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PROBLEM

Minimize functions of form

F(h) =V(h) +Q(h), heRY,
1. (R = reals; d = positive integer.)
2. V is non-negative and convex.
3. V is computationally expensive.
4. () is known, strictly convex, and quadratic.
5. (Unconstrained optimization problem)

6. Gradient, but not necessarily Hessian are available.



NONPARAMETRIC FUNCTION ESTIMATION

e Need to minimize:

F(h) = V(h) + M1 Q.

— A > 0 is ““complexity parameter’.



WAR STORY

e \WWork on a kernel-based survival analysis algorithm
lead me to work on this optimization problem.

e At first I used BFGS, but it was very slow.

— (Broyden, '70; Fletcher, '70; Goldfarb, '70; Shanno,
'70)

— Once I waited 19 hours for it to converge!

e Finding no software for unconstrained convex opti-
mization (see below), I invented my own.



SOFTWARE FOR UNCONSTRAINED CONVEX OP-
TIMIZATION

Didn't find such software.

e CVX ( http://cvxr.com/cvx/ ) is a Matlab-based
modeling system for convex optimization.

— But a developer, Michael Grant, says that CVX
wasn’'t designed for problems such as my survival
analysis problem.



“QQMMH
e Developed algorithm “QQMM" (*“quasi-quadratic
minimization with memory”; Q2M?2) to solve prob-
lems of this type.

— Implemented in R.

— Posted on STATLIB.



Iterative descent method

e An iteration: If h; € R has smallest F value found
so far, compute one or more trial minimizers, ho,
until “sufficient decrease’” is achieved.

e Assign ho — hy to finish iteration.

e Repeat until evaluation limit is exceeded or stopping
criteria are met.



I
S¢'9

Gc'¢c

punog Jamoj Jo o

! I
80 00

0.5

0.0

hl

-0.5

-1.0

[A¢] 00

2y

¢0-

eval num



CONVEX GLOBAL UNDERESTIMATORS

o If h € R? define a “quasi-quadratic function” :

an(9) = max{V(h)+VV(h)-(g—h), 0}+Q(h), gecR?



J1A



e q;, IS a convex “global underestimator” of F':

qgn, < F.

e Possible trial minimand of F' is the point ho where
qn, 1S minimum, but that doesn’'t work very well.



L.U.B.'S

If h(1y,. - hn) € R? are points visited by algorithm
so far, the least upper bound (l.u.b.) of

Qh(l)a Qh(2)7 ) qh(n—l)’ Qh(n)
IS their pointwise maximum:

Fn(h) = max{gp,,(h), an, (h), - s ang, 1 (h)san, (M)},

F, is also a convex global underestimator of F' no
smaller than any Ah;y-

The point, ho where Fjy is minimum is probably a
good trial minimizer.

But minimizing F, may be at least as hard as min-
imizing F'



e AsS a compromise, proceed as follows.

— Let hy = h(,) be best trial minimizer found so
far and let h(yy,...h¢,) € R be points visited by
algorithm so far.

o — For:=1,2,...,n—1 let Qh;yh1 be l.u.b. of dhy;
and gy, .

)

*x ‘'‘g double A"

x Convex global underestimator of F.

x Easy to minimize in closed form.



— Let ¢ = j be index in {1,2,...,n — 1} such that
minimum value of dh;y,h1 IS largest.

x [.e., no smaller than minimum value of any
qh(i)7h1 (’L — 1,...,?7,— 1).

x SO dh;y.h1 has a “maximin’ property.

— Let ho be vector at which dhy,h1 achieves its
minimum.

— (Actual method is slightly more careful than this.)

— If ho isn't better than current position, Ay, back-
track.



Minimizing Ah;y,h1 requires matrix operations.

e Limits size of problems for which Q2M?2 can be used
to no more than, say, 4 or 5 thousand variables.



STOPPING RULE

e Trial values ho are minima of nonnegative global
underestimators of F..

e Values of these global underestimators at corre-
sponding ho's are lower bounds on min F'.

e Store cumulative maxima of these lower bounds.

— Let L denote current value of cumulative maxi-
mum.

— L is a lower bound on min F'.



e If hy is current best trial minimizer, relative differ-
ence between F'(h1) and L exceeds relative differ-
ence between F'(h1) and min F'.

F(hl) — L > F(hl) — min F
L — min F '

e I.e., we can explicitly bound relative error in F(h1)
as an estimate of min F'!



Choose small € > 0.

— I often take ¢ = 0.01.

When upper bound on relative error first falls below
threshold ¢, STOP.

Call this “convergence” .

Upon convergence you're guaranteed to be within ¢
of the bottom.
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e Gives good control over stopping.

e [ hat is important because . ..



STOPPING EARLY MAKES SENSE IN STATISTICAL
ESTIMATION

e In statistical estimation, the function, F, depends,
through V, on noisy data so:

e In statistical estimation there’'s no point in taking
time to achieve great accuracy in optimization.

F(h) =V (h) +Q(h), heRY,



Q2M?2 IS SOMETIMES SLOW
e Q2M? tends to close in on minimum rapidly.
e But sometimes is very slow to converge.
— E.g., when @ is nearly singular.
— E.g., when complexity parameter, X\, is small.
e Distribution of number of evaluations needed for

convergence has long right hand tail as you vary
over optimization problems.



SIMULATIONS: “PHILOSOPHY"

e If I is computationally expensive then simulations
are unworkable.

e A short computation time for optimizations is de-
Sired.

e When F' is computationally expensive then compu-
tation time is roughly proportional to number of
function evaluations.

e Simulate computationally cheap F's, but track num-
ber of evaluations not computation time.



COMPARE Q?M? AND BFGS.
e Why BFGS?
— BFGS is widely used.
x ‘Default” method

— Like Q2?M?2, BFGS uses gradient and employs
vector-matrix operations.

— Optimization maven at NYU (Michael Overton)
suggested it as comparator!



— (Specifically, the “BFGS" option in the R func-
tion optim that was used. John C. Nash — per-
sonal communication — pointed out at the con-
ference that other algorithms called “BFGS’” are
faster than the BFGS in optim.)



SIMULATION STRUCTURE
e I chose several relevant estimation problems.

e For each of variety of choices of complexity param-
eter A use both Q2M? and BFGS to fit model to
randomly generated training sample and test data.

— Either simulated data or real data randomly split
into two subsamples.

e Repeat 1000 times for each choice of .

e Gather numbers of evaluations required and other
statistics describing simulations.



Use

Gibbons, Olkin, Sobel ('99) Selecting and Or-
dering Populations: A New Statistical Method-

ology

to select the range of A\ values that, with 95% con-
fidence, contains A with lowest mean test error.

Conservative to use largest M in selected group.



SIMULATIONS: SUMMARY
o L3/2 kernel-based regression.

— For largest selected A\ values, BFGS required 3
times as many evaluations compared to Q2M?2.

e Penalized logistic regression: Wisconsin Breast Can-
cer data

— University of California, Irvine Machine Learning
Repository

— For largest selected X\ values, BFGS required 2.7
times as many evaluations compared to Q2M?=.



e Penalized logistic regression: R’'s “Titanic’ data.

— For largest selected \ values, Q2M?2required nearly
twice as many evaluations compared to BFGS.

— I.e., this time BFGS was better.

— Hardly any penalization was required: Selected
A'S were small.



SURVIVAL ANALYSIS AGAIN

e On a real data set with good choice of X\, Q2M? op-
timized my survival analysis penalized risk function
in 23 minutes.

e BFGS took:

— 3.4 times longer with “oracle” telling BFGS when
to stop.

— 6.5 times longer without “oracle’”.

— “Oracle” means using information from the “6.5
without oracle” and Q?M? runs to select the
number of interations at which BFGS achieves
the same level of accuracy as does Q2M?2.



CONCLUSIONS

e QQMM (Q?M?32) is an algorithm for minimizing con-
vex functions of form

F(h) =V(h) + Q(h), heR™
— V is convex and non-negative.
— (@ is known, quadratic, strictly convex.

— Q2M? is especially appropriate when V is expen-
sive to compute.

e Allows good control of stopping.



e Needs (sub)gradient.

e Utilizes matrix algebra. This limits maximum size of
problems to no more than 4 or 5 thousand variables.

° Q2M2 is often quite fast, but can be slow if @ is
nearly singular.



