Prototyping Preventive Maintenance Tools with R

Erich Neuwirth, Julia Theresa Csar

The R User Conference 2010 National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA

Introduction

- Machinery is constantly monitored
 - A lot of data is collected (rotation, temperature)
- Extract a low resource representation for the monitored data
 - to detect unusual behavior
 - to detect long time development

Example: Coffee Machine

- Noise of the crushing mill is constantly monitored
- The goal is the detection of
 - Low charging level of coffee beans
 - Level of grinding texture
 - Over long time: erosion

Frequency Spectrum

Frequency Spectrum, t=3.1 s

Frequency (kHz)

The 90%-confidence intervals of the crushing levels 2,4 and 6 are shown in the background

Extract multidimensional Representation

- Identify some important frequency intervals
 - Coffemachine: One Interval to identify the crushing level and one interval to recognize low bean charging level
- Calculate RMS over these intervals
 - \rightarrow Multidimensional Points
- Store those points and gain representing data points using the algorithm.
- Update those representation points frequently.
- The number of representation points is kept constant

Algorithm

- Based on the algorithm for incremental quantile estimation presented in "Monitoring Networked Applications With Incremental Quantile Estimation" by John M. Chambers et al.
- Generalisation for multidimensional data was reached by using adaptive principal components analysis

Algorithm

- Parameters to set:
 - m...Number of Representation Points
 - n...Number of new points used for updating
- Buffering Datapoints
- Starting algorithm after buffer is filled with *n* new points
- Updating the representation points using those new points
- Reset representation points after some time

Algorithm

•The Black Confidence Ellipsoids are from the distribution used for generating random numbers

•Random numbers were generated using function "mvrnorm" from R-Package "MASS"

•The *Red Ellipsoids* are derived from the calculated representation points using function "kde" from Rpackage "ks"

Two-Dimensional representation of Coffeemachine

- Identify two frequency intervals which contain information about the status:
 - Coffee bean charging level
 - Crushing level
- Use those points to gain the two-dimensional representation
 - Visualization: confidence ellipsoids

Two-Dimensional representation of Coffeemachine Status

wien wien

Two-Dimensional representation of Coffee Machine Status

•Confidence Ellipsoids are different at each crushing level

•Green: OK

Orange: Warning

•Red: out of coffee beans

Three Dimensional

Mabigrad4

Mahlgrad6

Crushing Levels 4 and 6

Х

ы

Vergleich

Amplituden Spektrum time= 3.1 s

Red: Crushing Level 4 **Blue:** Crushing Level 6

R-Packages Used

- KS: Kernel smoothing, Tarn Duong
 - kde: Kernel density estimate for 1- to 6-dimensional data.
 - **rmvnorm.mixt**: Multivariate normal mixture distribution
- MASS: Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
 - mvrnorm: Simulate from a Multivariate Normal Distribution

References

 John M. Chambers, David A. James, Diane Lambert and Scott Vander Wiel (2006). Monitoring Networked Applications With Incremental Quantile Estimation. *Statistical Science*, 2006, Vol. 21, No. 4, 463-475.

