Prototyping Preventive Maintenance Tools with R

Erich Neuwirth, Julia Theresa Csar

The R User Conference 2010
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
Introduction

• Machinery is constantly monitored
 • A lot of data is collected (rotation, temperature)

• Extract a low resource representation for the monitored data
 • to detect unusual behavior
 • to detect long time development
Example: Coffee Machine

• Noise of the crushing mill is constantly monitored

• The goal is the detection of
 • Low charging level of coffee beans
 • Level of grinding texture
 • Over long time: erosion
The 90%-confidence intervals of the crushing levels 2, 4 and 6 are shown in the background.
Extract multidimensional Representation

- Identify some important frequency intervals
 - Coffemachine: One Interval to identify the crushing level and one interval to recognize low bean charging level

- Calculate RMS over these intervals
 → Multidimensional Points

- Store those points and gain representing data points using the algorithm.

- Update those representation points frequently.

- The number of representation points is kept constant
Algorithm

- Based on the algorithm for incremental quantile estimation presented in „Monitoring Networked Applications With Incremental Quantile Estimation” by John M. Chambers et al.
- Generalisation for multidimensional data was reached by using adaptive principal components analysis
Algorithm

- **Parameters to set:**
 - \(m \)…Number of Representation Points
 - \(n \)…Number of new points used for updating

- **Buffering Datapoints**
 - Starting algorithm after buffer is filled with \(n \) new points
 - Updating the representation points using those new points
 - Reset representation points after some time
Algorithm

- **The Black Confidence Ellipsoids** are from the distribution used for generating random numbers.
- Random numbers were generated using function „mvrnorm“ from R-Package „MASS“.
- **The Red Ellipsoids** are derived from the calculated representation points using function „kde“ from R-package „ks“.
Two-Dimensional representation of Coffeemachine

- Identify two frequency intervals which contain information about the status:
 - Coffee bean charging level
 - Crushing level

- Use those points to gain the two-dimensional representation
 - Visualization: confidence ellipsoids
Two-Dimensional representation of Coffeemachine Status

Crushing level 4

- **Green**: OK
- **Orange**: Warning
- **Red**: out of coffee beans
Two-Dimensional representation of Coffee Machine Status

- Confidence Ellipsoids are different at each crushing level

- **Green:** OK
- **Orange:** Warning
- **Red:** out of coffee beans
Three Dimensional

Crushing Levels 4 and 6

Red: Crushing Level 4
Blue: Crushing Level 6
R-Packages Used

- **KS: Kernel smoothing, Tarn Duong**
 - **kde**: Kernel density estimate for 1- to 6-dimensional data.
 - **rmvnorm.mixt**: Multivariate normal mixture distribution

 - **mvrnorm**: Simulate from a Multivariate Normal Distribution
References