Travel Demand Modeling with R

Jeremy Raw, Community Planner Federal Highway Administration, US DOT*

* Organization for identification only: TravelR is NOT a project of FHWA

What is Travel Demand Modeling?

- Forecasting future demand and utilization of transport facilities
- Uses system structure and demographic data
 - Road and Transit Networks
 - Trip purpose
 - Population and Household structure
 - Economic activity

Scope of Travel Models

- Travel models are generalized over regions
 - Transportation Analysis Zones
 - Simplified highway and transit networks
- Often generalized over time periods
 - Estimates for the morning peak period...
 - ... or perhaps an entire day

Zones and Network

Evolution of Travel Models

- Simplest models are "trip based"
 - How many trips on which routes
- More recent models may include
 - A simulation component (to capture bottlenecks)
 - Much greater detail on trip purpose and household structure
 - Extensive feedback to capture behavioral changes in response to system load

Basic Layout of a Travel Model

Basic Modeling Operations

- Trip or Tour Generation (e.g. Home to Work)
- Network Skims (Zone to Zone travel costs)
- Trip Distribution (Zone to Zone demand)
- Mode Split (bus / auto / other)
- Assignment (route actually chosen)
- These operations come in different flavors
 - Trip-based, Tour-based, Activity-Based
- Most models include feedback loops

Travel Modeling Computations

- Predictive Statistical models
 - For trip and activity demand
 - For mode share analysis
- Vector and Matrix computations
 - For trip distribution and tour formation
- Network analysis
 - "Best" paths, with congestion sensitivity

Why use R for Travel Modeling?

- Great presentation graphics
- Fast, efficient vector and matrix calculations
- Easy access to data stored in other formats
- Interactive and Easy to learn
 - Can replace spreadsheets
- Simple to script and to debug
- Provides tools for (almost) all computations

Who Does Travel Modeling in R?

- R is used frequently by individual modelers
- Oregon DOT has built their entire modeling program around R
 - Including GreenSTEP, a Greenhouse Gas analysis tool

What tools exist for Travel Modeling in R?

- Available R packages have supported most required computations
- The only noteworthy exception until recently has been traffic assignment
- The TravelR project aims to provide that functionality

Technical Goals of TravelR

Provide missing functionality

- Traffic Assignment
 - Multiple vehicle classes
 - Dynamic turn penalties
 - Select Link analysis
- One-step Matrix Operations
 - Iterative Proportional Fitting
 - Redistricting

Community Goals of TravelR

- Encourage "open" travel models:
 - Clear assumptions
 - Documented algorithms and data
 - Easy to exchange ideas, research and models

A whole (simple) model in R (1)

data(SiouxFalls)

A whole (simple) model in R (2)

TravelR: Highway Networks

- Highway network is a directed graph
- Edges ("Links") have flow capacity attributes
- Privileged vertices ("centroid nodes") correspond to sources and sinks for demand
 - Centroids are the center of a traffic zone
- TravelR can import networks from data tables

Basic Highway Path Operations

- Generate Shortest Paths
 - Span "centroids" only, not all vertices
- Compute ("skim") path values
 - Apply function to a vector of attributes along a path
 - e.g. Add up total path distance or traversal time
 - Return a zone-to-zone matrix of values
- "Load" values from demand matrix onto shortest paths
 - Accumulate zone-to-zone values for each link in each path

Unique Requirements for Paths

Turn Penalties

- Path-based costs at junctions
 - Prohibited turns
 - Delay due to crossing traffic
- Select Link Analysis
 - Compute volume or skim values for selected paths
 - Intercepting ("Selecting") a certain link or set of links
 - Between certain zone pairs

Highway Path Implementation

- Low Level Functions written in C++
- Features Include:
 - Optimized Shortest Path Building (zone to zone)
 - Low-level turn penalty management
 - Low-level link intercept management (select link)
 - Optimized Skim and Load operations
 - Simple R Interface

The Highway Assignment Problem

- The Highway Assignment problem:
 - Map a demand matrix onto network links
 - Link costs increase with flow volume
 - Generate minimum cost route allocation
- Common algorithms
 - Frank-Wolfe (Convex Combinations)
 - Many variations...

Unique Requirements for Assignment

Multiple Vehicle Classes

- Not all vehicle classes respond equally to congestion
 - Trucks versus Passenger Automobiles

Highway Assignment Implementation

- Assignment class defines
 - Network subset (e.g. HOV lanes removed)
 - Penalty subset (e.g. Rush hour no-left-turns)
 - Demand Matrix (zone to zone demand)
 - Cost Function (or "Volume/Delay Function")
 - Controls how this class perceives cost increase due to increased link volume

Highway Assignment Implementation

- Assignment Set defines
 - A collection of Assignment Classes
 - Single-occupant vehicles
 - High-occupancy vehicles
 - Trucks

0

 Highway assignment finds optimum network flow for all classes in an Assignment Set

Directions for TravelR...

- Long-range goal:
 - A common platform for travel model research
- Travel modeling has been dominated by closed source, proprietary software
 - Slow rates of innovation
 - Difficulty communicating, testing and disseminating research results
- R is an ideal platform for interactive investigation of modeling strategies

Where to Find Out More?

 Travel Model Improvement Program http://tmip.fhwa.dot.gov

 The TravelR Package http://travelr.r-forge.r-project.org http://r-forge.r-project.org/projects/travelr

Why we Need Open Models

Find an elegant cartoon summary of all that can go wrong with statistical models here:

http://www.xkcd.com/605