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Overview

0 What is FMRI?
0 What kinds of analysis involved in FMRI data analyses
0 Programs in R for FMRI data analyses (of NIfTT/AFNI data)

Group analysis
o Mixed-effects meta analysis (MEMA): 3dAMEMA

o Linear mixed-effects analysis (LME): 3dLME

Connectivity analysis

o Granger causality (vector autoregressive or VAR): 3dGC, 1dGC

o Intra-class correlation analysis (ICC): 3dICC and 3dICC_REML
o Structural equation modeling (SEM): 1dSEMr

Data-drive analysis: Independent component analysis (ICA): 3dICA

Kolmogorov-Smirnov test: 3dKS

0 Summary



FMRI in Neuroimaging

0 Typical scanner: 3 Tesla = 60000 X earth’s magnetic field

0 Measure changes in blood flow (hemodynamic response): BOLD signal
Indirect measure associated with neural activity during a task/condition
Started 1n early 1990s; Little invasion, no radiation, ez.

Interdisciplinary: physics, statistics, psychology, neuroanatomy, cognitive
science, ...

a0 Mind reading? Not there yet, but analyses produce colored blobs denoting
activation regions in the brain




Data type in FMRI

0 Brain volume

Anatomical: 3D

o Typical spatial resolution: 1x1x1mm?; Dimensions: 256x256x128 ~ 8
million voxels

Functional;: 4D

o Typical spatial resolution: 2.75x2.75%3.0mm?; Dimensions: 80x80x33 ~
20,000 voxels

o  Typical temporal resolution: ~2s; Dimension: a few hundred time points

Number of subjects: 10-20
o Surface
ROI

0  Behavioral



Analysis types in FMRI

0 Individual subjects: time series regression
Voxel-wise or massively univatiate model y = X + ¢, € ~ N(0,6%1)
O and 1/ vary spatially (across voxels)
REML + GLSQ

Runtime: 1 minute or more

0 Group analysis: summarizing across subjects
t-test, ANOVA, regression
Runtime: seconds
0 Connectivity analysis: search for or test network in the brain

Correlation analysis, structural equation modeling, Granger causality,
dynamic causal modeling, ez.

0 Multivariate approach: data-driven
PCA/ICA, SVM, kernel methods, et.



Developed to provide an environment for FMRI data analyses
0 Started in 1994 by Bob Cox at MCW, Milwaukee , Wisconsin |

0 Open source mainly in C, plus some R and Matlab

Important principles in the development of AFNI:
0 Allow user to stay close to the data and view it in many different ways

0 Power to assemble pieces in different ways to make customized analyses
“With great power comes great responsibility”
— to understand the analyses and the tools

0 Provide mechanism/tools, not policy/assembling line




Conventional group analysis in FMRI

0 Take regression coefficient s from each subject, and run #
test, AN(C)OVA, LME
One-sample ~test: J; = K+ O ;, for ith subject; 0, ~ N(O, 1°)
0 Three assumptions

Within/intra-subject variability (standard error, sampling error) is relatively
small compared to cross/between/inter-subjects variability

Within/intra-subject variability roughly the same across subjects

Normal distribution for cross-subject variability (no outliers)

0 Violations prevalent, leading to suboptimal/invalid analysis
Common to see 40 - 100% variability due to within-subject variability
Non-uniform within/intra-subject variability across subjects

Not rare to see outliers



Mixed-Ettects Meta Analysis

0 For each effect estimate (f or linear combination of f’s)
How good is the f estimate?

o Reliability/precision/efficiency/certainty/confidence: standard
error (SE)

o Smaller SE = more accurate estimate

t-statistic of the effect

o Signal-to-noise or effect vs. uncertainty: # = [3/SE

o SE contained in #statistic: SE = /¢

Trust those s with high reliability/precision (small SE) through

weighting/compromise
o f3estimate with high precision (lower SE) has more say in the final result
o [P estimate with high uncertainty gets downgraded
One-sample model: y;, = X+ O ; + &, for ith subject
J,~ N(0, 7?), &~ N(0, 0?), 07 known



New group analysis program: 3dMEMA

0 Algorithms (MoM/REML + WLS) similar to R package metafor
(Wolfgang Viechtbauer) with parallel computing using R package snow

Runtime: a few minutes or more with 4 CPUs
Analysis types
1-, 2-, paired-sample test
Covariates: age, IQ), behavioral data, between-subjects factors, ez.

Input: effect estimate + # from individual subjects

Output
Group level: group effect + Z /¢

Cross-subject heterogeneity + >-test
Individual level: ICC + Z

0 Assessing outliers with 4 estimated quantities

Cross-subject variance (heterogeneity) T 2 at group level
¥>-test for Hy: T 2=0 at group level
Intra-class correlation for each subject

Z-statistic for the residuals for each subject

0 Outliers modeled through a Laplace distribution of cross-subject variability



Comparison: 3dM:

CMA vs. FLAMI

a0 Frequentist (REML) vs. Bayesian (MCMC)

0 Runtime: a Mac OS X 10.6.2 with 2x2.66 GHz dual-core
Intel Xeon. Group analysis: 10 subjects, 218379 voxels. FSL

H1+2

ver. 4.1.4
3dMEMA with | 3dMEMA with | 3dMEMA with a | Flame 142
4 parallel jobs | 2 parallel jobs [ single processor | (FSL)
Without 3 4.5 8 385
modeling outliers
Modeling 22.5 34.5 65 847
outliers




Linear Mixed-Ettects Analysis

_ N N , B
Y, = XB+Zb+e, b~ N,0, W), £ ~ N, (0, 0?A), ¢=1
Parameters: 3, Y, and G?/\,

Fixed/mean/systematic effects in population X3
Random effects Z 5,

Across-subjects variability: deviation of each subject from mean effects X ﬁ

0 Random effect €,
Within-subject variability (across multiple effects)



Linear Mixed-Eftfects Analysis: 3dLME

0 Use function Ime() in R package nlme (Pinheiro ¢# al.)
Parallel computing using R package snow (Tierney e# al.)
Contrasts through R package contrast (Kuhn e7 a/.)

a
a
0 Runtime: a few minutes or more with 4 CPUs

0 3dLME 1s more flexible than conventional approach

Popular ANOVA, paired-, one- and two-sample #test: special cases of LME
o ANOVA: compound symmetry in Y

Capable to model vatious structures in Y and G2/,

Much easier to deal with missing data and covariates

Modeling subtle HRF shape through multiple basis functions

o Zero intercept with Hy: B, =B, = ... =B, = 0 (£ = # time points in HRF)



Granger Causality or VAR

Granger causality: A Granger causes B 1f

0 time series at A provides statistically significant information about time
series at B at some time delays (order)

2 ROI time series, y,(9) and y,(9), with a VAR(1) model 14
RO
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GC in AFENI: 3dGC and 1dGC

Exploratory approach: ROI search with 3dGC

Q

Q

a

Q

Not a solid approach; can explore possible ROIs in a network
Bivariate model: Seed vs. rest of brain

3 paths: seed to target, target to seed, and self-effect

Use R packages vars (Bernhard Pfaff) and snow (Tierney ez a/)

Path strength significance testing in a network: 1dGC

Q

o O O O

7/22/10

Assume all ROIs are known 1n the network

Multivariate model with pre-selected ROIs

Use R package vars for VAR modeling (Bernhard Pfaff)
Use R package network for plotting (Butts ez a/.)

Preserve path sign (+ or -), in addition to its direction, from
individual subjects all the way to group level analysis

14



Intra-Class Correlation (ICC)

0 Classical definition

Variability of a random variable relative to total variance

ICC varieties in Shrout and Fleiss (1979), Psychological Bulletin, Vol. 86,
No.2, 420-428

o Based on mean squares of variance in ANOVA framework

o Problem: not rare to have negative ICC values, and difficult to
interpret

Applied to FMRI data
o Reliability of scanning sessions/sites

0 Extended definition

Linear mixed-effects model



3dICC and 3dICC_REML

a 3dICC

Use function Im() in R
Parallel computing using R package snow (Tierney e/ al.)
2-way and 3-way random-effects ANOVA model

May get negative ICC values

o 3dICC_REML
Use function Imer() in R package Ime4 (Bates and Maechler)
No negative ICC values
Missing data allowed
No limit on # random variables



Miscellaneous Tools

0 SEM or path analysis, analysis of covariance: ldSEMr
Causal model for a network of ROIs
Use R package sem (John Fox)

0 Independent component analysis: 1dICA
Use R package fastICA (Marchini e/ al.)
Spatial ICA

0 Kolmogorov-Smirnov test: 3dKS
Use R package snow (Luke Tierney ef al.)



Summary

0 Statistical analysis programs in R for FMRI data analysis of
NIfTT/AFNI datasets

Mixed-effects meta analysis (MEMA): 3dMEMA
Linear mixed-effects analysis (LME): 3dLME
Granger causality (vector autoregressive or VAR): 3dGC, 1dGC
Intra-class correlation analysis (ICC): 3dICC and 3dICC_REML
Structural equation modeling (SEM): 1dSEMr
Independent component analysis (ICA): 3dICA
Kolmogorov-Smirnov test: 3dKS

0 All programs available for download with AFNI, and at
http://afni.nimh.nih.gov/sscc/gangc
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