSize + ","
        + "L=c(" + liar + "(" + (search_min ? "" : "-") + "Y" + currentiteration + "_" + hcode + "$y)," + liar_noise + "),"
        + "lower=c(" + ASCII.cat(",", min) + "),"
        + "upper=c(" + ASCII.cat(",", max) + "),"
        + "control=list(" + control_ego + ")"
        + (expertfunction != null ? ",weight.EI=" + expertfunction : "") + ")");
/*REXP*/ exists = R.eval("exists('EGO" + currentiteration + "_" + hcode + "')");
if (exists == null || !(exists.asInteger() == 1)) {
    return new Status(Decision.DESIGN_OVER, "No EGO object built.");
}
```

[R] tech. overview

[R] used as a script engine for dataset parameterizing
[R]/Rserve used as an API inside Java DoE algorithm plugin

[R] DoE algorithm plugin

```
buildInitialDesign <- function(d) {</pre>
                                                                                lhs <- maximinLHS(n=initBatchSize,k=d)</pre>
                                                                                if (Xbounds) {
#help=Efficient Global Optimization (EGO) algorithm
                                                                                  e=c(0,1)
#type=Optimization
                                                                                  id=1
#output=Optimum
#parameters=initBatchSize=10,batchSize=10,iterations=10,nugget.estim=f
                                                                                  while(id<d){
                                                                                    e=rbind(cbind(e,0),cbind(e,1))
                                                                                    id=id+1
## constructor and initializer of R session
init <- function() {
                                                                                  Xinit=rbind(as.matrix(lhs),as.matrix(e))
                                                                                } else { Xinit=as.matrix(lhs) }
                                                                                return(Xinit)
                                                                            }
## first design building. All variables are set in [0,1].
## d is the dimension, or number of variables
                                                                            ## iterated design building.
## @param d number of variables
                                                                            ## @param X data frame of current doe variables (in [0,1])
buildInitialDesign <- function(d) {</pre>
                                                                            ## @param Y data frame of current results
                                                                            ## @return data frame or matrix of next doe step
                                                                            prepareNextDesign <- function(X,Y) {</pre>
                                                                                if (iEGO > iterations) return();
## iterated design building.
## @param X data frame of current doe variables (in [0,1])
                                                                                d = dim(X)[2]
## @param Y data frame of current results
                                                                                if (dim(Y)[2] == 2) { noise.var <<- as.array(Y[,2])</pre>
## @return data frame or matrix of next doe step
prepareNextDesign <- function(X,Y) {
                                                                                } else { noise.var <<- NULL }</pre>
                                                                                if (Xautoscale=="" | Xautoscale=="FALSE" | Xautoscale=="false") { pEGO <<- re</pre>
                                                                                } else { pEGO <<- searchOptim(Xautoscale, init=pEGO, X=X, Y=Y) }</pre>
## final analysis. All variables are set in [0,1]. Return HTML string
                                                                                cat("p=",pEGO,"\n")
## @param X data frame of doe variables (in [0,1])
## @param Y data frame of results
                                                                                if (search min) {y=Y[,1]} else {y=-Y[,1]}
## @return HTML string of analysis
                                                                                kmi <- km(control=list(trace=FALSE),trend,optim.method='gen',penalty = NULL,c</pre>
analyseDesign <- function(X,Y) {
                                                                                EGOi <- max gEI.CL(model=kmi,npoints=batchSize,L=liar(as.array(Y[,1])),lower=
                                                                                Xnext <- unscaleX(EGOi$par,pEGO)</pre>
```

@param d number of variables

first design building. All variables are set in [0,1]. d is the dimension, or

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Criticality safety assessment

Computer code:Monte Carlo neutrons simulatorOutput variables:neutron multiplication factor (scalar ~1)Input variables:many hypothesis as independent scalarcode input parameterscode input parametersEngineering issue:find optimization (max) of outputover hypothesis range

Criticality safety assessment

Computer code:Monte Carlo neutrons simulatorOutput variables:neutron multiplication factor (scalar ~1)Input variables:many hypothesis as independent scalarCode input parameterscode input parametersEngineering issue:find optimization (max) of output
over hypothesis range

Old practical method (2 years ago) Hierarchical (user's prior) selection of ~3 input variables By-hand remote code launching (over interactive shell) Iterative & orthogonal maximization search (<20 points of calculation)

Criticality safety assessment

Computer code:Monte Carlo neutrons simulatorOutput variables:neutron multiplication factor (scalar ~1)Input variables:many hypothesis as independent scalarCode input parameterscode input parametersEngineering issue:find optimization (max) of output
over hypothesis range

Old practical method (2 years ago) Hierarchical (user's prior) selection of ~3 input variables By-hand remote code launching (over interactive shell) Iterative & orthogonal maximization search (<20 points of calculation)

Within Computer Experiments paradigm (PROMETHEE & R::DiceOptim / DiceKriging) No input variable ignored (no expert prior necessary) Automatic remote code launching & output parsing <u>Global</u> maximization of output (may support >1000 points of calculation)

Configuration Help Model \ Define \ Data sets Variables Data set State Pts Dataset 🛨 🚺 Help Puits_PuO2_2variable... new Model 1 Moret_5A1 Puits_PuO2_2variables_grille_75x75.jd.1 Puits_PuO2_2variable... new 1 d.broui.scale d.Pu.. Input variable Default value Output values Type mean_keff float sigma_keff float A A 🔄 🛶 Edit 💥 Cancel 🛷 Apply 🕹 Overwrite $4 \rightarrow$ Variable: \$ (...) Formula: @ {...} Calculations < 0 Q 460 Data set State Activity ۰ 461 GEOM 462 MODU O ٩U 463 464 * Reflexion par 60 cm de beton 465 TYPE 10 BOIT 45 45 363 466 VOLU 10 0 10 1 0. 0. 303 467 RB0IT 1 1 1 1 0 0 468 * Interieur de la salle (brouillard de densité variable) 469 TYPE 11 BOIT 45 45 303 470 VOLU 11 10 11 2 0. 0. 303 471 472 * Puits (acier 5 mm) 473 TYPE 20 CYLZ 6.8 151.5 474 VOLU 21 11 20 4 0. 0. 151.5 ت ج 475 VOLU 22 11 20 4 0. 0. 454.5 476 * Interieur Puits (air) 477 TYPE 30 CYLZ 6.5 150 Results 478 VOLU 31 21 30 2 0.0. 153 479 VOLU 32 22 30 2 0.0. 456 V Data set Size Pts State 480 * Conteneur (acier 2.5 mm) 481 TYPE 40 CYLZ 5.9 150 482 VOLU 41 31 40 4 0. 0. 153 y 483 VOLU 42 32 40 4 0. 0. 456 484 * Interieur conteneur (air) 9 485 TYPE 50 CYLZ 5.75 150 486 VOLU 51 41 50 2 0.0. 153 ت ہے: 487 VOLU 52 42 50 2 0.0. 456 488 * Fissile 489 TYPE 60 CYLZ 5.75 49.8925 490 **4**

Configuration Help

Model \ Define \
Model Moret_
Input
d.bro
d.

odel Moret_5A1	T telp	Dataset Puits_PuO2_2variables_grille	-75x75.jd
Input variable	Default value	Output values	Туре
d.broui.scale	0.0	mean_keff	float
d.PuO2	4.0	sigma_keff	float

Calculations	< 🔎 Edit 💥 Cancel 🛷 Apply 🐥 Overwrite 🗛 🗛 🖛 🖨 🖌 Variable: \$ () Formula: @ {	.}
Q Data set State Activity Image: Constraint of the set of t	<pre>460 461 462 463 464 465 465 TYPE 10 BOIT @{pas_cm / 2. #.####} @{pas_cm / 2. #.####} @{ 60.0 + 2 * (1.5 + H.Cont / 2.) #.####} 466 VOLU 10 0 10 1 0. 0. @{ 2 * (1.5 + H.Cont / 2.) #.####} 467 RBOIT 1 1 1 1 0 0 468 * Interieur de la salle (brouillard de densité variable) 469 TYPE 11 BOIT @{pas_cm / 2. #.####} @{pas_cm / 2. #.#####} @{ 2 * (1.5 + H.Cont / 2.) #.####} 470 VOLU 11 10 11 @{air_broui(d.broui(\$d.broui.scale)) #} 0. 0. @{ 2 * (1.5 + H.Cont / 2.) #.####} 471 472 * Puits (acier 5 mm) 473 TYPE 20 CYLZ @{6.5 + Ep.Puits / 10. #.#####} @{1.5 + H.Cont / 2. #.#####} 474 VOLU 21 11 20 4 0. 0. @{4.5 + H.Cont / 2. #.####} 475 VOLU 22 11 20 4 0. 0. @{4.5 + 3 * H.Cont / 2. #.####}</pre>	•
V Data set Size Pts State Image: Second secon	477 TYPE 30 CYLZ 6.5 @{H.Cont / 2. #.####} 478 VOLU 31 21 30 2 0. 0. @{3.0 + H.Cont / 2. #.####} 479 VOLU 32 22 30 2 0. 0. @{6.0 + 3 * H.Cont / 2. #.####} 480 * Conteneur (acier 2.5 mm) 481 TYPE 40 CYLZ @{D.Cont / 2. + Ep.Cont / 10. #.####} @{H.Cont / 2. #.####} 482 V0LU 41 31 40 4 0. 0. @{6.0 + 3 * H.Cont / 2. #.####} 483 V0LU 42 32 40 4 0. 0. @{6.0 + 3 * H.Cont / 2. #.####} 484 * Interieur conteneur (air) TYPE 50 CYLZ @{D.Cont / 2. #.####} @{H.Cont / 2. #.####} 486 V0LU 51 41 50 2 0. 0. @{6.0 + 3 * H.Cont / 2. #.####} 487 V0LU 52 42 50 2 0. 0. @{6.0 + 3 * H.Cont / 2. #.####} 488 * Fissile 489 TYPE 60 CYLZ @{D.Cont / 2. #.####} 489 TYPE 60 CYLZ @{D.Cont / 2. #.####} 490 •	

ت ہے:

Y

-

Configuration Help Model Define Data sets Input Output Data set State Pts Variables F Ø, 2 Puits_PuO2_2variable... defining 1 d.broui.scale d.Pu.. Name Engineering Group Type Default value Values Engineering Name V real 0.0 [0.0;1.0] 4 N(mean_keff,s... GaussianDensity d.broui.sca V 4.0 d.PuO2 real [0.5;3.5] mean keff+3*.. mean keff sigma_keff Calculations Q Data set State Activity AV -Engineering N(mean_keff,sigma_keff) as a function of d.broui.scale d.PuO2 Type Name Computing parameters \ Kriging parameters \ Optimization parameters \ Expert know No design of experiments 5 🌲 Min iterations = Sensitivity analysis SRC Calibration EGI 100 Max iterations = Calibration Dichotomy Uncertainties prop... Monte Carlo sampling Stop when expected improvement lower than = 1.0E-10 Sensitivity analysis FAST Xautoscale 9 🌲 Parallel computations = Uncertainties prop... Monte Carlo sampling with statistic Calibration Bounds dichotomy 9 🌲 Initial parallel computations = Uncertainties prop... Wilks formula Sensitivity analysis Morris screening Bounding values Optimization gradientdescent Sensitivity analysis PCC Results Optimization Efficient Global Optimization V Data set Size Pts State

R

Type

Numeric

Numeric

Numeric

Configuration Help

Results

 Data set

Data s	iets				1
	Data set	State	Pts	Variables	

Cal	culations	_	_	_
	Q	Data set	State	Activity
	V Puits_Pu	102_2variable	running	0/13
\bigcirc				
0				

Size

Pts

	Calculators pool Cases of calcula	itions $\langle Results \rangle$		
	d.broui.scale	d.PuO2	Status	Results
	0.05292791611928907	0.608450717292726	running@neutrosec-3:44775	Running calculation
	0.43246648176055813	2.419029049342498	running@neutrosec-5:45716	Running calculation
	0.6515932745145013	1.2342307517149798	running@neutrosec-4:33376	Running calculation
	0.48777661594148314	2.7370404074899852	running@neutrosec-5:41623	Running calculation
	0.9752578554261062	0.8738973070091257	running@neutrosec-3:49300	Running calculation
	0.7734019996908804	3.2484961713198572	intact	?
	0.15940660941931936	2.8811014598080265	intact	?
	0.8569460754127552	1.9132098050322384	intact	?
	0.266666040988639	1.519644792424515	intact	?
	0.0	0.5	intact	?
	1.0	0.5	intact	?
Ľ	0.0	3.5	intact	?
	1.0	3.5	intact	?

	Calculator	Computer	Port	Since	State
State	neutrosec-3	neutrosec-3	44775	juil. 13 11:41:01	running
	neutrosec-5	neutrosec-5	45716	juil. 13 11:41:01	running
	neutrosec-5	neutrosec-5	41623	juil. 13 11:41:01	running
	neutrosec-4	neutrosec-4	33376	juil. 13 11:41:01	running
	neutrosec-3	neutrosec-3	49300	juil. 13 11:41:01	running

Configuration Help

Results

 Dat

Data s	ets				
Q.	Data set	State	Pts	Variables	
3					
3					
S					
3					
3					

Calcula	tions		
Q	Data set	State	Activity
	Puits_PuO2_2variable	running	4/13
0			

Calculators pool Cases of calcula	ations $\langle Results \rangle$		
d.broui.scale	d.PuO2	Status	Results
0.05292791611928907	0.608450717292726	neutrosec-3:44775 (00:00:48)	{mean_keff=0.83514, sigma_keff=9.9E-4}
0.43246648176055813	2.419029049342498	neutrosec-5:45716 (00:00:50)	{mean_keff=0.43866, sigma_keff=9.7E-4}
0.6515932745145013	1.2342307517149798	neutrosec-4:33376 (00:00:49)	{mean_keff=0.37587, sigma_keff=9.8E-4}
0.48777661594148314	2.7370404074899852	running@neutrosec-5:41623	Running calculation
0.9752578554261062	0.8738973070091257	neutrosec-3:49300 (00:00:50)	{mean_keff=0.39795, sigma_keff=9.8E-4}
0.7734019996908804	3.2484961713198572	running@neutrosec-3:44775	Running calculation
0.15940660941931936	2.8811014598080265	running@neutrosec-4:33376	Running calculation
0.8569460754127552	1.9132098050322384	running@neutrosec-5:45716	Running calculation
0.266666040988639	1.519644792424515	running@neutrosec-3:49300	Running calculation
0.0	0.5	intact	?
1.0	0.5	intact	?
0.0	3.5	intact	?
1.0	3.5	intact	?

					Calculator	Computer	Port	Since	State	
ta set	Size	Pts	State	e	neutrosec-3	neutrosec-3	44775	juil. 13 11:41:01	running	
					neutrosec-5	neutrosec-5	45716	juil. 13 11:41:01	running	
					neutrosec-5	neutrosec-5	41623	juil. 13 11:41:01	running	
					neutrosec-4	neutrosec-4	33376	juil. 13 11:41:01	running	
					neutrosec-3	neutrosec-3	49300	juil. 13 11:41:01	running	

Configuration Help

Data	sets			
	Data set	State	Pts	Variables

Cal	cula	tions	_	_
	Q	Data set	State	Activity
	1	Puits_PuO2_2variable	running	13/22
\bigcirc				

Calculators pool \rangle Cases of calculations \langle Results \rangle						
d.broui.scale	d.PuO2	Status	Results			
0.05292791611928907	0.608450717292726	neutrosec-3:44775 (00:00:48)	{mean_keff=0.83514, sigma_keff=9.9E-4}			
0.43246648176055813	2.419029049342498	neutrosec-5:45716 (00:00:50)	{mean_keff=0.43866, sigma_keff=9.7E-4}			
0.6515932745145013	1.2342307517149798	neutrosec-4:33376 (00:00:49)	{mean_keff=0.37587, sigma_keff=9.8E-4}			
0.48777661594148314	2.7370404074899852	neutrosec-5:41623 (00:01:00)	{mean_keff=0.48104, sigma_keff=9.5E-4}			
0.9752578554261062	0.8738973070091257	neutrosec-3:49300 (00:00:50)	{mean_keff=0.39795, sigma_keff=9.8E-4}			
0.7734019996908804	3.2484961713198572	neutrosec-3:44775 (00:01:02)	{mean_keff=0.61211, sigma_keff=9.7E-4}			
0.15940660941931936	2.8811014598080265	neutrosec-4:33376 (00:00:51)	{mean_keff=0.66163, sigma_keff=9.7E-4}			
0.8569460754127552	1.9132098050322384	neutrosec-5:45716 (00:00:57)	{mean_keff=0.49395, sigma_keff=9.7E-4}			
0.266666040988639	1.519644792424515	neutrosec-3:49300 (00:00:50)	{mean_keff=0.47258, sigma_keff=9.8E-4}			
0.0	0.5	neutrosec-5:41623 (00:00:51)	{mean_keff=0.64971, sigma_keff=9.9E-4}			
1.0	0.5	neutrosec-4:33376 (00:00:44)	{mean_keff=0.34886, sigma_keff=9.9E-4}			
0.0	3.5	neutrosec-3:49300 (00:00:53)	{mean_keff=0.87957, sigma_keff=9.7E-4}			
1.0	3.5	neutrosec-5:45716 (00:01:01)	{mean_keff=0.67924, sigma_keff=9.5E-4}			
0.04590724847512469	2.605851167997531	running@neutrosec-3:44623	Running calculation			
0.21815650910991874	3.4989094859937464	running@neutrosec-3:50653	Running calculation			
0.11945042439696585	0.5338582812272392	running@neutrosec-3:33010	Running calculation			
0.4147155410812902	0.8355990900960537	running@neutrosec-2:47676	Running calculation			
0.5022901650518179	2.4808048440609127	running@neutrosec-5:45716	Running calculation			
0.43641353099026536	3.4757703140607727	intact	?			
0.7343308298286555	1.4604956749642715	intact	?			
0.9268426589399511	2.1309098576262833	intact	?			
0.3427231896203011	2.049468758283183	intact	?			

Resu	ilts					Calculator	Computer	Port	Since	State	
	v	Data set	Size	Pts	State	neutrosec-5	neutrosec-5	45716	juil. 13 11:41:01	running	
S2 -						neutrosec-3	neutrosec-3	44623	juil. 13 11:43:58	running	
						neutrosec-3	neutrosec-3	33010	juil. 13 11:43:58	running	
						neutrosec-3	neutrosec-3	50653	juil. 13 11:43:58	running	
						neutrosec-2	neutrosec-2	47676	juil. 13 11:43:58	running	
9,											
											_

Configuration Help

Calcula	tions		_
Q	Data set	State	Activity
	Puits_PuO2_2variable	running	22/31
ŏ			

Data set	Size	Pts	State
	Data set	Data set Size	Data set Size Pts

neutrosec-2

neutrosec-2

Calculators pool Case	s of calculations $ackslash$	Results \					
d.broui.scale	0.0.29000		d.PuO2		Status	Results	
0.9752578554201002	0.073097	0.0/000120/			neutrosec-3:43300 (00:00:50)	{mean_kell=0.39795, sigma_kell	-9.0E-4)
0.173401999090804	3.246490	3.2484961713198572 n			neutrosec-3:44775 (00:01:02)	{mean_ken=0.01211, sigma_ken	-9.7 E-4}
0.15940600941931936	2.881101	40980802	00		heutrosec-4:33376 (00:00:51)	{mean_kem=0.00103, sigma_kem	=9.7 E-4}
0.8569460754127552	1.913208	80503223	84 5		neutrosec-5:46716 (00:00:57)	{mean_kem=0.49395, sigma_kem	=9.7E-4}
0.2666666040988639	1.519644	1/9242461	0		neutrosec-3:49300 (00:00:50)	{mean_keff=0.47258, sigma_keff	=9.8E-4}
0.0	0.5				neutrosec-5:41623 (00:00:51)	{mean_keff=0.649/1, sigma_keff	=9.9E-4}
1.0	0.5				neutrosec-4:33376 (00:00:44)	{mean_keff=0.34886, sigma_keff	=9.9E-4}
0.0	3.5				neutrosec-3:49300 (00:00:53)	{mean_keff=0.87957, sigma_keff	=9.7E-4}
1.0	3.5				neutrosec-5:45716 (00:01:01)	{mean_keff=0.67924, sigma_keff	=9.5E-4}
0.04590724847512469	2.605851	16799753	1		neutrosec-3:44623 (00:00:51)	{mean_keff=0.85919, sigma_keff	=9.6E-4}
0.21815650910991874	3.498909	3.4989094859937464			neutrosec-3:50653 (00:00:52)	{mean_keff=0.60311, sigma_keff	=9.6E-4}
0.11945042439696585	0.533858	0.5338582812272392			neutrosec-3:33010 (00:00:47)	{mean_keff=0.85267, sigma_keff	=9.7E-4}
0.4147155410812902	0.835599	0.8355990900960537			neutrosec-2:47676 (00:00:42)	{mean_keff=0.28872, sigma_keff	=9.7E-4}
0.5022901650518179	2.480804	2.4808048440609127			neutrosec-5:45716 (00:00:54)	{mean_keff=0.4585, sigma_keff=	=9.6E-4}
0.43641353099026536	3.475770	3.4757703140607727			neutrosec-2:47676 (00:00:50)	{mean_keff=0.54175, sigma_keff	=9.6E-4}
0.7343308298286555	1.460495	1.4604956749642715			neutrosec-3:33010 (00:00:50)	{mean_keff=0.41975, sigma_keff	=9.7E-4}
0.9268426589399511	2.130909	2.1309098576262833			neutrosec-3:44623 (00:00:50)	{mean_keff=0.53083, sigma_keff	=9.8E-4}
0.3427231896203011	2.049468	2.049468758283183			neutrosec-3:50653 (00:00:48)	{mean_keff=0.4176, sigma_keff=	:9.8E-4}
0.9712190185673535	2.847229	96433265	5		running@neutrosec-2:59960	Running calculation	
0.7917987112887204	2.429071	71114347	88		running@neutrosec-2:53680	Running calculation	
0.05148516556297446	3.287692	81589784	33		running@neutrosec-3:33010	Running calculation	
0.8871742211876926	0.794662	36250237	2		running@neutrosec-3:50653	Running calculation	1000
0.02364629251749863	0.724691	15456781	35		running@neutrosec-3:44623	Running calculation	1000
0.12089529420220883	1.795960	80096119	43		intact	?	
0.7192250608693345 3.4703009273638146				intact	?		
0.6767193588893861 1.7955763458739966				intact	?		
0.8992257152725557	3.488364	25223142	67		intact	?	
Calculator	Computer	Port	Since		State		
neutrosec-3	neutrosec-3	44623	juil. 13 11:43:58	done	2.		
neutrosec-3	neutrosec-3	33010	juil. 13 11:43:58	8 running			
neutrosec-3	neutrosec-3	50653	juil. 13 11:43:58	58 running			

running

running

59960

53680

juil. 13 11:45:43

juil. 13 11:45:43

neutrosec-2

neutrosec-2

Configura	ition Help			R				
Data set	s	Calculators pool \Cases of calculations \F	tesuits \					
	Data set State Pts	Variables Optimum \						
	· · · · · · · · · · · · · · · · · · ·		Optimum	Ę				
		Size = 49						
		Maximum value is 0.94493 (sd=9.7E-4) for						
		d.broui.scale = 0.051841262267356865 d.PuQ2 = 1.3152636722486182						
	Puits PuO2 2variables grille	75x75.id EGO 9116935	0838/5003/ (3a=0.00692189/34163522/) 0.015487485658755436 0.044748414478939784 2.763858399510977E-4 0.01589271212596177					
	Puits_PuO							
	Default branin.sci	Puits_PuO2_2variables_grille_75x75.jd 36722	4862 d.broui.scale = 0.051841262267356					
	Log \ Objects \			00000				
Calcula	tic Clear 9.5E-4,9.6E-4,9.6E-4,9.7E-4	4,9.0E-4,9.7E-4,9.7E-4,9.7E-4,9.8E-4,9.8E-4,9.7E-4,9.6E-4, 9.7E-4,9.6E-4,9.6E-4,9.7E-4,9.8E-4,9.8E-4,9.7E-4,9.6E-4,						
	9.5E-4,9.7E-4,9.7E-4,9.6E-4	9.4E-4,9.6E-4,9.7E-4,9.5E-4,9.7E-4,9.8E-4,9.6E-4,9.6E-4,9 8E-4,9.8E-4,9.8E-4,9.5E-4,9.5E-4,9.8E-4,9.8E-4,9.5E-4,9	o / . •					
	Pt 6E-4)*2,							
	design=X4_1389836095,res Over=TRUE))	onse=Y4_1389836095,control=Iist(trace=FALSE,logLikFail						
	[eval] exists("km4_13898360 [eval] save(file="km4_138983	5') 6095 Rdata' list=ls(nattern='4_1389836095') ascii=TRUE)	<u></u>					
	[IO] File km4_1389836095.F	data received.	o					
	max_qEl.CL(model=km4_13	[eval] EG 04_1389836095 <- max_qEl.CL(model=km4_1389836095,npoints=9,L=c(max(-Y4_1389836095\$y),9.4E-4),						
	lower=c(0.0,0.5),upper=c(1.0 [eval] exists("EGO4_1389836	,3.5),control=list(trace=FALSE),weight.El=NULL) 095')						
	[eval] save(file='EGO4_1389	336095.Rdata',list=ls(pattern='4_1389836095'),ascii=TRUE)						
	[eval] X5_1389836095 <- rb	nd(X4_1389836095,EGO4_1389836095\$par)		30000				
	[eval] El(model=km4_13898 [eval] El(model=km4_13898	16095,newdata=EGO4_1389836095\$par[1,],envi≔Elenv) 16095,newdata=EGO4_1389836095\$par[2,],envi≔Elenv)						
1	[eval] El(model=km4_13898 [eval] El(model=km4_13898	16095, newdata=EGO4_1389836095\$par[3,], envir=Elenv) 16095, newdata=EGO4_1389836095\$par[4], envir=Elenv)						
	[eval] El(model=km4_13898	16095, newdata=EG04_1389836095\$par[5,], envi≔Elenv)						
Results	[eval] El(model=km4_13898 [eval] El(model=km4_13898	1389836095,newdata=EGO4_1389836095\$par[6,],envir=Elenv) 16095,newdata=EGO4_1389836095\$par[7,],envir=Elenv)	ž n	10000				
V	[eval] El(model=km4_13898 [eval] El(model=km4_13898	16095,newdata=EG04_1389836095\$par[8,],envi≔Elenv) 16095,newdata=EG04_1389836095\$par[9,],envi≔Elenv)						
	[eval] EGO4_1389836095\$;	ar						
	predict.km(object=km4_138	836095,newdata=EG04_1389836095\$par,type='UK')		10000				
	[eval] max(pred\$mean) [eval] pred\$sd[pred\$mean==	0.27124840838756037]	• •	10000				
	[set] bestX_4_1389836095 < [set] plotfile_582375936 <	[D@4d0f84e0		10000				
	[10] File sectionview.4.png r	ceived.	©. –					
	[evail rm(plotfile_582375930							
		0.0 0.2 0.4 0.6 0.8	1.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5	-				

Configuration Help

R

Configuration Help

Data sets	\langle Post processing \rangle Files \rangle	
Data set State Pts Variables	Find:	Find:
Calculations Q Data set State Activity	▲ broui.scale=0.7343308298286555 ▶ km4_1389836095.Rdata ▲ broui.scale=0.7478248702827841 ▲ broui.scale=0.2277417614286053 ▲ broui.scale=0.266666040988639 ▲ broui.scale=0.266666040988639 ▲ broui.scale=0.9752578554261062 ▲ broui.scale=0.9752578554261062 ▲ broui.scale=0.788243941124529 ▲ broui.scale=0.788243941124529 ▲ broui.scale=0.14221573271788657 ▶ sectionview.1.png ▲ broui.scale=0.05148516565297448 ▲ broui.scale=0.43248648176055813 ▶ sectionview.5.png ▲ broui.scale=0.8551775694359094 ▲ broui.scale=0.30668170331045985 ▶ km5_1389836095.Rdata ▲ broui.scale=0.51440043753478676 ▲ broui.scale=0.10040010529891394 ▶ sectionview.3.png ▲ broui.scale=0.12089529420220883 ▶ sectionview.0.png ▲ broui.scale=0.8569460754127552 ▶ EG02_1389836095.Rdata	 RDA2 RDA2 A Z A I33377 I31840 1026 11 I10 EC04_1389836095 I11 S11 EC04_1389836095 I12 S26 I41 I8 I8 0.4200679881032556 0.7173223637510091 0.09327404717601559 0.6288579581305385 0.6288579581305385 0.6288579581305385 0.6288579581305385 2.74872636655346 2.86435322976942 0.7175446518231183 1.01042337354369 2.959340195637196 2.3.275455127004534 3.026 4.105
V Data set Size Pts State ✓ Puits_Pu02_2variab 45 MB 58 seen	 □ EG 02_1389836095.Rdata □ EG 04_1389836095.Rdata □ d.broui.scale=0.6407690453343093 □ d.broui.scale=0.04590724847512469 □ d.broui.scale=0.0 □ km2_1389836095.Rdata □ d.broui.scale=0.21815650910991874 □ d.broui.scale=1.0 □ d.broui.scale=0.11945042439696585 □ sectionview.2.png □ d.broui.scale=0.9635866039898247 	54 1 35 4105 36 3 37 dim 38 13 39 2 40 9 41 2 42 1026 43 1 44 4105 45 8 46 dimnames 47 19 48 2 49 16 50 9 51 9 51 9

Configuration Help	richet@sec.11: ~/ Promethee/projects/Puits_Pu02_2variables_grille_75v75_id
Data sets	Post processing) F
Data set State Pts Variables	Find: Find: Vous pouvez le redistribuer sous certaines conditions. Image: Addition Affichage lemminal Aide Image: Vous pouvez le redistribuer sous certaines conditions. Image: Vous pouvez le redistributors ()' pour plus d'information et Image: Vous pouvez le redistributors ()' pour le façon de le citer dans les publications. Image: Vous pouvez le redistributors ()' pour des démonstrations, 'help()' pour l'aide Image: Vous pouvez le redistributors ()' pour obtenir l'aide au format HTML. Image: Vous pouvez le redistributors ()' pouvez le redi
	d.broui.scale=0.142
Calculations	☐ section/iew.1.png > Coad (*EGO ☐ d.broui.scale=0.051/EGO0 1389836095.R
Q Data set State Activity Image: Constraint of the set Image: Constraint of the set Image: Constraint of the set	<pre>d.broui.scale=0.432 EG01_1389836095.R sectionview.5.png > load("EG0 EG00_1389836095.R d.broui.scale=0.306 d.broui.scale=0.306 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.544 d.broui.scale=0.100 sectionview.3.png [1] 1 2 d.broui.scale=0.8569480754127552 EG02_1389836095.Rdata</pre>
V Data set Size Pts State ✓ Puits_Pu02_2variab 45 MB 58 seen ✓ 58 seen	EGO4_1389836095.Rdata d.broui.scale=0.6407690453343093 d.broui.scale=0.47216280410066247 d.broui.scale=0.04590724847512469 d.broui.scale=0.0 km2_1389836095.Rdata d.broui.scale=0.21815650910991874 d.broui.scale=0.21815650910991874 d.broui.scale=0.119450424399026536 d.broui.scale=0.11945042439696585 sectionview.2.png d.broui.scale=0.9635866039898247

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Computer Experiments framework

PROMETHEE Grid Computing environment

Real world example

Summary

Industry benefits: a five years leap Better/stronger day-to-day eng. conclusions

Face new challenges: harder eng. issues *now* reachable

New abstract & formalized approach of old engineering practices

Research support Lot of new industrial applications

Lot of feedback on algorithms, underlying hypothesis, *ideas*

New [R] users ...

... and a bit of (wholesome) money :)

... thanks to integration of

a flexible (technology, license & community)

research software: [R]

a <u>disruptive</u> (re-think *true* needs, use *true* resources)

industrial software: PROMETHEE

... available for free at http://promethee.irsn.fr