
 Nash – July 2010 Optimization and related computations 1

Optimization and related nonlinear
modelling computations in R

John C. Nash
Tefler School of Management

University of Ottawa
Canada

nashjc _at_ uottawa.ca

Materials: http://macnash.telfer.uottawa.ca/~nashjc/Nash_UseR2010/

 Nash – July 2010 Optimization and related computations 2

What is possible in this session?
An overview of the (large, rapidly changing, yet
incomplete) set of tools in R for optimization

An appreciation of the types of problems and
types of methods to solve them

Some advice on setting up problems

Some suggestions for interpreting results

But ... unlikely to create instant experts

 ... and JN still has lots to learn too!

 Nash – July 2010 Optimization and related computations 3

The formal problem(s)

Find x = argmin f(x) s.t. q(x) >= 0 (NLP)

NOT very common (yet?) in statistics

General version not prominent in this tutorial

BUT variants / special cases of this problem are very
important and common in statistics

Unconstrained problems or box-constrained ones

Special forms e.g., sums of squares (NLS)

NOTE: We will “minimize” functions. Maximization is
by min (-f(x))

 Nash – July 2010 Optimization and related computations 4

Or ...
● Writing an objective function properly and

checking it
● Scaling and constraints
● Starting values
● Understanding the output. Did I get a good

answer?
● Common error messages and how to address

them?
● Which package(s) should I use?

 Nash – July 2010 Optimization and related computations 5

Caveats
● Some (most?) of you know

– R better than I, or

– more stats than I, or

– more about some optimization tools than I

● Our problems shape our skills and views
● I like to “make things work”

– s/w design and usability as much as application

– Prefer clean, clear methods (but sometimes one
needs complicated, messy ones)

 Nash – July 2010 Optimization and related computations 6

The formal problem(s)

Find x = argmin f(x) s.t. q(x) >= 0 (NLP)

NOT very common (yet?) in statistics

General version not prominent in this tutorial

BUT variants / special cases of this problem are very
important and common in statistics

Unconstrained problems or box-constrained ones

Special forms e.g., sums of squares (NLS)

NOTE: We will “minimize” functions. Maximization is
by min (-f(x))

 Nash – July 2010 Optimization and related computations 7

Conclusions
for those wanting to be first to the bar

● Most methods work most of the time
– Generally quite easy to use, but setup of

objective function often very user-specific

– BUT ... all of them fail sometimes

– And not so easy to swap methods

– Needed “extra” computations may be missing
and awkward to supply, especially “nicely”

– AND ... everyone wants to make a better
optimizer (but only for the problem at hand)

– So there are (too!) many choices

 Nash – July 2010 Optimization and related computations 8

Conclusions
for those wanting to be first to the bar

● Methods are iterative
– Choice of start can be critical

● To performance
● To success – getting the “right” answer

– Convergence vs. Termination
● Algorithms converge
● Programs terminate
● Neither may be at the “right” solution

– The “right” answer is usually the one the user
knows is right

 Nash – July 2010 Optimization and related computations 9

My Own View
● Optimization tools are extremely useful
● But take work and need a lot of caution
● R is the best framework I have found for

exploring and using optimization tools
– I prefer it to MATLAB, GAMS, etc.

– No problem has yet proved impossible to
approach in R, but much effort is needed

● Still plenty of room for improvement in R
– Methods; Interfaces, Documentation; User Ed.

 Nash – July 2010 Optimization and related computations 10

Rest of tutorial

● Try to provide some background to these
conclusions

● Try to establish a better dialog with users to
help improve R tools for optimization

● Try to develop the tutorial information so it can
help the R community in general

– Vignette collaboration invited

● Your problems welcome!

 Nash – July 2010 Optimization and related computations 11

The formal problem (reminder)

Find x = argmin f(x) s.t. q(x) >= 0 (NLP)

 Nash – July 2010 Optimization and related computations 12

Characterizations of problems

Number of constraints:
Lots: Math programming

Few: Function minimization (my main experience)

Number of solutions
none (no feasible solution due to constraints)

one and only one

several

many

plateaux and saddles

Multiple real or "near"
minima very frequently
a source of difficulties
==> global optimization

 Nash – July 2010 Optimization and related computations 13

Characterizations of problems (2)

By smoothness or reproducibility of function

By math / algorithmic approach to solution
Descent method (gradient based)

Newton approach (Hessian based)

Direct search

“derivative-free” methods may implicitly use gradient ideas

By statistical versus optimization viewpoint

Side-note: Deciding if we have a solution
KKT conditions

Other indicators

 Nash – July 2010 Optimization and related computations 14

KKT conditions (local min.)

Gradient is zero
Hilltop, valley bottom or saddle?

How small is zero?

Hessian is positive-definite
Curvature is “upwards” ==> valley bottom

How do we decide?

Issues are tolerances for small gradient and
negative/zero eigenvalues of Hessian

Complications of scaling

 Nash – July 2010 Optimization and related computations 15

Other indicators
● Grid search

– e.g., cleversearch in svcm package
● But see code – max [3D], references?

● Axial search (+ / - steps only)
– Tilt and curvature

● Dispersion estimates. With constraints?
● Room for more work on good “indicators”

 “Are we there yet?”

 Nash – July 2010 Optimization and related computations 16

Global optima

● What users want
● What they (almost) never get!

● Mathematical conditions for global optimum
rarely available, and computational
implementations even less so, i.e., Lipshitz
conditions using bounds on gradients

e.g., http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

 Nash – July 2010 Optimization and related computations 17

R view of optimization problems

Expressions (as in nls)
y ~ a1 / (1 + a2 * exp(- a3 * t)) [parameters a1,a2,a3]

Mainly least squares problems.

BUT: Not all sums of squares are from expressions

Functions (as in optim and descendents)
objfn <- function(x, ...) {

 (code)

 something <-.......

 return(something)

 }

 Nash – July 2010 Optimization and related computations 18

Strategic issues in methods

Single algorithms, possibly safeguarded
allows package developers to match to problems

“user-developed” specialized polyalgorithms

requires user knowledge for best use

All-purpose polyalgorithms (“always work”)
possibly approach of nlminb and nlm creators

difficult to understand / debug

may be best suited to experience/style of the creators

JN leans more to first style, esp. for R packages

 Nash – July 2010 Optimization and related computations 19

Tactical choices for R
● Interface existing codes in Fortran or C or ...

– R <--> C (<--> Fortran) for each fn evaluation!!!

– Difficult to debug

– .Call, .Fortran, SEXP's etc.

– Rcpp for C++ (another layer)

● Or all in R
– Need to vectorize for best performance

– Improvements to R interpreter/compiler?

– Easier to understand and debug if all in R

– Not necessarily so slow (but more tests needed)

 Nash – July 2010 Optimization and related computations 20

How methods work

● Heuristic
● Random
● Motivated by Newton
● Descent direction
● Approximating surface

● Mixture of above

 Nash – July 2010 Optimization and related computations 21

 Nash – July 2010 Optimization and related computations 22

Nelder Mead

L

H

S

S

 Nash – July 2010 Optimization and related computations 23

“Random”

● Almost always have heuristics or local
minimizers too

● 'SANN' – warning: NO convergence indicator
● DEOptim
● Lots of “simulated annealing”, “genetic

algorithms”, “tabu search”, etc.
– VERY hard to be sure where differences lie

– Developers have faith, users have hope, and
critics may have charity

 Nash – July 2010 Optimization and related computations 24

Newton family

● Starting point x
● Gradient g, Hessian H, solve H delta = - g
● x_new = x + delta . . . sort of ...
● Thousands of modifications

– Line searches

– Safeguards

– Kitchen sinks – Gauss-Newton etc.

 Nash – July 2010 Optimization and related computations 25

Quasi Newton / Variable Metric

● H is expensive to compute, so fake it
– “approximate” with 1, then improve at each

iteration (thus start with steepest descents)

– Updating formulae for H and H-1

● 'BFGS' and 'L-BFGS-B' update inverse
● Some methods update approx. H

● Lots of approaches to “line” search, trust region,
“acceptable point”, etc.

 Nash – July 2010 Optimization and related computations 26

Descent direction

● Find a “downhill” direction e.g., -g, step, repeat.
● Nice to have directions somehow “conjugate”

– Gram-Schmidt like approaches (??)

– Conjugate gradients

– Lots of issues with “loss of conjugacy” and
restarting

● Some overlap with Truncated-Newton methods

 Nash – July 2010 Optimization and related computations 27

Approximating surface

● Sample surface, find approximating function
● Move to min of approximant and “repeat”
● Lots of choices in how to select points, what

points to use in approximation, how to build the
approximation, line searches, heuristics etc.

● Complicated by imprecise functions (RSMIN)
● Sometimes can be very efficient (Powell

methods) but “touchy” to use

 Nash – July 2010 Optimization and related computations 28

Common issue: when to stop

● Many methods would be much more efficient if
we had a cheap and reliable “minimum” test.

● Nelder Mead can spend more than half the
function evaluations deciding to stop

● Most methods do more work than needed
because we cannot be sure we are finished

 Nash – July 2010 Optimization and related computations 29

Some problems

● Hobbs – where I came in (1974) -- HV.Rnw
● Cobb Douglas – CD.Rnw
● Exponential fits: shifted and multiple

– optex.R, expontest.Rnw, bvlstest.R
● Distribution fits – PoissLikJO.Rnw
● Large n problems

– Rayleigh Quotient eigprob.Rnw

– Artificial tests artificial.Rnw
● Non-smooth / imprecise

 Nash – July 2010 Optimization and related computations 30

Looking at problems:
an idealized agenda for each

● The obvious approach
● Can we do better?
● Discussion of the issues?
● Recommendations

● Preferably avoiding “you ought to use”
● Hopefully using methods that are familiar, at least

in how they are used and what they return

 Nash – July 2010 Optimization and related computations 31

Hobbs problem

● Weed infestation over 12 seasons
● Initial request for 3 parameter logistic

y ~ b1/(1 + b2 * exp(-b3 * t)) where

 y<-c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192,
31.443, 38.558, 50.156, 62.948, 75.995, 91.972)

 t<-1:12

● But nls often fails unless we have “good”
starting parameters, while optimization methods
mostly get “near” the solution -- HV vignette

 Nash – July 2010 Optimization and related computations 32

Scaling

Want parameters x[i] all between 1 and 10

Zero parameters may not be “there”
Also give rise to scaling issues.

Part of the overall issue of reparametrization

xnew = z(x) (z vector valued, invertible)

Try simple case

xnew = Z x x = Z-1 xnew

 Z is a simple non-singular diagonal matrix

 Nash – July 2010 Optimization and related computations 33

Scaling in (cont.)

f(x, ...) = f(Z-1 xnew, ...) = fnew(xnew, ...)

But we often end up doing the algebra, and it can be
error prone, particularly for the derivatives.

fnew(xnew,...)/xnew
i
= f(x, ...)/x

i
*x

i
/xnew

i
= f(x, ...)/x

i
 Z

ii

-1

Hobbs: x<-c(100,10,.1) xnew <- c(1,1,1)

 Z-1 = diag(100, 10, .1)

g(x) = c(-100.9131, 783.5327, -82341.5897)

gnew(xnew) = c(-10091.312, 7835.327, -8234.159)

 Nash – July 2010 Optimization and related computations 34

Why Bad Scaling “Hurts”
hobbs.r: 12 data points to be fitted to
y ~ x

1
/(1+x

2
*exp(-x

3
*t)) (3 parameter logistic)

Function base = 23520.58 at 1 1 1
Percent changes for 1 % change in each parameter are 0.03503 0.00020 0.00046

Function base = 2.587542 at 196.5079544 49.1138533 0.3133611
Percent changes for 1 % change in each parameter are 94.117 39.695 391.27
Hessian eigenvalues -- unscaled function
At start: 41.618914 16.635191 -3.700846 (INDEFINITE) Ratio -11.24579
At solution: 2.047414e+06 4.252238e-01 4.376540e-03 Ratio 467815596

Hence scale check in optimx().
JN should put it in funcheck() too (on r-forge).

 Nash – July 2010 Optimization and related computations 35

“Simple” rescaling

y ~ 100 x
1
/(1+10 x

2
*exp(-0.1 x

3
*t))

Hessian eigenvalues -- scaled function
At start: 223294.0 .5599862 -204.9109 (INDEFINITE) Ratio 398749.1
At solution: 33859.37019 76.55200 14.70142 Ratio 2303.137

Function base = 23520.58 at [1] 0.01 0.10 10.00
Percent changes for 1 % change in each parameter are 0.03503 0.00020 0.00046

Function base = 2.587543 at 1.965080 4.911385 3.133611
Percent changes for 1 % change in each parameter are 94.112 39.698 391.26

No change. This is as it should be!

 Nash – July 2010 Optimization and related computations 36

Reparametrization

● D Bates version
y ~ c1/(1 + exp((c2 – t) / c3))

– Still needs care in starting

– Has parameters that can be interpreted
– Asymptote is c1
– Time t at midpoint is c2
– Sharpness of “stepup” inversely related to c3 Self-starting

“models” extremely useful

– Sometimes use linear approximations

– Note selfStart – and work to create such tools

 Nash – July 2010 Optimization and related computations 37

Estimating start

● Guess asymptote; scale: yy = y/(1.05*max(y))
● Linearize: z = log(yy/(1-yy)) ~ (t – c2) / c3
● Get c2, c3 from lm(t ~ z)
● Use nls(..., algorithm=”plinear”) to get c1

and refine c2, c3

 Nash – July 2010 Optimization and related computations 38

Summary of results: original model
y ~ b1/(1 + b2 * exp(-b3 * t))

● Unscaled: 196.1862582 49.0916390 0.3135697

 S.E.s 11.307 1.6884 0.0068633

 by Hess 8.0230 1.1983 0.0048600

● Scaled: 1.961863 4.909164 3.135697

 S.E.s 0.11307 0.16884 0.068633

 by Hess 0.080230 0.11983 0.048600

S.E. Estimates: sqrt(RSS * diag(solve(t(J) %*% J))/(n-npar))

By Hessian: sqrt(RSS * diag(solve(Hessian)) / (n – npar))

 J (jacobian) and Hessian evaluated at parameter estimates.

 Nash – July 2010 Optimization and related computations 39

Summary of results: Bates model
Formula: yy ~ 100 * c1/(1 + 10 * exp(0.1 * (c2 - tt)/c3))

 Estimate Std. Error t value Pr(>|t|)

c1 1.96186 0.11307 17.35 3.17e-08

c2 5.07416 0.18714 27.11 6.11e-10

c3 0.31891 0.00698 45.69 5.77e-12

Formula: yy ~ c1/(1 + exp((c2 - tt)/c3))

c1 196.1863 11.3069 17.35 3.17e-08

c2 12.4173 0.3346 37.11 3.72e-11

c3 3.1891 0.0698 45.69 5.77e-12

RSS for all models ~= 2.587

 Nash – July 2010 Optimization and related computations 40

Hobbs: lessons

● Because “raw” problem has near singularities in
Hessian, NM may succeed when Newton fails,
and provide starting values

● Good starting values – nls() needs them
● Scaling helps
● Reparametrization helps more, but users may

want the original model
● How to get dispersion estimates for model

parameters?

 Nash – July 2010 Optimization and related computations 41

Why things go wrong
● Objective function set up badly

– Just plain wrong – mistakes in design or coding

– Poorly scaled

– Overparametrized

– No control of inadmissible inputs

(...)/0; log(0) or log(negative); sqrt(negative)

exp(big) or x ^ big

x > 2 and x<1 style infeasibilities

 Nash – July 2010 Optimization and related computations 42

I am currently trying to solve a Maximum Likelihood optimization problem
in R. Below you can find the output from R, when I use the "BFGS"
method. The problem is that the parameters that I get are very
unreasonable,

(some code)

(response)

Two possible problems:

(a) If you're working with a normal likelihood---and it seems that you

are---the exponent should be squared.

(b) lag may not be working like you think it should. Consider this silly

example ...

 Nash – July 2010 Optimization and related computations 43

Why things go wrong - 2
● “Solutions” to math, not to real-world problem

– Try to build in “admissibility”, but that is difficult!

● Programs, including R packages, have too
many control settings for even a small subset of
possibilities to have been tested

– “Tests” are only an infinitesimal subsample of
the possible domain

● Some problems are ill-posed (e.g. Hassan18.2)

 Nash – July 2010 Optimization and related computations 44

There is a contradiction between what the help page says and what constrOptim actually
does with the constraints. The issue is what happens on the boundary.
The help page says
 The feasible region is defined by ?ui %*% theta - ci >= 0?,
but the R code for constrOptim reads
 if (any(ui %*% theta - ci <= 0))
 stop("initial value not feasible")

 Nash – July 2010 Optimization and related computations 45

Why things go wrong - 3
● Gradients mis-specified (if at all)

– /home/john/R-optimtest/2010tutorial/Rhelp-gradient-091130.txt

– Sometimes we DO need analytic derivatives

● “Bad” starting values
– genrosestart100708.R

– Infeasible start

● Bad control settings – check iteration limits
– Sometimes we're “almost” there, but ...

– Different controls in different methods

– optimx() tries to unify, but ...

file:///home/john/R-optimtest/2010tutorial/Rhelp-gradient-091130.txt

 Nash – July 2010 Optimization and related computations 46

I am doing a optimization problem using nlminb. It seems to me that the
result is kind of sensitive to the starting value.

I have constructed the function mml2 (below) based on the likelihood function
described in the minimal latex I have pasted below for anyone who wants to
look at it. This function finds parameter estimates for a basic Rasch (IRT)
model. Using the function without the gradient, using either nlminb or optim
returns the correct parameter estimates and, in the case of optim, the correct
standard errors.

By correct, I mean they match another software program as well as the
rasch() function in the ltm package.

Your function named 'gradient' is not the correct gradient.

 Nash – July 2010 Optimization and related computations 47

Annoyances
● Structuring of the problem input/output

– How functions / expressions must be provided

– Names / availability of outputs not consistent

– Attributes vs. Regular returned values

● Getting at the ancillary information “easily”
● Finding information about the methods and

approaches e.g., How are SE's computed?
● Everything a little more difficult than we like!
● Options, Options, Options! -- WHY?

 Nash – July 2010 Optimization and related computations 48

Complaint!

Tutorial proposal suggested covering
– “Common error messages and how to address them”

● Not easy to do
● Especially when code is not in R
● Do any .Rd files include a list of error messages?

– A mirror would show me one culprit.

 Nash – July 2010 Optimization and related computations 49

Cobb-Douglas models

● Model of production as function of labour (L)
and Capital(K)
– Y ~ beta1 * Lbeta2 * Kbeta3

● Issue: What should be the loss function
Y = beta1 * Lbeta2 * Kbeta3 + add_error

or
log Y = log(beta1) + beta2 * log(L) + beta3 * log(K) + mult_error

● “Standard errors”

 Nash – July 2010 Optimization and related computations 50

Cobb-Douglas Examples

Data from Pedro Arroyo – coef from log model
has different sign from unlogged one

Data from http://www.sts.uzh.ch/data/cobb.html
and André Oliviera very similar

All show parameters with high estimated
dispersion

3D graphs may be helpful to see sparsity of data
– But don't give much help with estimation

http://www.sts.uzh.ch/data/cobb.html

 Nash – July 2010 Optimization and related computations 51

Partial linearity: sum of exponentials
● Sum of exponentials ALWAYS difficult

– Lanczos (1956) shows why;
● other refs in Nash and Walker-Smith, 1987,

 http://macnash.telfer.uottawa.ca/nlpe/

– Is this a realistic problem? e.g., chemical kinetics

● NIST Lanczos problems – useful tests or not?
● Plain approach to optimization does very poorly

– Need to have VERY close starting values

– Pays to use the partial linearity (gradient?)

 Nash – July 2010 Optimization and related computations 52

Example – simplified Lanczos

Model: y ~ b3 * exp(-b1 * t) + b4 * exp(-b2 * t)
– put parameters = c(0.05, 0.0025, 3, 4)

– Generate t = 1:100 and calculate model values

– Input sd (default 0.04) and set.seed(918273645)

– Generate rnorm(100) and add to model values

– This is similar to competing chemical reactions
data.

 optex.R example script

 Nash – July 2010 Optimization and related computations 53

 Nash – July 2010 Optimization and related computations 54

Approaches
nls(rr ~ l1 * exp(-e1*times) + l2 * exp(-e2*times), ...

This does better than optim() i.e., Nelder Mead.

Even better is

nls(rr ~ cbind(exp(-e1 * times), exp(-e2 * times)),, data = mydata,
algorithm='plinear',

BUT zero residual problems cause nls() difficulty

nls.lm from minpack.lm may do somewhat better

And optim() does “not too badly” when only nonlinear parameters
are varied, i.e., solve for linear model as per 'plinear'.

Problem gets increasingly difficult with number of exponentials

Methods may get ordering of parameters swapped.

 Nash – July 2010 Optimization and related computations 55

Opinions
● Avoid multiple exponentials problem if you can!

– Guaranteed multiple minima

– Inherently ill-conditioned – small changes in
inputs --> big changes in outputs (parameters)

● Use the linearity
– Note that there may be efficiencies in NOT fully

solving the problem. (Q' * y)[n+1:m] gives the
residual sum of squares from qr()

● Be cautious about problems of this type.
– How to interpret the linear parameters?

 Nash – July 2010 Optimization and related computations 56

Shifted Exponential - Lievens
Model: y ~ y0 + alpha * E^t

Data:
y = c(2018.34, 2012.54, 2018.85, 2023.52, 2054.58, 2132.61, 2247.17, 2468.32, 2778.47)

t = c(17, 18, 19, 20, 21, 22, 23, 24, 25)

Note expontest.Rnw (Sweave file)
– Naive attempts fail “singular gradient”

– Can see approx y0 from graph and use linear
model to get starting values.

– DEoptim for finding starting values

– qpcR package – big learning curve (>90 pages)

 Nash – July 2010 Optimization and related computations 57

Distribution fitting

● Tools:
– MASS::fitdistr, stats4::mle, bbmle::mle2

– Marie Laure Delignette-Muller: fitdistrplus to
extend fitdistr with some extra tools

– http://openmx.psyc.virginia.edu/ OpenMX
● Meant for Structural Equation modeling

– Can sometimes use glm()

● Biggest issue is learning cost & getting the
setup correct

http://openmx.psyc.virginia.edu/

 Nash – July 2010 Optimization and related computations 58

Examples

● See fitdistr, mle, and fitdistrplus
● Jens Oehlschlägel problem (Poisson glm)

– Shows Powell's bobyqa quite useful here
● But other examples give trouble e.g. bvlstest.R

– PoissLikJO.Rnw vignette

 Nash – July 2010 Optimization and related computations 59

Large n problems
● Statistical problems tend to be complicated,

with difficult code
● Math Programming problems have rather

different structure and focus on constraints
● Here will use the eigenvalue problem and

some artificial test problems
● Large as we want
● Illustrative of the issues
● Easier to explain the problems and provide tests

 Nash – July 2010 Optimization and related computations 60

Rayleigh Quotient Minimization
● Given matrix A, find eigensolution with most

positive or most negative eigenvalue by
optimizing Rayleigh quotient.

– RQ(u) <- t(u) %*% A %*% u / (t(u) %*% u)

● Do not need A, though in our tests it will be
“around”

– Should have routine that forms v <- A %*% u
implicitly

 Nash – July 2010 Optimization and related computations 61

Rayleigh Quotient minimization

● For symmetric matrix A of dimension n, find the
vector x that minimizes

 Q = (x' A x) / (x' x)

 Subject to some constraint on the size of x,
● Typically constrain x' x = 1
● Vignette – eigprob.Rnw

– Need to specialize the optimization to get good
results

 Nash – July 2010 Optimization and related computations 62

Artificial tests

● Almost always sums of squares
● Sometimes hard to find “real” version (broydt.R

and genrose.R) – several variants
● But relatively easy to set up and use, including

gradients and other derivatives

 artificial.Rnw (incomplete)

 Nash – July 2010 Optimization and related computations 63

Non-smooth / imprecise

● Functions can be non-smooth, i.e., the function
or gradient is non-continuous

● Imprecise functions cannot be evaluated
exactly e.g., Schumacher time to lap as
function of racing car settings

● We tend to use similar – and largely stochastic
and heuristic – methods for both classes of
problems, but should really differentiate
between approaches.

 Nash – July 2010 Optimization and related computations 64

H Joe problems
Maximum likelihood type problems where the
objective function can be thought of as a multi-
dimensional integral approximately computed by
Monte Carlo techniques

– JN is NOT familiar with the real-world problems

– Harry and I spent > 10 years developing RSMIN
which worked rather well, but “nasty” to use

 Joe & Nash, Statistics & Computing, 13, 277-286, 2005

– Hope: optimizing imprecise function faster than
traditional method on accurate function

– NOT in R; need interested users

 Nash – July 2010 Optimization and related computations 65

Handling constraints

● Bounds – tools available that are relatively easy
to use

– Masks – fixed parameters – Rcgmin & Rvmmin

● Equality Constraints – can be tricky, as really
want to solve for parameters if possible

● Inequality constraints
– linear inequalities – ConstrOptim

– Projection method -- spg from BB

– Penalty and Barrier functions – user coded?

 Nash – July 2010 Optimization and related computations 66

Examples of constraints

● Nonlinear equality constraint – hassan182.R
– Linear model with constraint on parameters

– Cannot replicate my own work from ~ 1977
possibly due to typo in data table

– nls.lm from minpack.lm seems best tool
● Similar result in 1970s (Marquardt best)
● Eliminate 1 parameter by solving in constraint
● Penalty fn method “works” moderately well
● Parameters ill-conditioned in problem

 Nash – July 2010 Optimization and related computations 67

Linear inequality constraints
● Could use math programming tools, especially

if many constraints.
● Penalty or barrier methods when just a few

See Dixon72.R

● Other examples?

 Nash – July 2010 Optimization and related computations 68

Issues raised by constraints
● How should we interpret measures of

dispersion
– Beta > 0. Does this mean interval ends at 0?

– How to define & compute dispersion measures

● Setup for constraints is generally non-trivial
● Infeasibility? How do we know?
● Introduced ill-conditioning from constraints
● Disjoint parameter regions
● Inconsistent handling of fn <- Inf or NA

 Nash – July 2010 Optimization and related computations 69

DANGER!

Advice about to be given.

 Nash – July 2010 Optimization and related computations 70

Objective function setup

● Keep it as simple as possible
● Scale if possible – poor scaling creates trouble
● Check, check, check

– Build in checks 'debug<-TRUE' etc.

– R debug tools?

● Graphs where they make sense

Can we eliminate many “extra” minima? Other
“bad” situations?

– Most issues require attention to details

 Nash – July 2010 Optimization and related computations 71

Gradients
● Important

● Sometimes better solutions
● Speedup, esp. large-n problems

● Using deriv or D is helpful but not trivial
● Check with numDeriv()
● Automatic Differentiation -- work in progress

– ADMB approach fairly well-developed

– General tools “under construction” -- rdax

● BUT ... lots of work

 Nash – July 2010 Optimization and related computations 72

Starting values

● Use of linearizing approximations
● Use of “last” values for repetitive estimations
● DEOptim(), optim/SANN
● Random starts
● Use of bounds (and midpoints; random in [a,b])

– Often don't want to be on the bounds

– May need “local” knowledge of problem

– Force user to think about problem

 Nash – July 2010 Optimization and related computations 73

Control settings

● Set iterations > 50 for nls via
control=list(maxit = 500,trace=TRUE)

● A serious issue for different optimization tools is
that the controls are different

● One reason for optimx()

● Some methods have more controls than others
– Often not well-documented; examine code (!?)

● Package defaults may not suit your problem

 Nash – July 2010 Optimization and related computations 74

Subject specific packages

Polymerase chain reaction models – qpcR

Analysis of dose-response curves – drc

Others
● Great if you are doing “same” work
● Not so good if your setup a bit different
● Bad if you don't know the subject
● In any event – lots to learn, so time cost

 Nash – July 2010 Optimization and related computations 75

Special Methods Packages

Nonlinear mixed effects models – nlme (+ gnls)

Ben Bolkers maxlik package – bbmle (+ mle2)

Bates et al – lme4

Others?
● May offer useful tools and examples
● BUT ... things we want may be missing
● Focus is always on the developer's needs

 Nash – July 2010 Optimization and related computations 76

Automatic starting values

● SelfStart ideas
● Useful if there is a model already worked out

that you need
● Otherwise you have work to do
● Handling exceptions takes most of the work

 Nash – July 2010 Optimization and related computations 77

Reverse communication
● Attempt to avoid passing “large” structures to

subroutines
● MESSY!
● But does simplify setup in some ways, while

creating spaghetti in another
● Main routine gets “return” from optimizer with

“instruction” -- usually an integer
– Does work and calls optimizer again

– Loop until “instruction” is to stop

 Nash – July 2010 Optimization and related computations 78

Finding Help

● CRAN Task View on Optimization (S Theussl)
● Rhelp – including archives (? how ?)

● http://finzi.psych.upenn.edu/search.html

● Rseek – but does it work?
● Rwiki – Should use it more!
● Nash optimx wiki – for bleeding edge ideas of

both users and developers
● http://macnash.telfer.uottawa.ca/optimx/

 Nash – July 2010 Optimization and related computations 79

Future directions and needs
● USERS!

– Trying things out & organizing tests

– Helping with documentation

– Complaining constructively

● Developers
– Integration of methods and tools

– Better interfaces

● “Educators”
– To help organize our understandings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

