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What is possible in this session?
An overview of the (large, rapidly changing, yet 
incomplete) set of tools in R for optimization

An appreciation of the types of problems and 
types of methods to solve them

Some advice on setting up problems

Some suggestions for interpreting results

But ... unlikely to create instant experts

      ... and JN still has lots to learn too!



                Nash – July 2010 Optimization and related computations 3

The formal problem(s)

Find x = argmin f(x) s.t. q(x) >= 0          (NLP)

NOT very common (yet?) in statistics

General version not prominent in this tutorial

BUT variants / special cases of this problem are very 
important and common in statistics

Unconstrained problems or box-constrained ones

Special forms e.g., sums of squares (NLS)

NOTE: We will “minimize” functions. Maximization is 
by min (-f(x))
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Or ...
● Writing an objective function properly and 

checking it
● Scaling and constraints
● Starting values
● Understanding the output. Did I get a good 

answer?
● Common error messages and how to address 

them?
● Which package(s) should I use?
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Caveats
● Some (most?) of you know 

– R better than I, or

– more stats than I, or

– more about some optimization tools than I

● Our problems shape our skills and views
● I like to “make things work” 

– s/w design and usability as much as application

– Prefer clean, clear methods (but sometimes one 
needs complicated, messy ones)
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Conclusions
for those wanting to be first to the bar

● Most methods work most of the time
– Generally quite easy to use, but setup of 

objective function often very user-specific

– BUT ... all of them fail sometimes

– And not so easy to swap methods

– Needed “extra” computations may be missing 
and awkward to supply, especially “nicely”

– AND ... everyone wants to make a better 
optimizer (but only for the problem at hand)

– So there are (too!) many choices
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Conclusions
for those wanting to be first to the bar

● Methods are iterative
– Choice of start can be critical

● To performance
● To success – getting the “right” answer

– Convergence vs. Termination
● Algorithms converge
● Programs terminate
● Neither may be at the “right” solution

– The “right” answer is usually the one the user 
knows is right
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My Own View
● Optimization tools are extremely useful
● But take work and need a lot of caution
● R is the best framework I have found for 

exploring and using optimization tools
– I prefer it to MATLAB, GAMS, etc.

– No problem has yet proved impossible to 
approach in R, but much effort is needed

● Still plenty of room for improvement in R
– Methods; Interfaces, Documentation; User Ed.
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Rest of tutorial

● Try to provide some background to these 
conclusions

● Try to establish a better dialog with users to 
help improve R tools for optimization

● Try to develop the tutorial information so it can 
help the R community in general

– Vignette collaboration invited

● Your problems welcome!
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The formal problem (reminder)

Find x = argmin f(x) s.t. q(x) >= 0          (NLP)
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Characterizations of problems

Number of constraints:
Lots: Math programming

Few: Function minimization   (my main experience)

Number of solutions
none (no feasible solution due to constraints)

one and only one

several 

many

plateaux and saddles        

Multiple real or "near" 
minima very frequently
a source of difficulties 
==> global optimization
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Characterizations of problems (2)

By smoothness or reproducibility of function

By math / algorithmic approach to solution
Descent method (gradient based)

Newton approach (Hessian based)

Direct search

“derivative-free” methods may implicitly use gradient ideas

By statistical versus optimization viewpoint

Side-note: Deciding if we have a solution
KKT conditions

Other indicators
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KKT conditions (local min.)

Gradient is zero
Hilltop, valley bottom or saddle?

How small is zero?

Hessian is positive-definite
Curvature is “upwards” ==> valley bottom

How do we decide?

Issues are tolerances for small gradient and 
negative/zero eigenvalues of Hessian

Complications of scaling
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Other indicators
● Grid search

– e.g., cleversearch in svcm package
● But see code – max [3D], references?

● Axial search ( + / - steps only)
– Tilt and curvature

● Dispersion estimates. With constraints?
● Room for more work on good “indicators”

                          “Are we there yet?”
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Global optima

● What users want
● What they (almost) never get!

● Mathematical conditions for global optimum 
rarely available, and computational 
implementations even less so, i.e., Lipshitz 
conditions using bounds on gradients

e.g., http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
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R view of optimization problems

Expressions (as in nls)
y ~ a1 / (1 + a2 * exp(- a3 * t) )      [parameters a1,a2,a3]

Mainly least squares problems. 

BUT: Not all sums of squares are from expressions

Functions (as in optim and descendents)
objfn <- function(x, ...) {

                (code)

            something <-.......

            return( something)

   }
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Strategic issues in methods

Single algorithms, possibly safeguarded
allows package developers to match to problems

“user-developed” specialized polyalgorithms

requires user knowledge for best use

All-purpose polyalgorithms (“always work”)
possibly approach of nlminb and nlm creators

difficult to understand / debug

may be best suited to experience/style of the creators

JN leans more to first style, esp. for R packages
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Tactical choices for R
● Interface existing codes in Fortran or C or ...

– R <--> C (<--> Fortran) for each fn evaluation!!!

– Difficult to debug

– .Call, .Fortran, SEXP's etc.

– Rcpp for C++  (another layer)

● Or all in R
– Need to vectorize for best performance

– Improvements to R interpreter/compiler?

– Easier to understand and debug if all in R

– Not necessarily so slow (but more tests needed)
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How methods work

● Heuristic
● Random
● Motivated by Newton
● Descent direction
● Approximating surface

● Mixture of above
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Nelder Mead
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“Random”

● Almost always have heuristics or local 
minimizers too

● 'SANN' – warning: NO convergence indicator
● DEOptim
● Lots of “simulated annealing”, “genetic 

algorithms”, “tabu search”, etc.
– VERY hard to be sure where differences lie

– Developers have faith, users have hope, and 
critics may have charity
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Newton family

● Starting point x
● Gradient g, Hessian H, solve H delta = - g
● x_new = x + delta    . . .  sort of ...
● Thousands of modifications

– Line searches

– Safeguards

– Kitchen sinks – Gauss-Newton etc.
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Quasi Newton / Variable Metric

● H is expensive to compute, so fake it
– “approximate” with 1, then improve at each 

iteration (thus start with steepest descents)

– Updating formulae for H and H-1

● 'BFGS' and 'L-BFGS-B' update inverse
● Some methods update approx. H

● Lots of approaches to “line” search, trust region, 
“acceptable point”, etc.
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Descent direction

● Find a “downhill” direction e.g., -g, step, repeat.
● Nice to have directions somehow “conjugate”

– Gram-Schmidt like approaches (??)

– Conjugate gradients

– Lots of issues with “loss of conjugacy” and 
restarting

● Some overlap with Truncated-Newton methods
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Approximating surface

● Sample surface, find approximating function
● Move to min of approximant and “repeat”
● Lots of choices in how to select points, what 

points to use in approximation, how to build the 
approximation, line searches, heuristics etc.

● Complicated by imprecise functions (RSMIN)
● Sometimes can be very efficient (Powell 

methods) but “touchy” to use
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Common issue: when to stop

● Many methods would be much more efficient if 
we had a cheap and reliable “minimum” test.

● Nelder Mead can spend more than half the 
function evaluations deciding to stop

● Most methods do more work than needed 
because we cannot be sure we are finished
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Some problems

● Hobbs – where I came in (1974) -- HV.Rnw
● Cobb Douglas – CD.Rnw
● Exponential fits: shifted and multiple

– optex.R, expontest.Rnw, bvlstest.R
● Distribution fits – PoissLikJO.Rnw
● Large n problems

– Rayleigh Quotient  eigprob.Rnw

– Artificial tests   artificial.Rnw
● Non-smooth / imprecise
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Looking at problems:
an idealized agenda for each

● The obvious approach
● Can we do better?
● Discussion of the issues?
● Recommendations 

● Preferably avoiding “you ought to use ....”
● Hopefully using methods that are familiar, at least 

in how they are used and what they return
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Hobbs problem

● Weed infestation over 12 seasons
● Initial request for 3 parameter logistic

y ~ b1/(1 + b2 * exp(-b3 * t))  where 

  y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 
31.443, 38.558, 50.156, 62.948, 75.995, 91.972)

 t<-1:12

● But nls often fails unless we have “good” 
starting parameters, while optimization methods 
mostly get “near” the solution -- HV vignette
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Scaling

Want parameters x[ i ] all between 1 and 10

Zero parameters may not be “there”
Also give rise to scaling issues.

Part of the overall issue of reparametrization

xnew  = z(x)  (z vector valued, invertible)

Try simple case

xnew = Z x                        x = Z-1 xnew

     Z is a simple non-singular diagonal matrix
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Scaling in (cont.)

f(x, ...) = f(Z-1 xnew, ...) = fnew(xnew, ...)

But we often end up doing the algebra, and it can be 
error prone, particularly for the derivatives.

fnew(xnew,...)/xnew
i 
= f(x, ...)/x

i 
*x

i 
/xnew

i 
= f(x, ...)/x

i  
 Z

ii

-1

Hobbs:  x<-c(100,10,.1)  xnew <- c(1,1,1)  

                 Z-1 = diag(100, 10, .1) 

g(x)               = c(-100.9131, 783.5327, -82341.5897)

gnew(xnew) = c(-10091.312, 7835.327, -8234.159)
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Why Bad Scaling “Hurts”
hobbs.r: 12 data points to be fitted to 
y ~ x

1
/(1+x

2
*exp(-x

3
*t) )    (3 parameter logistic)

Function base = 23520.58  at 1 1 1
Percent changes for  1 % change in each parameter are 0.03503 0.00020 0.00046

Function base = 2.587542  at 196.5079544  49.1138533   0.3133611
Percent changes for  1 % change in each parameter are  94.117  39.695 391.27
Hessian eigenvalues -- unscaled function
At start:    41.618914    16.635191     -3.700846 (INDEFINITE)    Ratio  -11.24579 
At solution: 2.047414e+06 4.252238e-01 4.376540e-03               Ratio  467815596

Hence scale check in optimx(). 
JN should put it in funcheck() too (on r-forge).
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“Simple” rescaling

y ~ 100 x
1
/(1+10 x

2
*exp(-0.1 x

3
*t) )

Hessian eigenvalues -- scaled function
At start:     223294.0      .5599862    -204.9109 (INDEFINITE)    Ratio  398749.1 
At solution:  33859.37019    76.55200    14.70142                       Ratio  2303.137 

Function base = 23520.58  at [1]  0.01  0.10 10.00
Percent changes for  1 % change in each parameter are 0.03503 0.00020 0.00046

Function base = 2.587543  at  1.965080 4.911385 3.133611
Percent changes for  1 % change in each parameter are  94.112  39.698 391.26

No change. This is as it should be!
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Reparametrization

● D Bates version
y ~ c1/(1 + exp((c2 – t) / c3) )

– Still needs care in starting 

– Has parameters that can be interpreted
– Asymptote is c1
– Time t at midpoint is c2
– Sharpness of “stepup” inversely related to c3 Self-starting 

“models” extremely useful

– Sometimes use linear approximations

– Note selfStart – and work to create such tools
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Estimating start

● Guess asymptote; scale:   yy = y/(1.05*max(y))
● Linearize:   z = log(yy/(1-yy)) ~ (t – c2) / c3
● Get c2, c3 from lm(t ~ z)
● Use nls(..., algorithm=”plinear”) to get c1

and refine c2, c3
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Summary of results: original model
y ~ b1/(1 + b2 * exp(-b3 * t))

● Unscaled: 196.1862582  49.0916390   0.3135697

     S.E.s            11.307          1.6884          0.0068633

     by Hess         8.0230        1.1983          0.0048600

● Scaled:         1.961863      4.909164     3.135697

    S.E.s              0.11307        0.16884       0.068633

     by Hess         0.080230      0.11983       0.048600

S.E. Estimates:  sqrt(RSS * diag( solve(t(J) %*% J))/(n-npar))

By Hessian:       sqrt(RSS * diag( solve(Hessian)) / (n – npar))

 J (jacobian) and Hessian evaluated at parameter estimates.
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Summary of results: Bates model
Formula: yy ~ 100 * c1/(1 + 10 * exp(0.1 * (c2 - tt)/c3))

   Estimate Std. Error t value Pr(>|t|)    

c1  1.96186    0.11307   17.35 3.17e-08 

c2  5.07416    0.18714   27.11 6.11e-10 

c3  0.31891    0.00698   45.69 5.77e-12

Formula: yy ~ c1/(1 + exp((c2 - tt)/c3))

c1 196.1863    11.3069   17.35 3.17e-08

c2  12.4173     0.3346   37.11 3.72e-11 

c3   3.1891     0.0698   45.69 5.77e-12 

RSS for all models ~= 2.587
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Hobbs: lessons

● Because “raw” problem has near singularities in 
Hessian, NM may succeed when Newton fails, 
and provide starting values

● Good starting values – nls() needs them
● Scaling helps
● Reparametrization helps more, but users may 

want the original model
● How to get dispersion estimates for model 

parameters?
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Why things go wrong
● Objective function set up badly

– Just plain wrong – mistakes in design or coding

– Poorly scaled

– Overparametrized

– No control of inadmissible inputs

(...)/0; log(0) or log(negative); sqrt(negative)

exp(big) or  x ^ big

x > 2  and x<1 style infeasibilities
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I am currently trying to solve a Maximum Likelihood optimization problem 
in R. Below you can find the output from R, when I use the "BFGS" 
method. The problem is that the parameters that I get are very 
unreasonable, ....

(some code)

(response)

Two possible problems:

(a) If you're working with a normal likelihood---and it seems that you

are---the exponent should be squared.  

(b) lag may not be working like you think it should.  Consider this silly

example ...
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Why things go wrong - 2
● “Solutions” to math, not to real-world problem

– Try to build in “admissibility”, but that is difficult!

● Programs, including R packages, have too 
many control settings for even a small subset of 
possibilities to have been tested

– “Tests” are only an infinitesimal subsample of 
the possible domain

● Some problems are ill-posed (e.g. Hassan18.2)
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There is a contradiction between what the help page says and what constrOptim actually
does with the constraints.  The issue is what happens on the boundary.
The help page says 
    The feasible region is defined by ?ui %*% theta - ci >= 0?,
but the R code for constrOptim reads
    if (any(ui %*% theta - ci <= 0)) 
        stop("initial value not feasible")
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Why things go wrong - 3
● Gradients mis-specified (if at all) 

– /home/john/R-optimtest/2010tutorial/Rhelp-gradient-091130.txt

– Sometimes we DO need analytic derivatives

● “Bad” starting values
– genrosestart100708.R

– Infeasible start

● Bad control settings – check iteration limits
– Sometimes we're “almost” there, but ...

– Different controls in different methods

–  optimx() tries to unify, but ...

file:///home/john/R-optimtest/2010tutorial/Rhelp-gradient-091130.txt
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I am doing a optimization problem using nlminb. It seems to me that the
result is kind of sensitive to the starting value.

I have constructed the function mml2 (below) based on the likelihood function 
described in the minimal latex I have pasted below for anyone who wants to 
look at it. This function finds parameter estimates for a basic Rasch (IRT) 
model. Using the function without the gradient, using either nlminb or optim 
returns the correct parameter estimates and, in the case of optim, the correct 
standard errors.

By correct, I mean they match another software program as well as the 
rasch() function in the ltm package.

Your function named 'gradient' is not the correct gradient.
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Annoyances
● Structuring of the problem input/output

– How functions / expressions must be provided

– Names / availability of outputs not consistent

– Attributes vs. Regular returned values

● Getting at the ancillary information “easily”
● Finding information about the methods and 

approaches e.g., How are SE's computed?
● Everything a little more difficult than we like!
● Options, Options, Options! -- WHY?



                Nash – July 2010 Optimization and related computations 48

Complaint!

Tutorial proposal suggested covering 
– “Common error messages and how to address them”

● Not easy to do
● Especially when code is not in R
● Do any .Rd files include a list of error messages?

– A mirror would show me one culprit.
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Cobb-Douglas models

● Model of production as function of labour (L) 
and Capital(K)
–  Y ~ beta1 * Lbeta2 * Kbeta3

● Issue: What should be the loss function
Y = beta1 * Lbeta2 * Kbeta3 + add_error

or
log Y = log(beta1) + beta2 * log(L) + beta3 * log(K) + mult_error

● “Standard errors”



                Nash – July 2010 Optimization and related computations 50

Cobb-Douglas Examples

Data from Pedro Arroyo – coef from log model 
has different sign from unlogged one

Data from http://www.sts.uzh.ch/data/cobb.html 
and André Oliviera very similar

All show parameters with high estimated 
dispersion

3D graphs may be helpful to see sparsity of data
– But don't give much help with estimation

http://www.sts.uzh.ch/data/cobb.html
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Partial linearity: sum of exponentials
● Sum of exponentials ALWAYS difficult

– Lanczos (1956) shows why; 
● other refs in Nash and Walker-Smith, 1987, 

                                http://macnash.telfer.uottawa.ca/nlpe/

– Is this a realistic problem? e.g., chemical kinetics

● NIST Lanczos problems – useful tests or not?
● Plain approach to optimization does very poorly

– Need to have VERY close starting values

– Pays to use the partial linearity (gradient?)
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Example – simplified Lanczos

Model:  y ~ b3 * exp(-b1 * t) + b4 * exp(-b2 * t)
– put parameters = c(0.05, 0.0025, 3, 4)

– Generate t = 1:100 and calculate model values

– Input sd (default 0.04) and set.seed(918273645)

– Generate rnorm(100) and add to model values

– This is similar to competing chemical reactions 
data.

                       optex.R example script
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Approaches
nls(rr ~ l1 * exp(-e1*times) + l2 * exp(-e2*times), ...

This does better than optim(   )  i.e., Nelder Mead. 

Even better is

nls(rr ~ cbind(exp(-e1 * times), exp(-e2 * times)),, data = mydata,    
algorithm='plinear', ....

BUT zero residual problems cause nls() difficulty

nls.lm from minpack.lm may do somewhat better 

And optim() does “not too badly” when only nonlinear parameters 
are varied, i.e., solve for linear model as per 'plinear'.

Problem gets increasingly difficult with number of exponentials

Methods may get ordering of parameters swapped.
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Opinions
● Avoid multiple exponentials problem if you can!

– Guaranteed multiple minima

– Inherently ill-conditioned – small changes in 
inputs --> big changes in outputs (parameters)

● Use the linearity
– Note that there may be efficiencies in NOT fully 

solving the problem. (Q' * y)[n+1:m]  gives the 
residual sum of squares from qr()

● Be cautious about problems of this type. 
– How to interpret the linear parameters?
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Shifted Exponential - Lievens
Model: y ~ y0 + alpha * E^t

Data: 
y = c(2018.34, 2012.54, 2018.85, 2023.52, 2054.58, 2132.61, 2247.17, 2468.32, 2778.47)

t = c(17, 18, 19, 20, 21, 22, 23, 24, 25)

Note expontest.Rnw (Sweave file)
– Naive attempts fail “singular gradient”

– Can see approx y0 from graph and use linear 
model to get starting values.

– DEoptim for finding starting values

– qpcR package – big learning curve (>90 pages)
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Distribution fitting

● Tools:
– MASS::fitdistr, stats4::mle, bbmle::mle2

– Marie Laure Delignette-Muller:   fitdistrplus to 
extend fitdistr with some extra tools

–  http://openmx.psyc.virginia.edu/  OpenMX
● Meant for Structural Equation modeling  

– Can sometimes use glm()

● Biggest issue is learning cost & getting the 
setup correct

http://openmx.psyc.virginia.edu/
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Examples

● See fitdistr, mle, and fitdistrplus
● Jens Oehlschlägel problem (Poisson glm)

– Shows Powell's bobyqa quite useful here
● But other examples give trouble e.g. bvlstest.R

– PoissLikJO.Rnw vignette
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Large n problems
● Statistical problems tend to be complicated, 

with difficult code
● Math Programming problems have rather 

different structure and focus on constraints
● Here will use the eigenvalue problem and 

some artificial test problems 
● Large as we want
● Illustrative of the issues
● Easier to explain the problems and provide tests
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Rayleigh Quotient Minimization
● Given matrix A, find eigensolution with most 

positive or most negative eigenvalue by 
optimizing Rayleigh quotient.

– RQ(u) <- t(u) %*% A %*% u /  (t(u) %*% u)

● Do not need A, though in our tests it will be 
“around”

– Should have routine that forms v <- A %*% u 
implicitly



                Nash – July 2010 Optimization and related computations 61

Rayleigh Quotient minimization

● For symmetric matrix A of dimension n, find the 
vector x that minimizes

           Q = ( x' A x ) / (x' x)

    Subject to some constraint on the size of x,
● Typically constrain x' x = 1
● Vignette – eigprob.Rnw

– Need to specialize the optimization to get good 
results
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Artificial tests

● Almost always sums of squares
● Sometimes hard to find “real” version (broydt.R 

and genrose.R) – several variants
● But relatively easy to set up and use, including 

gradients and other derivatives

               artificial.Rnw (incomplete)
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Non-smooth / imprecise

● Functions can be non-smooth, i.e., the function 
or gradient is non-continuous

● Imprecise functions cannot be evaluated 
exactly e.g., Schumacher time to lap as 
function of racing car settings

● We tend to use similar – and largely stochastic 
and heuristic – methods for both classes of 
problems, but should really differentiate 
between approaches. 
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H Joe problems
Maximum likelihood type problems where the 
objective function can be thought of as a multi-
dimensional integral approximately computed by 
Monte Carlo techniques

– JN is NOT familiar with the real-world problems

– Harry and I spent > 10 years developing RSMIN 
which worked rather well, but “nasty” to use

                                      Joe & Nash, Statistics & Computing, 13, 277-286, 2005

– Hope: optimizing imprecise function faster than 
traditional method on accurate function

– NOT in R; need interested users
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Handling constraints

● Bounds – tools available that are relatively easy 
to use

– Masks – fixed parameters – Rcgmin & Rvmmin

● Equality Constraints – can be tricky, as really 
want to solve for parameters if possible

● Inequality constraints
– linear inequalities – ConstrOptim

– Projection method -- spg from BB

– Penalty and Barrier functions – user coded?
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Examples of constraints

● Nonlinear equality constraint – hassan182.R
– Linear model with constraint on parameters

– Cannot replicate my own work from ~ 1977 
possibly due to typo in data table

– nls.lm from minpack.lm seems best tool
● Similar result in 1970s (Marquardt best)
● Eliminate 1 parameter by solving in constraint
● Penalty fn method “works” moderately well
● Parameters ill-conditioned in problem
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Linear inequality constraints
● Could use math programming tools, especially 

if many constraints.
● Penalty or barrier methods when just a few

See Dixon72.R

● Other examples?
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Issues raised by constraints
● How should we interpret measures of 

dispersion
– Beta > 0. Does this mean interval ends at 0?

– How to define & compute dispersion measures

● Setup for constraints is generally non-trivial
● Infeasibility? How do we know?
● Introduced ill-conditioning from constraints
● Disjoint parameter regions
● Inconsistent handling of fn <- Inf or NA
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DANGER!

Advice about to be given.
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Objective function setup

● Keep it as simple as possible
● Scale if possible – poor scaling creates trouble
● Check, check, check

– Build in checks 'debug<-TRUE' etc.

– R debug tools?

● Graphs where they make sense

Can we eliminate many “extra” minima? Other 
“bad” situations?    

– Most issues require attention to details
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Gradients
● Important

● Sometimes better solutions
● Speedup, esp. large-n problems

● Using deriv or D is helpful but not trivial
● Check with numDeriv()
● Automatic Differentiation --  work in progress

– ADMB approach fairly well-developed

– General tools “under construction”  -- rdax

● BUT ... lots of work
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Starting values

● Use of linearizing approximations
● Use of “last” values for repetitive estimations
● DEOptim(), optim/SANN 
● Random starts
● Use of bounds (and midpoints; random in [a,b])

– Often don't want to be on the bounds

– May need “local” knowledge of problem

– Force user to think about problem
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Control settings

● Set iterations > 50 for nls via
control=list(maxit = 500,trace=TRUE)

● A serious issue for different optimization tools is 
that the controls are different

● One reason for optimx()

● Some methods have more controls than others
– Often not well-documented; examine code (!?)

● Package defaults may not suit your problem
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Subject specific packages

Polymerase chain reaction models – qpcR

Analysis of dose-response curves – drc

Others ....
● Great if you are doing “same” work
● Not so good if your setup a bit different
● Bad if you don't know the subject
● In any event – lots to learn, so time cost
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Special Methods Packages

Nonlinear mixed effects models – nlme (+ gnls)

Ben Bolkers maxlik package – bbmle (+ mle2)

Bates et al – lme4

Others?
● May offer useful tools and examples
● BUT ... things we want may be missing
● Focus is always on the developer's needs



                Nash – July 2010 Optimization and related computations 76

Automatic starting values

● SelfStart ideas
● Useful if there is a model already worked out 

that you need
● Otherwise you have work to do
● Handling exceptions takes most of the work
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Reverse communication
●  Attempt to avoid passing “large” structures to 

subroutines
● MESSY!
● But does simplify setup in some ways, while 

creating spaghetti in another
● Main routine gets “return” from optimizer with 

“instruction” -- usually an integer
– Does work and calls optimizer again

– Loop until “instruction” is to stop 
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Finding Help

● CRAN Task View on Optimization (S Theussl)
● Rhelp – including archives (? how ?)

● http://finzi.psych.upenn.edu/search.html

● Rseek – but does it work?
● Rwiki – Should use it more!
● Nash optimx wiki – for bleeding edge ideas of 

both users and developers
●  http://macnash.telfer.uottawa.ca/optimx/
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Future directions and needs
● USERS!

– Trying things out & organizing tests

– Helping with documentation

– Complaining constructively

● Developers
– Integration of methods and tools

– Better interfaces

● “Educators”
– To help organize our understandings
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