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Multiple R processes.
Read/write shared variables, accessed through ordinary R
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Locks, barriers, wait/signal, etc.

Platforms:
Processes can be on the same
mulicore machine or on
distributed, geographically
disperse machines.
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settings.

EP is possibly the limit for any parallel R, but there are lots of
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Nothing to be embarrassed about. :-)

Parallel I/O applications, e.g. parallel collection of Web data
and its concurrent statistical analysis.

Collaborative tools.

Even games!
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What Does Rdsm Code Look Like?

Answer: Except for initialization, it looks just like—and
IS—ordinary R code.
For example, to replace the 5th column of a shared matrix m by a
vector of all 1s:

m[,5] <- 1 # use recycling

This is ordinary, garden-variety R code.
And it IS shared: If process 3 executes the above and then process
8 does

x <- m[2,5]

then x will be 1 at process 8.
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Note the special ”dsmm” class for shared matrices. (Also have
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Otherwise, it’s ordinary R syntax, with threads.



What Does Rdsm Code Look Like? (cont’d.)

The only difference is in creating the variable:

# create shared 6x6 matrix
newdsm("m","dsmm","double",size=c(6,6))

Note the special ”dsmm” class for shared matrices.

(Also have
classes for shared vectors and lists.)
Otherwise, it’s ordinary R syntax, with threads.



What Does Rdsm Code Look Like? (cont’d.)

The only difference is in creating the variable:

# create shared 6x6 matrix
newdsm("m","dsmm","double",size=c(6,6))

Note the special ”dsmm” class for shared matrices. (Also have
classes for shared vectors and lists.)

Otherwise, it’s ordinary R syntax, with threads.



What Does Rdsm Code Look Like? (cont’d.)

The only difference is in creating the variable:

# create shared 6x6 matrix
newdsm("m","dsmm","double",size=c(6,6))

Note the special ”dsmm” class for shared matrices. (Also have
classes for shared vectors and lists.)
Otherwise, it’s ordinary R syntax, with threads.



Embarrassingly Parallel Example: Find Best k in k-NN
Regression

Rdsm provides the familiar threads shared-memory environment.

# have SHARED v a r s minmse , mink b e s t found so f a r
# each p r o c e s s e x e c u t e s t he f o l l o w i n g
rng <− f i n d r a n g e ( ) # r ang e o f k f o r t h i s p r o c e s s
f o r ( k i n r n g $ m y s t a r t : rng$myend ) {

mse <− c r o s s v a l m s e ( x , y , k )
l o c k (” m i n l o c k ”)
i f ( mse < minmse ) {

minmse <− mse
mink <− k

}
u n l o c k (” m i n l o c k ”)

}



Parallel I/O Example: Web Speed Monitor

Goal: Continually measure Web speed while concurrently allowing
stat analysis on the collected data.

Rdsm solution:



Parallel I/O Example: Web Speed Monitor

Goal: Continually measure Web speed while concurrently allowing
stat analysis on the collected data.
Rdsm solution:



Web Speed Monitor (cont’d.)

What’s in the picture:

multiple Rdsm threads, 4 here

3 of the threads gather data, by continually probing the Web

those 3 threads write access times to the shared vector
accesstimes

in 4th thread, human gives R commands, reading the shared
vector accesstimes

the human applies R’s myriad statistical operations to the
data at his/her whim—concurrently with the data collection
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shared variables:
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nbidders, number who haven’t dropped out of the bidding yet

if n participants, then 2n Rdsm threads

for a participant, one thread watches latestbid, the other
submits bids
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Built-in Rdsm functions used:

wait(), signal(): Watcher threads call wait(), bidder threads
call signal().

lock(), unlock(): Usual need for lock, but with check for
need to cancel bid.

fa(): Fetch-and-add, to atomically decrement nbidders when
someone drops out.
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Same scheme as in PerlDSM (Matloff, 2002):

R processes run on clients.

Physical storage of shared variables at server.

Rdsm shared-variable classes:

dsmv: shared vector
dsmm: shared matrix
dsml: shared list

Redefine indexing functions, e.g. ”[.dsmv”, ”[<-.dsmv”.

New indexing functions communicate with server.

But all is transparent to programmer.
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Comparison to bigmemory

Rdsm has functions for threads infrastructure1

Rdsm is usable across fully independent machines2

bigmemory may be faster on embarrassingly parallel apps

1I’ve written an incomplete set for bigmemory.
2but could try bigmemory with NFS files


